Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Raman Spectroscopy
2.3. Raman Data Pre-Processing
2.4. Machine Learning
2.4.1. Hyper-Parameter-Tuned LDA
2.4.2. PCA-LDA
2.4.3. LSTM/CNN-Based Classifiers
- -
- Feature Extraction Expertise: The CNN component of this model is adept at capturing high-level visual features from input data, making it exceptionally suitable for tasks that demand an in-depth understanding of visual content.
- -
- Sequential Understanding: The LSTM layer, known for its exceptional ability to model sequential data and grasp the dynamics of a sequence, complements the CNN layer’s feature extraction by capturing the temporal dependencies in the data.
- -
- Adaptability: The proposed architecture can be tailored to specific needs, with two configurations available, one with 25 layers and the other with 56 layers. This flexibility allows for fine-tuning to the demands of the task at hand.
- -
- Robustness and Precision: The presence of layers for visual feature extraction, sequence learning, and output, as well as the inclusion of dropout layers to prevent overfitting, have been inserted to obtain precise and reliable results, even in the face of noisy or complex data.
2.4.4. Blind Prediction
3. Results and Discussion
3.1. Morphological Analysis
3.2. Raman Spectroscopy BIOCHEMICAL Overview
3.3. Dataset
3.4. Unsupervised Multivariate Analysis
3.5. Supervised Multivariate Analysis
3.6. CNN-Based Classification (Supervised Learning)
- The optimal number of layers, which we chose to be between 22 and 56.
- The most appropriate learning rate in the interval [0.0001,0.05].
- The best dropout chosen in the interval [0.1,0.25].
- The threshold of the reject option (in the interval {0.4, 0.8}).
- The type of augmentation to apply to the training set (selected from the set {No augmentation, Frequency, Value, Both}).
- The windows are chosen in order to obtain ks = 3 with no overlap.
- A cross-validation approach with k = 5 folds is used.
3.7. Blind Prediction of Tumor Cells
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for Hepatocellular Carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.; Villanueva, A.; Friedman, S.L.; Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017, 152, 745–761. [Google Scholar] [CrossRef]
- Wang, W.; Wei, C. Advances in the Early Diagnosis of Hepatocellular Carcinoma. Genes Dis. 2020, 7, 308–319. [Google Scholar] [CrossRef]
- Taqi, S.A.; Sami, S.A.; Sami, L.B.; Zaki, S.A. A Review of Artifacts in Histophatology. J. Oral Maxillofac. Pathol. 2018, 22, 279. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Mercan, E.; Weaver, D.L.; Elmore, J.G. Accuracy Is in the Eyes of the Pathologist: The Visual Interpretive Process and Diagnostic Accuracy with Digital Whole Slide Images. J. Biomed. Inform. 2017, 66, 171–179. [Google Scholar] [CrossRef]
- Elumalai, S.; Managó, S.; De Luca, A.C. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors 2020, 20, 5525. [Google Scholar] [CrossRef]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Thomas, G.M.H. Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature. Diagnostics 2022, 12, 1491. [Google Scholar] [CrossRef]
