SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. MET and SMYD3 Inhibitors
2.3. Three-Dimensional (3D) GC Cocultures and Tumorsphere Formation
2.4. Co-Immunoprecipitation Assays
2.5. Immunoblotting
2.6. Cellular Assays
2.7. Colony Formation Assay
2.8. RNA Isolation, cDNA Preparation, and qPCR Analysis
2.9. Quantification and Statistical Analysis
3. Results
3.1. MET and SMYD3 Are Molecular Partners in GC Cells
3.2. Pharmacological Targeting of SMYD3 Abrogates the HGF/MET-Dependent Signaling Pathway
3.3. SMYD3 Inhibition Enhances GC Cell Sensitivity to MET Inhibition
3.4. Targeting SMYD3 in 3D GC Cellular Models to Circumvent Stemness-Related MET Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- den Hoed, C.M.; Kuipers, E.J. Gastric Cancer: How Can We Reduce the Incidence of This Disease? Curr. Gastroenterol. Rep. 2016, 18, 34. [Google Scholar] [CrossRef]
- Röcken, C. Predictive Biomarkers in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, P. Gastric Cancer: Somatic Genetics as a Guide to Therapy. J. Med. Genet. 2017, 54, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Shitara, K.; Janjigian, Y.Y. New Agents on the Horizon in Gastric Cancer. Ann. Oncol. 2017, 28, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.-L.; Behrens, H.-M.; Böger, C.; Haag, J.; Krüger, S.; Röcken, C. MET in Gastric Cancer—Discarding a 10% Cutoff Rule. Histopathology 2016, 68, 241–253. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kim, J.; Kim, M.A.; Choi, J.; Kim, W.H. Increased HGF Expression Induces Resistance to C-MET Tyrosine Kinase Inhibitors in Gastric Cancer. Anticancer Res. 2017, 37, 1127–1138. [Google Scholar] [CrossRef]
- Kawakami, H.; Okamoto, I. MET-Targeted Therapy for Gastric Cancer: The Importance of a Biomarker-Based Strategy. Gastric Cancer 2016, 19, 687–695. [Google Scholar] [CrossRef]
- Oh, H.A.; Lee, G.; Kang, H.J.; Kim, Y.G.; Bae, S.H.; Lee, J.L.; Lee, K.H.; Hyun, M.S.; Kim, D.S. Overexpression of C-Met Protein in Gastric Cancer and Role of UPAR as a Therapeutic Target. Cancer Res. Treat. 2003, 35, 9–15. [Google Scholar] [CrossRef]
- Lee, J.; Seo, J.W.; Jun, H.J.; Ki, C.-S.; Park, S.H.; Park, Y.S.; Lim, H.Y.; Choi, M.G.; Bae, J.M.; Sohn, T.S.; et al. Impact of MET Amplification on Gastric Cancer: Possible Roles as a Novel Prognostic Marker and a Potential Therapeutic Target. Oncol. Rep. 2011, 25, 1517–1524. [Google Scholar] [CrossRef]
- Moosavi, F.; Giovannetti, E.; Saso, L.; Firuzi, O. HGF/MET Pathway Aberrations as Diagnostic, Prognostic, and Predictive Biomarkers in Human Cancers. Crit. Rev. Clin. Lab. Sci. 2019, 56, 533–566. [Google Scholar] [CrossRef]
- Miekus, K. The Met Tyrosine Kinase Receptor as a Therapeutic Target and a Potential Cancer Stem Cell Factor Responsible for Therapy Resistance (Review). Oncol. Rep. 2017, 37, 647–656. [Google Scholar] [CrossRef]
- Fasano, C.; Lepore Signorile, M.; De Marco, K.; Forte, G.; Sanese, P.; Grossi, V.; Simone, C. Identifying Novel SMYD3 Interactors on the Trail of Cancer Hallmarks. Comput. Struct. Biotechnol. J. 2022, 20, 1860–1875. [Google Scholar] [CrossRef]
- Sanese, P.; Fasano, C.; Simone, C. Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers 2021, 13, 4427. [Google Scholar] [CrossRef] [PubMed]
