Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Sampling and Experimental Design
2.3. RNA Extraction
2.4. Microarray Analysis
2.5. Data Availability
3. Results
3.1. Measurements
3.2. Microarray Analysis
3.3. Sub-Population-Dependent Transcripts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Cánovas, C.; Millán, A.; Velasco, J.; Vaughan, I.P.; Ormerod, S.J. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob. Ecol. Biogeogr. 2013, 22, 796–805. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Myrberg, K.; Post, P.; Chubarenko, I.; Dailidiene, I.; Hinrichsen, H.-H.; Hüssy, K.; Liblik, T.; Meier, H.E.M.; Lips, U.; et al. Salinity dynamics of the Baltic Sea. Earth Syst. Dyn. 2022, 13, 373–392. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Kjellström, E.; Graham, L.P. Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys. Res. Lett. 2006, 33, L15705. [Google Scholar] [CrossRef]
- Birrer, S.C.; Reusch, T.B.H.; Roth, O. Salinity change impairs pipefish immune defence. Fish. Shellfish. Immunol. 2012, 33, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Meier, H.E.M.; Ripszam, M.; Rowe, O.; Wikner, J.; Haglund, P.; Eilola, K.; Legrand, C.; Figueroa, D.; Paczkowska, J.; et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 2015, 44, 345–356. [Google Scholar] [CrossRef]
- Kniebusch, M.; Meier, H.E.M.; Radtke, H. Changing Salinity Gradients in the Baltic Sea As a Consequence of Altered Freshwater Budgets. Geophys. Res. Lett. 2019, 46, 9739–9747. [Google Scholar] [CrossRef]
- Wennerström, L.; Laikre, L.; Ryman, N.; Utter, F.M.; Ab Ghani, N.I.; André, C.; DeFaveri, J.; Johansson, D.; Kautsky, L.; Merilä, J.; et al. Genetic biodiversity in the Baltic Sea: Species-specific patterns challenge management. Biodivers. Conserv. 2013, 22, 3045–3065. [Google Scholar] [CrossRef]
- Andersson, L.; André, C.; Johannesson, K.; Pettersson, M. Ecological adaptation in cod and herring and possible consequences of future climate change in the Baltic Sea. Front. Mar. Sci. 2023, 10, 1101855. [Google Scholar] [CrossRef]
- Köster, F.W.; Möllmann, C.; Hinrichsen, H.-H.; Wieland, K.; Tomkiewicz, J.; Kraus, G.; Voss, R.; Makarchouk, A.; MacKenzie, B.R.; St. John, M.A.; et al. Baltic cod recruitment—The impact of climate variability on key processes. ICES J. Mar. Sci. 2005, 62, 1408–1425. [Google Scholar] [CrossRef]
- Lindegren, M.; Mollmann, C.; Nielsen, A.; Brander, K.; MacKenzie, B.R.; Stenseth, N.C. Ecological forecasting under climate change: The case of Baltic cod. Proc. Biol. Sci. 2010, 277, 2121–2130. [Google Scholar] [CrossRef]
- O’Leary, D.B.; Coughlan, J.; Dillane, E.; McCarthy, T.V.; Cross, T.F. Microsatellite variation in cod Gadus morhua throughout its geographic range. J. Fish Biol. 2007, 70, 310–335. [Google Scholar] [CrossRef]
- Małachowicz, M.; Kijewska, A.; Wenne, R. Transcriptome analysis of gill tissue of Atlantic cod Gadus morhua L. from the Baltic Sea. Mar. Genom. 2015, 23, 37–40. [Google Scholar] [CrossRef]
- Kijewska, A.; Malachowicz, M.; Wenne, R. Alternatively spliced variants in Atlantic cod (Gadus morhua) support response to variable salinity environment. Sci. Rep. 2018, 8, 11607. [Google Scholar] [CrossRef] [PubMed]