- Wen, J.; Tang, T.; Kanwal, S.; Lu, Y.; Tao, C.; Zheng, L.; Zhang, D.; Gu, Z. Detection and Classification of Multi-Type Cells by Using Confocal Raman Spectroscopy. Front. Chem. 2021, 9, 641670. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Peng, D.; Yi, X.; He, S.; Liu, F.; Zheng, X.; Huang, W.E.; Zhao, L.; Huang, X. Raman Spectroscopy and Machine Learning for the Classification of Breast Cancers. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2022, 264, 120300. [Google Scholar] [CrossRef]
- He, Q.; Yang, W.; Luo, W.; Wilhelm, S.; Weng, B. Label-Free Differentiation of Cancer and Non-Cancer Cells Based on Machine-Learning-Algorithm-Assisted Fast Raman Imaging. Biosens 2022, 12, 250. [Google Scholar] [CrossRef]
- Tolstik, T.; Marquardt, C.; Matthaus, C.; Bergner, N.; Bielecki, C.; Krafft, C.; Stallmach, A.; Popp, J. Discrimination and Classification of Liver Cancer Cells and Proliferation States by Raman Spectroscopic Imaging. Analyst 2014, 139, 6036–6043. [Google Scholar] [CrossRef]
- Ryabchykov, O.; Bräutigam, K.; Galler, K.; Neugebauer, U.; Mosig, A.; Bocklitz, T.; Popp, J. Raman Spectroscopic Investigation of the Human Liver Stem Cell Line HepaRG. J. Raman Spectrosc. 2018, 49, 935–942. [Google Scholar] [CrossRef]
- Richter, M.; Piwocka, O.; Musielak, M.; Piotrowski, I.; Suchorska, W.M.; Trzeciak, T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front. Cell Dev. Biol. 2021, 9, 711381. [Google Scholar] [CrossRef]
- Schwartz, R.E.; Fleming, H.E.; Khetani, S.R.; Bhatia, S.N. Pluripotent Stem Cell-Derived Hepatocyte-like Cells. Biotechnol. Adv. 2014, 32, 504–513. [Google Scholar] [CrossRef]
- Huang, L.; Sun, H.; Sun, L.; Shi, K.; Chen, Y.; Ren, X.; Ge, Y.; Jiang, D.; Liu, X.; Knoll, W.; et al. Rapid, Label-Free Histopathological Diagnosis of Liver Cancer Based on Raman Spectroscopy and Deep Learning. Nat. Commun. 2023, 14, 48. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Bocklitz, T.; Walter, A.; Hartmann, K.; Rösch, P.; Popp, J. How to Pre-Process Raman Spectra for Reliable and Stable Models? Anal. Chim. Acta 2011, 704, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of Multidimensional Data Processing Approaches for Raman and Infrared Spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Perlich, C. Learning Curves in Machine Learning. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011; pp. 577–580. ISBN 978-0-387-30164-8. [Google Scholar]
- Ying, X. An Overview of Overfitting and Its Solutions. Proc. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Soper, D.S. Greed Is Good: Rapid Hyperparameter Optimization and Model Selection Using Greedy k-Fold Cross Validation. Electron 2021, 10, 1973. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the Neural Information Processing Systems, Granada, Spain, 12 December 2011. [Google Scholar]
- Geifman, Y.; El-Yaniv, R. SelectiveNet: A Deep Neural Network with an Integrated Reject Option. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 26 January 2019. [Google Scholar]
- Li, Q.; Rycaj, K.; Chen, X.; Tang, D.G. Cancer Stem Cells and Cell Size: A Causal Link? Semin. Cancer Biol. 2015, 35, 191–199. [Google Scholar] [CrossRef]
- Notingher, I. 12—Characterisation Using Raman Micro-Spectroscopy. In Tissue Engineering Using Ceramics and Polymers; Aldo, R., Boccaccini, J.E.G., Eds.; Woodhead Publishing Series in Biomaterials: Sawston, UK, 2007; pp. 248–266. [Google Scholar]
