Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions
2.2. Design and Construction of Plasmids
2.3. RNA Preparation and Reverse Transcription-Quantitative PCR (qRT-PCR)
2.4. RNA Stability Assay
2.5. Quantification and Statistical Analysis
3. Results
3.1. Establishment of RDT In Vivo Detection System
3.2. RDT at the galE–galT Cistron Junction
3.3. RDT at the galT–galK Cistron Junction and Spot 42 Enhanced It
3.4. RDT and RIT at the End of the Operon
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Monford, P.A.N.; Jeon, H.J.; Lee, Y.; He, J.; Adhya, S.; Lim, H.M. Processing generates 3’ ends of RNA masking transcription termination events in prokaryotes. Proc. Natl. Acad. Sci. USA 2019, 116, 4440–4445. [Google Scholar] [CrossRef]
- Ray-Soni, A.; Bellecourt, M.J.; Landick, R. Mechanisms of bacterial transcription termination: All good things must end. Annu. Rev. Biochem. 2016, 85, 319–347. [Google Scholar] [CrossRef]
- Molodtsov, V.; Wang, C.; Firlar, E.; Kaelber, J.T.; Ebright, R.H. Structural basis of Rho-dependent transcription termination. Nature 2023, 614, 367–374. [Google Scholar] [CrossRef]
- Peters, J.M.; Mooney, R.A.; Kuan, P.F.; Rowland, J.L.; Keles, S.; Landick, R. Rho directs widespread termination of intragenic and stable RNA transcription. Proc. Natl. Acad. Sci. USA 2009, 106, 15406–15411. [Google Scholar] [CrossRef]
- Dar, D.; Sorek, R. High-resolution RNA 3’-ends mapping of bacterial Rho-dependent transcripts. Nucleic Acids Res. 2018, 46, 6797–6805. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Svetlov, V.; Nudler, E. Rho-dependent transcription termination: A revisionist view. Transcription 2021, 12, 171–181. [Google Scholar] [CrossRef]
- Wang, X.; Monford, P.A.N.; Jeon, H.J.; He, J.; Lim, H.M. Identification of a Rho-dependent termination site in vivo using synthetic small RNA. Microbiol. Spectr. 2023, 11, e0395022. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.J.; Lee, Y.; Monford, P.A.N.; Wang, X.; Chattoraj, D.K.; Lim, H.M. sRNA-mediated regulation of gal mRNA in E. coli: Involvement of transcript cleavage by RNase E together with Rho-dependent transcription termination. PLoS Genet. 2021, 17, e1009878. [Google Scholar] [CrossRef]
- Jeon, H.J.; Monford, P.A.N.; Lee, Y.; Lim, H.M. Failure of translation initiation of the next gene decouples transcription at intercistronic sites and the resultant mRNA generation. mBio 2022, 13, e0128722. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, S.C.; Yun, S.H.; Jeon, H.J.; Kim, S.W.; Lim, H.M. Expression of each cistron in the gal operon can be regulated by transcription termination and generation of a galk-specific mRNA, mK2. J. Bacteriol. 2014, 196, 2598–2606. [Google Scholar] [CrossRef]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Chiu, Y.T.; Hsueh, H.T.; Lin, T.F. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Res. 2021, 188, 116478. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, J.; Li, J. Primer design for quantitative real-time PCR for the emerging Coronavirus SARS-CoV-2. Theranostics 2020, 10, 7150–7162. [Google Scholar] [CrossRef]
- Campion, E.M.; Loughran, S.T. Gene expression analysis by reverse transcription quantitative PCR. Methods Mol. Biol. 2021, 2283, 61–74. [Google Scholar]
- Chhakchhuak, P.I.R.; Sen, R. In vivo regulation of bacterial Rho-dependent transcription termination by the nascent RNA. J. Biol. Chem. 2022, 298, 102001. [Google Scholar] [CrossRef]
- Guenin, S.; Mauriat, M.; Pelloux, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef]
- Minshall, N.; Git, A. Enzyme- and gene-specific biases in reverse transcription of RNA raise concerns for evaluating gene expression. Sci. Rep. 2020, 10, 8151. [Google Scholar] [CrossRef] [PubMed]
- Opperman, T.; Martinez, A.; Richardson, J.P. The ts15 mutation of Escherichia coli alters the sequence of the C-terminal nine residues of Rho protein. Gene 1995, 152, 133–134. [Google Scholar] [CrossRef]