- Parenti, M.D.; Naldi, M.; Manoni, E.; Fabini, E.; Cederfelt, D.; Talibov, V.O.; Gressani, V.; Guven, U.; Grossi, V.; Fasano, C.; et al. Discovery of the 4-Aminopiperidine-Based Compound EM127 for the Site-Specific Covalent Inhibition of SMYD3. Eur. J. Med. Chem. 2022, 243, 114683. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Germani, A.; Matrone, A.; Grossi, V.; Peserico, A.; Sanese, P.; Liuzzi, M.; Palermo, R.; Murzilli, S.; Campese, A.F.; Ingravallo, G.; et al. Targeted Therapy against Chemoresistant Colorectal Cancers: Inhibition of P38α Modulates the Effect of Cisplatin in Vitro and in Vivo through the Tumor Suppressor FoxO3A. Cancer Lett. 2014, 344, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Graveel, C.R.; Tolbert, D.; Vande Woude, G.F. MET: A Critical Player in Tumorigenesis and Therapeutic Target. Cold Spring Harb. Perspect. Biol. 2013, 5, a009209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the C-Met Receptor Tyrosine Kinase in Carcinogenesis and Associated Therapeutic Opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Dua, R.; Zhang, J.; Parry, G.; Penuel, E. Detection of Hepatocyte Growth Factor (HGF) Ligand-c-MET Receptor Activation in Formalin-Fixed Paraffin Embedded Specimens by a Novel Proximity Assay. PLoS ONE 2011, 6, e15932. [Google Scholar] [CrossRef]
- Sanese, P.; Fasano, C.; Buscemi, G.; Bottino, C.; Corbetta, S.; Fabini, E.; Silvestri, V.; Valentini, V.; Disciglio, V.; Forte, G.; et al. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. iScience 2020, 23, 101604. [Google Scholar] [CrossRef]
- Peserico, A.; Germani, A.; Sanese, P.; Barbosa, A.J.; Di Virgilio, V.; Fittipaldi, R.; Fabini, E.; Bertucci, C.; Varchi, G.; Moyer, M.P.; et al. A SMYD3 Small-Molecule Inhibitor Impairing Cancer Cell Growth. J. Cell. Physiol. 2015, 230, 2447–2460. [Google Scholar] [CrossRef]
- Wang, X.; Le, P.; Liang, C.; Chan, J.; Kiewlich, D.; Miller, T.; Harris, D.; Sun, L.; Rice, A.; Vasile, S.; et al. Potent and Selective Inhibitors of the Met [Hepatocyte Growth Factor/Scatter Factor (HGF/SF) Receptor] Tyrosine Kinase Block HGF/SF-Induced Tumor Cell Growth and Invasion. Mol. Cancer Ther. 2003, 2, 1085–1092. [Google Scholar] [PubMed]
- Bottino, C.; Peserico, A.; Simone, C.; Caretti, G. SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yang, J.; Song, P. Correlation of ERK/MAPK Signaling Pathway with Proliferation and Apoptosis of Colon Cancer Cells. Oncol. Lett. 2019, 17, 2266–2270. [Google Scholar] [CrossRef]
- Hoxhaj, G.; Manning, B.D. The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef] [PubMed]
- El Darsa, H.; El Sayed, R.; Abdel-Rahman, O. MET Inhibitors for the Treatment of Gastric Cancer: What’s Their Potential? J. Exp. Pharmacol. 2020, 12, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Ohata, H.; Sato, A.; Yamawaki, K.; Enomoto, T.; Okamoto, K. Tumor-Derived Spheroids: Relevance to Cancer Stem Cells and Clinical Applications. Cancer Sci. 2017, 108, 283–289. [Google Scholar] [CrossRef]
- Gao, W.; Bing, X.; Li, M.; Yang, Z.; Li, Y.; Chen, H. Study of Critical Role of C-Met and Its Inhibitor SU11274 in Colorectal Carcinoma. Med. Oncol. 2013, 30, 546. [Google Scholar] [CrossRef]
- Athauda, A.; Chau, I. Do Investigational MET Inhibitors Have Potential for the Treatment of Gastric Cancer? Expert. Opin. Investig. Drugs 2019, 28, 299–302. [Google Scholar] [CrossRef]
- Pellino, A.; Riello, E.; Nappo, F.; Brignola, S.; Murgioni, S.; Djaballah, S.A.; Lonardi, S.; Zagonel, V.; Rugge, M.; Loupakis, F.; et al. Targeted Therapies in Metastatic Gastric Cancer: Current Knowledge and Future Perspectives. World J. Gastroenterol. 2019, 25, 5773–5788. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-L.; He, Y.; Xu, R.-H. Gastric Cancer Treatment: Recent Progress and Future Perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef]
- Inokuchi, M.; Otsuki, S.; Fujimori, Y.; Sato, Y.; Nakagawa, M.; Kojima, K. Clinical Significance of MET in Gastric Cancer. World J. Gastrointest. Oncol. 2015, 7, 317–327. [Google Scholar] [CrossRef]
- Study Record|Beta ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT02344810?cond=Gastric%20Cancer&intr=met%20inhibitor&rank=1 (accessed on 11 July 2023).