- Kijewska, A.; Burzyński, A.; Wenne, R. Variation in the copy number of tandem repeats of mitochondrial DNA in the north-east atlantic cod populations. Mar. Biol. Res. 2009, 5, 186–192. [Google Scholar] [CrossRef]
- Berg, P.R.; Jentoft, S.; Star, B.; Ring, K.H.; Knutsen, H.; Lien, S.; Jakobsen, K.S.; André, C. Adaptation to low salinity promotes genomic divergence in Atlantic Cod (Gadus morhua L.). Genome Biol. Evol. 2015, 7, 1644–1663. [Google Scholar] [CrossRef] [PubMed]
- Poćwierz-Kotus, A.; Kijewska, A.; Petereit, C.; Bernaś, R.; Więcaszek, B.; Arnyasi, M.; Lien, S.; Kent, M.P.; Wenne, R. Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Mar. Genom. 2015, 19, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.M.; Villegas-Ríos, D.; Freitas, C.; Moland, E.; Star, B.; André, C.; Knutsen, H.; Bradbury, I.; Dierking, J.; Petereit, C.; et al. Disentangling structural genomic and behavioural barriers in a sea of connectivity. Mol. Ecol. 2019, 28, 1394–1411. [Google Scholar] [CrossRef]
- Wenne, R.; Bernaś, R.; Kijewska, A.; Poćwierz-Kotus, A.; Strand, J.; Petereit, C.; Plauška, K.; Sics, I.; Árnyasi, M.; Kent, M.P. SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea. Sci. Rep. 2020, 10, 9738. [Google Scholar] [CrossRef]
- Hüssy, K.; Hinrichsen, H.H.; Eero, M.; Mosegaard, H.; Hemmer-Hansen, J.; Lehmann, A.; Lundgaard, L.S. Spatio-temporal trends in stock mixing of eastern and western Baltic cod in the Arkona Basin and the implications for recruitment. ICES J. Mar. Sci. 2016, 73, 293–303. [Google Scholar] [CrossRef]
- Hüssy, K. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 2011, 68, 1459–1471. [Google Scholar] [CrossRef]
- Nissling, A.; Westin, L. Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Mar. Ecol. Prog. Ser. 1997, 152, 261–271. [Google Scholar] [CrossRef]
- Eero, M.; Hjelm, J.; Behrens, J.; Buchmann, K.; Cardinale, M.; Casini, M.; Gasyukov, P.; Holmgren, N.; Horbowy, J.; Hüssy, K.; et al. Eastern Baltic cod in distress: Biological changes and challenges for stock assessment. ICES J. Mar. Sci. 2015, 72, 2180–2186. [Google Scholar] [CrossRef]
- Orio, A.; Bergström, U.; Florin, A.B.; Lehmann, A.; Šics, I.; Casini, M. Spatial contraction of demersal fish populations in a large marine ecosystem. J. Biogeogr. 2019, 46, 633–645. [Google Scholar] [CrossRef]
- Mion, M.; Griffiths, C.A.; Bartolino, V.; Haase, S.; Hilvarsson, A.; Hüssy, K.; Krüger-Johnsen, M.; Krumme, U.; Lundgreen, R.B.C.; Lövgren, J.; et al. New perspectives on Eastern Baltic cod movement patterns from historical and contemporary tagging data. Mar. Ecol. Prog. Ser. 2022, 689, 109–126. [Google Scholar] [CrossRef]
- Nielsen, B.; Hüssy, K.; Neuenfeldt, S.; Tomkiewicz, J.; Behrens, J.W.; Andersen, K.H. Individual behaviour of Baltic cod Gadus morhua in relation to sex and reproductive state. Aquat. Biol. 2013, 18, 197–207. [Google Scholar] [CrossRef]
- Haase, S. Interlinked Patterns in Movements and Otolith Formation of Cod (Gadus morhua) in the Southern Baltic Sea. 2021. Johann Heinrich von Thünen-Institut. Germany. Available online: https://policycommons.net/artifacts/2651021/interlinked-patterns-in-movements-and-otolith-formation-of-cod-gadus-morhua-in-the-southern-baltic-sea/3673894/ (accessed on 1 January 2023).