- Wang, X.; Ji, S.C.; Jeon, H.J.; Lee, Y.; Lim, H.M. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene. Proc. Natl. Acad. Sci. USA 2015, 112, 7581–7586. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.; Han, K.; Kim, K.S.; Park, H.; Lee, J.; Lee, Y. Rho-dependent termination of ssrS (6S RNA) transcription in Escherichia coli: Implication for 3’ processing of 6S RNA and expression of downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase). J. Biol. Chem. 2011, 286, 114–122. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Zakrajsek, B.A.; Mills, A.G.; Gorn, V.; Singer, M.J.; Reed, M.W. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods. Anal. Biochem. 2000, 285, 194–204. [Google Scholar] [CrossRef]
- Winer, J.; Jung, C.K.; Shackel, I.; Williams, P.M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 1999, 270, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Park, B.H.; Kim, S.; Lee, Y.J.; Chung, J.H.; Lee, Y. Complementation of the growth defect of an rnpA49 mutant of Escherichia coli by overexpression of arginine tRNA(CCG). Biochem. Mol. Biol. Int. 1998, 46, 1153–1160. [Google Scholar] [PubMed]
- Monford, P.A.N.; Lim, H.M. An in vitro assay of mRNA 3’ end using the E. coli cell-free expression system. Bio Protoc. 2022, 12, e4333. [Google Scholar]
- Hafeezunnisa, M.; Sen, R. The Rho-Dependent Transcription Termination Is Involved in broad-spectrum antibiotic susceptibility in Escherichia coli. Front. Microbiol. 2020, 11, 605305. [Google Scholar] [CrossRef]
- Fernandez-Millan, P.; Schelcher, C.; Chihade, J.; Masquida, B.; Giege, P.; Sauter, C. Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch. Biochem. Biophys. 2016, 602, 95–105. [Google Scholar] [CrossRef]
- Mohanty, B.K.; Kushner, S.R. New insights into the relationship between tRNA processing and polyadenylation in Escherichia coli. Trends Genet. 2019, 35, 434–445. [Google Scholar] [CrossRef]
- Prossliner, T.; Agrawal, S.; Heidemann, D.F.; Sorensen, M.A.; Svenningsen, S.L. tRNAs Are Stable After All: Pitfalls in Quantification of tRNA from Starved Escherichia coli Cultures Exposed by Validation of RNA Purification Methods. mBio 2023, 14, e0280522. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Pu, Q.; Wu, Q.; Zhou, C.; Wang, B.; Schettler, J.; Wang, Z.; Qin, S.; Gao, P.; Li, R.; et al. High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination. Nat. Commun. 2019, 10, 3728. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Pimentel, M.; Moniz-Pereira, J. Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J. Bacteriol. 2002, 184, 3034–3043. [Google Scholar] [CrossRef]
- Lopez, P.J.; Iost, I.; Dreyfus, M. The use of a tRNA as a transcriptional reporter: The T7 late promoter is extremely efficient in Escherichia coli but its transcripts are poorly expressed. Nucleic Acids Res. 1994, 22, 2434. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Choi, P.J.; Li, G.W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X.S. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Smale, S.T. Beta-galactosidase assay. Cold Spring Harb. Protoc. 2010, 2010, 5423. [Google Scholar] [CrossRef]
- Wang, X.; Jeon, H.J.; Monford, P.A.N.; He, J.; Lim, H.M. Visualization of RNA 3’ ends in Escherichia coli using 3’ RACE combined with primer Extension. Bio Protoc. 2018, 8, e2752. [Google Scholar] [CrossRef] [PubMed]
RNA Name | Half-Life (min) |
---|---|
tRNAarg | 1.2 ± 0.09 |
galE | 1.1 ± 0.17 |
cat | 1.5 ± 0.14 |
16S rRNA | Stable (>4000) |
RNA Name | From Plasmid | Half-Life (min) |
---|---|---|
tRNAarg | pHL1031 | 1.2 ± 0.10 |
pHL1193 | 1.0 ± 0.08 | |
pHL2000 | 1.3 ± 0.11 | |
pHL2184 | 1.3 ± 0.09 | |
pHL4270 | 1.3 ± 0.17 | |
pHL4344 | 1.2 ± 0.12 | |
pHL4444 | 1.3 ± 0.08 |
Termination Efficiency | |
---|---|
E-T junction RDT | 36% |
T-K junction RDT | 26% |
galM end RIT | 33% |
galM end RDT | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
N, M.P.A.; Jeon, H.; Wang, X.; Lim, H.M. Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo. Cells 2023, 12, 2596. https://doi.org/10.3390/cells12222596
N MPA, Jeon H, Wang X, Lim HM. Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo. Cells. 2023; 12(22):2596. https://doi.org/10.3390/cells12222596
Chicago/Turabian StyleN, Monford Paul Abishek, Heungjin Jeon, Xun Wang, and Heon M. Lim. 2023. "Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo" Cells 12, no. 22: 2596. https://doi.org/10.3390/cells12222596
APA StyleN, M. P. A., Jeon, H., Wang, X., & Lim, H. M. (2023). Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo. Cells, 12(22), 2596. https://doi.org/10.3390/cells12222596