- Bradley, C.A.; Salto-Tellez, M.; Laurent-Puig, P.; Bardelli, A.; Rolfo, C.; Tabernero, J.; Khawaja, H.A.; Lawler, M.; Johnston, P.G.; Van Schaeybroeck, S.; et al. Targeting C-MET in Gastrointestinal Tumours: Rationale, Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2017, 14, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Pride, Y.B.; Ma, P.; Gramlich, J.L.; Chu, S.C.; Quinnan, L.A.; Shirazian, S.; Liang, C.; Podar, K.; Christensen, J.G.; et al. A Novel Small Molecule Met Inhibitor Induces Apoptosis in Cells Transformed by the Oncogenic TPR-MET Tyrosine Kinase. Cancer Res. 2003, 63, 5462–5469. [Google Scholar]
- Jensen, C.; Teng, Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front. Mol. Biosci. 2020, 7, 33. [Google Scholar] [CrossRef]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D Cell Cultures—A Comparison of Different Types of Cancer Cell Cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.K.; Yun, N.H.; Jeong, Y.-L.; Park, J.; Doh, J.; Lee, W.Y.; Cho, Y.B. Establishment of Patient-Derived Organotypic Tumor Spheroid Models for Tumor Microenvironment Modeling. Cancer Med. 2021, 10, 5589–5598. [Google Scholar] [CrossRef]
- Alzeeb, G.; Metges, J.-P.; Corcos, L.; Le Jossic-Corcos, C. Three-Dimensional Culture Systems in Gastric Cancer Research. Cancers 2020, 12, 2800. [Google Scholar] [CrossRef]
- Anestis, A.; Zoi, I.; Karamouzis, M.V. Current Advances of Targeting HGF/c-Met Pathway in Gastric Cancer. Ann. Transl. Med. 2018, 6, 247. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Q.; Chen, W.-D.; Wang, Y.-D. HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int. J. Mol. Sci. 2018, 19, 3295. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J. Therapeutic Strategies for Ovarian Cancer in Point of HGF/c-MET Targeting. Medicina 2022, 58, 649. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Marco, K.; Lepore Signorile, M.; Di Nicola, E.; Sanese, P.; Fasano, C.; Forte, G.; Disciglio, V.; Pantaleo, A.; Varchi, G.; Del Rio, A.; et al. SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer. Cells 2023, 12, 2481. https://doi.org/10.3390/cells12202481
De Marco K, Lepore Signorile M, Di Nicola E, Sanese P, Fasano C, Forte G, Disciglio V, Pantaleo A, Varchi G, Del Rio A, et al. SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer. Cells. 2023; 12(20):2481. https://doi.org/10.3390/cells12202481
Chicago/Turabian StyleDe Marco, Katia, Martina Lepore Signorile, Elisabetta Di Nicola, Paola Sanese, Candida Fasano, Giovanna Forte, Vittoria Disciglio, Antonino Pantaleo, Greta Varchi, Alberto Del Rio, and et al. 2023. "SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer" Cells 12, no. 20: 2481. https://doi.org/10.3390/cells12202481
APA StyleDe Marco, K., Lepore Signorile, M., Di Nicola, E., Sanese, P., Fasano, C., Forte, G., Disciglio, V., Pantaleo, A., Varchi, G., Del Rio, A., Grossi, V., & Simone, C. (2023). SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer. Cells, 12(20), 2481. https://doi.org/10.3390/cells12202481