- Petereit, C.; Hinrichsen, H.-H.; Franke, A.; Köster, F.W. Floating along buoyancy levels: Dispersal and survival of western Baltic fish eggs. Prog. Oceanogr. 2014, 122, 131–152. [Google Scholar] [CrossRef]
- Westin, L.; Nissling, A. Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock fluctuations in the Baltic. Mar. Biol. 1991, 108, 5–9. [Google Scholar] [CrossRef]
- Weist, P.; Schade, F.M.; Damerau, M.; Barth, J.M.I.; Dierking, J.; André, C.; Petereit, C.; Reusch, T.; Jentoft, S.; Hanel, R.; et al. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS ONE 2019, 14, e0218127. [Google Scholar] [CrossRef]
- Larsen, P.F.; Nielsen, E.E.; Meier, K.; Olsvik, P.A.; Hansen, M.M.; Loeschcke, V. Differences in Salinity Tolerance and Gene Expression Between Two Populations of Atlantic Cod (Gadus morhua) in Response to Salinity Stress. Biochem. Genet. 2012, 50, 454–466. [Google Scholar] [CrossRef]
- Kijewska, A.; Kalamarz-Kubiak, H.; Arciszewski, B.; Guellard, T.; Petereit, C.; Wenne, R. Adaptation to salinity in Atlantic cod from different regions of the Baltic Sea. J. Exp. Mar. Biol. Ecol. 2016, 478, 62–67. [Google Scholar] [CrossRef]
- Matschiner, M.; Barth, J.M.I.; Tørresen, O.K.; Star, B.; Baalsrud, H.T.; Brieuc, M.S.O.; Pampoulie, C.; Bradbury, I.; Jakobsen, K.S.; Jentoft, S. Supergene origin and maintenance in Atlantic cod. Nat. Ecol. Evol. 2022, 6, 469–481. [Google Scholar] [CrossRef]
- Malachowicz, M.; Wenne, R. Microarray analysis of gene expression of Atlantic cod from different Baltic Sea regions: Adaptation to salinity. Mar. Genom. 2019, 48, 100681. [Google Scholar] [CrossRef]
- Birgersson, L.; Söderström, S.; Belhaj, M. The Decline of Cod in the Baltic Sea—A Review of Biology, Fisheries and Management, Including Recommendations for Cod Recovery; The Fisheries Secretariat: Stockholm, Sweden, 2022; ISBN 978-91-527-2844-4. [Google Scholar]
- Guo, B.; Tang, Z.; Wu, C.; Xu, K.; Qi, P. Transcriptomic analysis reveal an efficient osmoregulatory system in Siberian sturgeon Acipenser baeri in response to salinity stress. Sci. Rep. 2018, 8, 14353. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gan, L.; Li, T.; Xu, C.; Chen, K.; Wang, X.; Qin, J.G.; Chen, L.; Li, E. Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in Nile tilapia Oreochromis niloticus. PLoS ONE 2015, 10, e0136506. [Google Scholar] [CrossRef]
- Bonzi, L.C.; Monroe, A.A.; Lehmann, R.; Berumen, M.L.; Ravasi, T.; Schunter, C. The time course of molecular acclimation to seawater in a euryhaline fish. Sci. Rep. 2021, 11, 18127. [Google Scholar] [CrossRef] [PubMed]
- Lemmetyinen, J.; Piironen, J.; Kiiskinen, P.; Hassinen, M.; Vornanen, M. Comparison of gene expression in the gill of salmon (Salmo salar) smolts from anadromous and landlocked populations. Ann. Zool. Fenn. 2013, 50, 16–35. [Google Scholar] [CrossRef]
- Maryoung, L.A.; Lavado, R.; Bammler, T.K.; Gallagher, E.P.; Stapleton, P.L.; Beyer, R.P.; Farin, F.M.; Hardiman, G.; Schlenk, D. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity. Mar. Biotechnol. 2015, 17, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, M.G.; Sherrill, J.; Clayton, L.A. Osmoregulation in fish. Mechanisms and clinical implications. Vet. Clin. North Am. Exo.t Anim. Pract. 2003, 6, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Verhille, C.E.; Dabruzzi, T.F.; Cocherell, D.E.; Mahardja, B.; Feyrer, F.; Foin, T.C.; Baerwald, M.R.; Fangue, N.A. Inter-population differences in salinity tolerance of adult wild Sacramento splittail: Osmoregulatory and metabolic responses to salinity. Conserv. Physiol. 2020, 8, coaa098. [Google Scholar] [CrossRef]
- Mundy, P.C.; Jeffries, K.M.; Fangue, N.A.; Connon, R.E. Differential regulation of select osmoregulatory genes and Na+/K+-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 240, 110584. [Google Scholar] [CrossRef]
- Škugor, A.; Krasnov, A.; Andersen, Ø. Genome-wide microarray analysis of Atlantic cod (Gadus morhua) oocyte and embryo. BMC Genom. 2014, 15, 594. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Schwender, H. Siggenes: Multiple Testing Using SAM and Efron’s Empirical Bayes Approaches. R Package Version 1.76.0. 2023. Available online: https://bioconductor.org/packages/siggenes (accessed on 1 January 2022).