- Tan, Y.; Konorov, S.O.; Schulze, H.G.; Piret, J.M.; Blades, M.W.; Turner, R.F.B. Comparative Study Using Raman Microspectroscopy Reveals Spectral Signatures of Human Induced Pluripotent Cells More Closely Resemble Those from Human Embryonic Stem Cells than Those from Differentiated Cells. Analyst 2012, 137, 4509–4515. [Google Scholar] [CrossRef]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman Spectroscopy for Identification of Epithelial Cancers. Faraday Discuss. 2004, 126, 141–157. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, L.; He, T.; Cao, H.; Ren, X.; Ma, C.; Yang, J.; Huang, R.; Pan, G. Single Cell Raman Spectroscopy to Identify Different Stages of Proliferating Human Hepatocytes for Cell Therapy. Stem Cell Res. Ther. 2021, 12, 555. [Google Scholar] [CrossRef]
- Surmacki, J.M.; Woodhams, B.J.; Haslehurst, A.; Ponder, B.A.J.; Bohndiek, S.E. Raman Micro-Spectroscopy for Accurate Identification of Primary Human Bronchial Epithelial Cells. Sci. Rep. 2018, 8, 12604. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Du, B.; Qian, M.; Cai, W.; Wang, Z.; Sun, Z. Raman Spectroscopic Identification of Normal and Malignant Hepatocytes. Chin. Opt. Lett. 2009, 7, 60–63. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Qiu, S.; Weng, Y.; Li, Y.; Chen, Y.; Pan, Y.; Liu, J.; Lin, W.; Chen, X.; Li, M.; Lin, T.; et al. Raman Profile Alterations of Irradiated Human Nasopharyngeal Cancer Cells Detected with Laser Tweezer Raman Spectroscopy. RSC Adv. 2020, 10, 14368–14373. [Google Scholar] [CrossRef] [PubMed]
- Managò, S.; Valente, C.; Mirabelli, P.; Circolo, D.; Basile, F.; Corda, D.; De Luca, A.C. A Reliable Raman-Spectroscopy-Based Approach for Diagnosis, Classification and Follow-up of B-Cell Acute Lymphoblastic Leukemia. Sci. Rep. 2016, 6, 24821. [Google Scholar] [CrossRef]
- Bi, X.; Rexer, B.; Arteaga, C.L.; Guo, M.; Mahadevan-Jansen, A. Evaluating HER2 Amplification Status and Acquired Drug Resistance in Breast Cancer Cells Using Raman Spectroscopy. J. Biomed. Opt. 2014, 19, 025001. [Google Scholar] [CrossRef]
- Szafraniec, E.; Kus, E.; Wislocka, A.; Kukla, B.; Sierka, E.; Untereiner, V.; Sockalingum, G.D.; Chlopicki, S.; Baranska, M. Raman Spectroscopy–Based Insight into Lipid Droplets Presence and Contents in Liver Sinusoidal Endothelial Cells and Hepatocytes. J. Biophotonics 2019, 12, e201800290. [Google Scholar] [CrossRef]
- Li, J.; Qin, J.; Zhang, X.; Wang, R.; Liang, Z.; He, Q.; Wang, Z.; Wang, K.; Wang, S. Label-Free Raman Imaging of Live Osteosarcoma Cells with Multivariate Analysis. Appl. Microbiol. Biotechnol. 2019, 103, 6759–6769. [Google Scholar] [CrossRef]
- Surmacki, J.M.; Quiros-Gonzalez, I.; Bohndiek, S.E. Evaluation of Label-Free Confocal Raman Microspectroscopy for Monitoring Oxidative Stress In Vitro in Live Human Cancer Cells. Antioxidants 2022, 11, 573. [Google Scholar] [CrossRef]
- Byrne, H.J.; Ostrowska, K.M.; Nawaz, H.; Dorney, J.; Meade, A.D.; Bonnier, F.; Lyng, F.M. Vibrational Spectroscopy: Disease Diagnostics and Beyond. In Optical Spectroscopy and Computational Methods in Biology and Medicine; Baranska, M., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 355–399. ISBN 978-94-007-7832-0. [Google Scholar]