- Breitling, R.; Armengaud, P.; Amtmann, A.; Herzyk, P. Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004, 573, 83–92. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- Vuorinen, I.; Hänninen, J.; Rajasilta, M.; Laine, P.; Eklund, J.; Montesino-Pouzols, F.; Corona, F.; Junker, K.; Meier, H.E.; Dippner, J.W. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas-implications for environmental monitoring. Ecol. Indic. 2015, 50, 196–205. [Google Scholar] [CrossRef]
- Broman, E.; Raymond, C.; Sommer, C.; Gunnarsson, J.S.; Creer, S.; Nascimento, F.J.A. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol. Ecol. 2019, 28, 3813–3829. [Google Scholar] [CrossRef] [PubMed]
- Johannesson, K.; Le Moan, A.; Perini, S.; André, C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol. Evol. 2020, 35, 1021–1036. [Google Scholar] [CrossRef]
- Schade, F.M.; Weist, P.; Dierking, J.; Krumme, U. Living apart together: Long-term coexistence of Baltic cod stocks associated with depth-specific habitat use. PLoS ONE 2022, 17, e0274476. [Google Scholar] [CrossRef]
- McQueen, K.; Casini, M.; Dolk, B.; Haase, S.; Hemmer-Hansen, J.; Hilvarsson, A.; Hüssy, K.; Mion, M.; Mohr, T.; Radtke, K.; et al. Regional and stock-specific differences in contemporary growth of Baltic cod revealed through tag-recapture data. ICES J. Mar. Sci. 2020, 77, 2078–2088. [Google Scholar] [CrossRef]
- Eero, M.; Brander, K.; Baranova, T.; Krumme, U.; Radtke, K.; Behrens, J.W. New insights into the recent collapse of Eastern Baltic cod from historical data on stock health. PLoS ONE 2023, 18, e0286247. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, A.M.; Sørum, H.; Tegegne, D.A.; Winther-Larsen, H.C.; Willassen, N.P.; Hansen, H. Litr of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect. Immun. 2012, 80, 1681–1689. [Google Scholar] [CrossRef]
- Soomro, M.A.; Pavase, T.R.; Hu, G. Role of pattern recognition receptors in teleost fish: Recent advances. Int. J. Fish. Aquat. Stud. 2021, 9, 136–151. [Google Scholar]
- Ahmmed, M.K.; Bhowmik, S.; Giteru, S.G.; Zilani, M.N.H.; Adadi, P.; Islam, S.S.; Kanwugu, O.N.; Haq, M.; Ahmmed, F.; Ng, C.C.W.; et al. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar. Drugs 2022, 20, 430. [Google Scholar] [CrossRef]
- Morimoto, N.; Kono, T.; Sakai, M.; Hikima, J.I. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int. J. Mol. Sci. 2021, 22, 4389. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Yang, Y.Y.; Wu, X.M.; Zheng, S.Y.; Song, Y.J.; Zhang, J.; Chang, M.X. Effects and Molecular Regulation Mechanisms of Salinity Stress on the Health and Disease Resistance of Grass Carp. Front. Immunol. 2022, 13, 917497. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Falfushynska, H.; Dellwig, O.; Piontkivska, H.; Sokolova, I.M. Interactive effects of salinity variation and exposure to ZnO nanoparticles on the innate immune system of a sentinel marine bivalve, Mytilus edulis. Sci. Total Environ. 2020, 712, 136473. [Google Scholar] [CrossRef]
- Wang, D.; Cao, Q.; Zhu, W.; Hu, Y.; Zhang, X.; Yin, S.; Wang, T. Individual and combined effects of salinity and lipopolysaccharides on the immune response of juvenile Takifugu fasciatus. Fish. Physiol. Biochem. 2019, 45, 965–976. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Alkafafy, M.; Sewilam, H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. Fish. Physiol. Biochem. 2022, 48, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, I.F.; Kumar, V.B.; Lee, D.N.; Weng, C.F. Acute osmotic stress affects Tilapia (Oreochromis mossambicus) innate immune responses. Fish Shellfish. Immunol. 2008, 25, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Masso-Silva, J.A.; Diamond, G. Antimicrobial Peptides from Fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef]
- Terova, G.; Cattaneo, A.G.; Preziosa, E.; Bernardini, G.; Saroglia, M. Impact of acute stress on antimicrobial polypeptides mRNA copy number in several tissues of marine sea bass (Dicentrarchus labrax). BMC Immunol. 2011, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Shephard, K.L. Functions for fish mucus. Rev. Fish. Biol. Fish. 1994, 4, 401–429. [Google Scholar] [CrossRef]
- Wong, M.K.S.; Tsukada, T.; Ogawa, N.; Pipil, S.; Ozaki, H.; Suzuki, Y.; Iwasaki, W.; Takei, Y. A sodium binding system alleviates acute salt stress during seawater acclimation in eels. Zool. Lett. 2017, 3, 22. [Google Scholar] [CrossRef]
- Benktander, J.; Venkatakrishnan, V.; Padra, J.T.; Sundh, H.; Sundell, K.; Murughan, A.V.M.; Maynard, B.; Linden, S.K. Effects of size and geographical origin on Atlantic salmon, Salmo salar, mucin O-glycan repertoire. Mol. Cell. Proteom. 2019, 18, 1183–1196. [Google Scholar] [CrossRef]
- Jin, C.; Padra, J.T.; Sundell, K.; Sundh, H.; Karlsson, N.G.; Linden, S.K. Atlantic Salmon Carries a Range of Novel O-Glycan Structures Differentially Localized on Skin and Intestinal Mucins. J. Proteome Res. 2015, 14, 3239–3251. [Google Scholar] [CrossRef]
- Roberts, S.D.; Powell, M.D. Comparative ionic flux and gill mucous cell histochemistry: Effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 134, 525–537. [Google Scholar] [CrossRef]
- Makrinos, D.L.; Bowden, T.J. Natural environmental impacts on teleost immune function. Fish Shellfish. Immunol. 2016, 53, 50–57. [Google Scholar] [CrossRef]
- Jia, N.; Liu, N.; Cheng, W.; Jiang, Y.; Sun, H.; Chen, L.; Peng, J.; Zhang, Y.; Ding, Y.; Zhang, Z.H.; et al. Structural basis for receptor recognition and pore formation of a zebrafish aerolysin-like protein. EMBO Rep. 2016, 17, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Disner, G.R.; Falcão, M.A.P.; Seni-Silva, A.C.; Maleski, A.L.A.; Souza, M.M.; Reis, T.M.C.; Lopes-Ferreira, M. The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins 2021, 13, 538. [Google Scholar] [CrossRef]
- Chen, L.L.; Xie, J.; Cao, D.D.; Jia, N.; Li, Y.J.; Sun, H.; Li, W.F.; Hu, B.; Chen, Y.; Zhou, C.Z. The pore-forming protein Aep1 is an innate immune molecule that prevents zebrafish from bacterial infection. Dev. Comp. Immunol. 2018, 82, 49–54. [Google Scholar] [CrossRef]
- Norman, J.D.; Ferguson, M.M.; Danzmann, R.G. Transcriptomics of salinity tolerance capacity in Arctic charr (Salvelinus alpinus): A comparison of gene expression profiles between divergent QTL genotypes. Physiol. Genom. 2014, 46, 123–137. [Google Scholar] [CrossRef]