- Tarao, K.; Ohkawa, S.; Shimizu, A.; Harada, M.; Nakamura, Y.; Okamoto, N.; Ito, Y.; Tamai, S.; Iimori, K.; Sugimasa, Y.; et al. DNA Synthesis Activities of Hepatocytes from Noncancerous Cirrhotic Tissue and of Hepatocellular Carcinoma (HCC) Cells from Cancerous Tissue Can Predict the Survival of Hepatectomized Patients with HCC. Cancer 1993, 71, 3859–3863. [Google Scholar] [CrossRef]
- Ben-David, U.; Amon, A. Context Is Everything: Aneuploidy in Cancer. Nat. Rev. Genet. 2020, 21, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Kamijyo, K.; Suzuki, Y.; Kiyosawa, K.; Nagata, A.; Furuta, S.; Nagata, T. DNA Content of Hepatocytes in Various Stages of Liver Cirrhosis. Liver 1985, 5, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Bou-Nader, M.; Caruso, S.; Donne, R.; Celton-Morizur, S.; Calderaro, J.; Gentric, G.; Cadoux, M.; L’Hermitte, A.; Klein, C.; Guilbert, T.; et al. Polyploidy Spectrum: A New Marker in HCC Classification. Gut 2020, 69, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Strickaert, A.; Saiselet, M.; Dom, G.; De Deken, X.; Dumont, J.E.; Feron, O.; Sonveaux, P.; Maenhaut, C. Cancer Heterogeneity Is Not Compatible with One Unique Cancer Cell Metabolic Map. Oncogene 2017, 36, 2637–2642. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.A.; Fox, J.M.; Genever, P.G.; Hancock, Y. Biomolecular Phenotyping and Heterogeneity Assessment of Mesenchymal Stromal Cells Using Label-Free Raman Spectroscopy. Sci. Rep. 2021, 11, 4385. [Google Scholar] [CrossRef]
- Romualdo, G.R.; Leroy, K.; Costa, C.J.S.; Prata, G.B.; Vanderborght, B.; da Silva, T.C.; Barbisan, L.F.; Andraus, W.; Devisscher, L.; Câmara, N.O.S.; et al. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers 2021, 13, 5583. [Google Scholar] [CrossRef]
- Vardaki, M.Z.; Seretis, K.; Gaitanis, G.; Bassukas, I.D.; Kourkoumelis, N. Assessment of Skin Deep Layer Biochemical Profile Using Spatially Offset Raman Spectroscopy. Appl. Sci. 2021, 11, 9498. [Google Scholar] [CrossRef]
- Vardaki, M.Z.; Pavlou, E.; Simantiris, N.; Lampri, E.; Seretis, K.; Kourkoumelis, N. Towards Non-Invasive Monitoring of Non-Melanoma Skin Cancer Using Spatially Offset Raman Spectroscopy. Analyst 2023, 148, 4386–4395. [Google Scholar] [CrossRef]
- Cordero, E.; Latka, I.; Matthäus, C.; Schie, I.; Popp, J. In-Vivo Raman Spectroscopy: From Basics to Applications. J. Biomed. Opt. 2018, 23, 071210. [Google Scholar] [CrossRef]
- Desroches, J.; Jermyn, M.; Pinto, M.; Picot, F.; Tremblay, M.A.; Obaid, S.; Marple, E.; Urmey, K.; Trudel, D.; Soulez, G.; et al. A New Method Using Raman Spectroscopy for in Vivo Targeted Brain Cancer Tissue Biopsy. Sci. Rep. 2018, 8, 1792. [Google Scholar] [CrossRef]
- Spaziani, S.; Quero, G.; Managò, S.; Zito, G.; Terracciano, D.; Macchia, P.E.; Galeotti, F.; Pisco, M.; De Luca, A.C.; Cusano, A. SERS Assisted Sandwich Immunoassay Platforms for Ultrasensitive and Selective Detection of Human Thyroglobulin. Biosens. Bioelectron. 2023, 233, 115322. [Google Scholar] [CrossRef] [PubMed]
Raman Shift (cm−1) | Assignment | Biomolecule |
---|---|---|
729 | A ring br. | Nucleic acid [31] |
757 | Trp ring br. | Protein [32] |
782–785 | DNA backbone, U, C, T ring br. | Nucleic acid [14] |
826 | O–P–O str. | Nucleic acid [33] |
854 | Tyr ring br. | Protein [31] |
840–860 | Polysaccaride structure | Carbohydrates [34] |
1004 | Phe ring br. | Protein [35] |
1031 | Phe C–H in-plane bend. | Protein [33] |
1064 | Skeletal C–C str. | Lipids [33] |
1094 | Sym. PO2- str. | Nucleic acid [35] |
1177 | Tyr C-H bend. | Protein [31] |
1207 | Phe, Trp C–C6H5 str. | Protein [36] |
1240–1246 | Amide III | Protein [33] |
1305 | (CH2) twist. | Lipids/Protein [37] |
1335 | A, G ring br., C–H def. | Nucleic acid/Protein [38] |
1370 | DNA bases ring br. | Nucleic acid [39] |
1438 | CH2, CH3 def. | Protein [40] |
1444 | CH2, CH3 def. | Lipids/Protein [41] |
1578 | A, G ring br. | Nucleic acid [42] |
1606 | Tyr, Phe C=C bend., C NH2 | Protein/Nucleic acid [43] |
1618 | Phe, Tyr and Trp C=C | Protein [44] |
1656 | C=C str., Amide I | Lipids/Protein [31] |
Confusion Matrix (Hyper-Parameter LDA) | |||
---|---|---|---|
Predicted | Non-Tumor | 31 (93.94%) | 6 (15.00%) |
Tumor | 2 (6.06%) | 34 (85.00%) | |
Non-Tumor | Tumor | ||
True |
# Layers | LR | Dropout | Reject Option | Augmentation | Prec | Rec | F1 |
---|---|---|---|---|---|---|---|
LOW (0.2) | NO | 0.816 | 0.816 | 0.816 | |||
LOW (0.2) | YES (freq) | 0.822 | 0.835 | 0.828 | |||
LOW (0.2) | YES (value) | 0.832 | 0.815 | 0.823 | |||
25 | 0.001 | 0.15 | LOW (0.2) | YES (both) | 0.872 | 0.872 | 0.872 |
HIGH (0.8) | NO | 0.825 | 0.818 | 0.821 | |||
HIGH (0.8) | YES (freq) | 0.834 | 0.838 | 0.836 | |||
HIGH (0.8) | YES (value) | 0.847 | 0.848 | 0.847 | |||
HIGH (0.8) | YES (both) | 0.899 | 0.899 | 0.899 | |||
LOW (0.2) | NO | 0.826 | 0.826 | 0.826 | |||
LOW (0.2) | YES (freq) | 0.843 | 0.848 | 0.845 | |||
LOW (0.2) | YES (value) | 0.865 | 0.877 | 0.871 | |||
56 | 0.01 | 0.2 | LOW (0.2) | YES (both) | 0.899 | 0.899 | 0.899 |
HIGH (0.8) | NO | 0.902 | 0.921 | 0.911 | |||
HIGH (0.8) | YES (freq) | 0.912 | 0.904 | 0.908 | |||
HIGH (0.8) | YES (value) | 0.912 | 0.915 | 0.913 | |||
HIGH (0.8) | YES (both) | 0.943 | 0.917 | 0.930 |
Confusion Matrix (LSTM-CNN) | |||
---|---|---|---|
Predicted | Non-Tumor | 33 (91.67%) | 2 (5.40%) |
Tumor | 3 (8.33%) | 35 (94.59%) | |
Non-Tumor | Tumor | ||
True |
Tum (% Tum) | MIX1 (% Tum) | MIX2 (% Tum) | |
---|---|---|---|
Nominal value | 100.00% | 80.00% | 60.00% |
Hyper-parameter tuned LDA | 87.00% | 80.10% | 62.30% |
PCA-LDA | 89.00% | 82.40% | 58.00% |
CNN-LSTM-22 | 91.60% | 82.76% | 58.33% |
CNN-LSTM-56 | 92.70% | 81.67% | 61.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, C.; Janneh, M.; Spaziani, S.; Calcagno, V.; Bernardi, M.L.; Iammarino, M.; Verdone, C.; Tagliamonte, M.; Buonaguro, L.; Pisco, M.; et al. Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy. Cells 2023, 12, 2645. https://doi.org/10.3390/cells12222645
Esposito C, Janneh M, Spaziani S, Calcagno V, Bernardi ML, Iammarino M, Verdone C, Tagliamonte M, Buonaguro L, Pisco M, et al. Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy. Cells. 2023; 12(22):2645. https://doi.org/10.3390/cells12222645
Chicago/Turabian StyleEsposito, Concetta, Mohammed Janneh, Sara Spaziani, Vincenzo Calcagno, Mario Luca Bernardi, Martina Iammarino, Chiara Verdone, Maria Tagliamonte, Luigi Buonaguro, Marco Pisco, and et al. 2023. "Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy" Cells 12, no. 22: 2645. https://doi.org/10.3390/cells12222645
APA StyleEsposito, C., Janneh, M., Spaziani, S., Calcagno, V., Bernardi, M. L., Iammarino, M., Verdone, C., Tagliamonte, M., Buonaguro, L., Pisco, M., Aversano, L., & Cusano, A. (2023). Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy. Cells, 12(22), 2645. https://doi.org/10.3390/cells12222645