- Spead, O.; Verreet, T.; Donelson, C.J.; Poulain, F.E. Characterization of the caspase family in zebrafish. PLoS ONE 2018, 13, e0197966. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.; Roach, J.L.; Zhang, S.; Galvez, F. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J. Exp. Biol. 2012, 215, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
- Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The BCL-2 Family Reunion. Mol. Cell 2010, 37, 299–310. [Google Scholar] [CrossRef]
- Martinou, J.-C.; Youle, R.J. Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics. Dev. Cell 2011, 21, 92–101. [Google Scholar] [CrossRef]
- Pepper, C.; Hoy, T.; Bentley, D.P. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br. J. Cancer 1997, 76, 935–938. [Google Scholar] [CrossRef]
- Glenney, G.W.; Wiens, G.D. Early diversification of the TNF superfamily in teleosts: Genomic characterization and expression analysis. J. Immunol. 2007, 178, 7955–7973. [Google Scholar] [CrossRef]
- Evans, T.G.; Kültz, D. The cellular stress response in fish exposed to salinity fluctuations. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 421–435. [Google Scholar] [CrossRef]
- Grau-Bové, X.; Ruiz-Trillo, I.; Rodriguez-Pascual, F. Origin and evolution of lysyl oxidases. Sci. Rep. 2015, 5, 10568. [Google Scholar] [CrossRef]
- Jenkins, M.H.; Alrowaished, S.S.; Goody, M.F.; Crawford, B.D.; Henry, C.A. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction. Skelet. Muscle 2016, 6, 18. [Google Scholar] [CrossRef]
- Leguen, I.; Le Cam, A.; Montfort, J.; Peron, S.; Fautrel, A. Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis. PLoS ONE 2015, 10, e0139938. [Google Scholar] [CrossRef]
- Seale, L.A.; Gilman, C.L.; Zavacki, A.M.; Larsen, P.R.; Inokuchi, M.; Breves, J.P.; Seale, A.P. Regulation of thyroid hormones and branchial iodothyronine deiodinases during freshwater acclimation in tilapia. Mol. Cell. Endocrinol. 2021, 538, 111450. [Google Scholar] [CrossRef]
- Prunet, P.; Boeuf, G.; Bolton, J.P.; Young, G. Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): Plasma prolactin, growth hormone, and thyroid hormones. Gen. Comp. Endocr. 1989, 74, 355–364. [Google Scholar] [CrossRef]
- Bao, Y.; Shen, Y.; Li, X.; Wu, Z.; Jiao, L.; Li, J.; Zhou, Q.; Jin, M. A New Insight Into the Underlying Adaptive Strategies of Euryhaline Marine Fish to Low Salinity Environment: Through Cholesterol Nutrition to Regulate Physiological Responses. Front. Nutr. 2022, 14, 855369. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Chacoff, L.; Saavedra, E.; Oyarzun, R.; Martinez-Montano, E.; Pontigo, J.P.; Yanez, A.; Ruiz-Jarabo, I.; Mancera, J.M.; Ortiz, E.; Bertrán, C. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginopsmaclovinus acclimated at different salinities. Fish. Physiol. Biochem. 2015, 41, 1369–1381. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Hwang, P.-P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 148, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, E.; Li, T.; Xu, C.; Wang, X.; Lin, H.; Qin, J.G.; Chen, L. Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress. PLoS ONE 2015, 10, e0131503. [Google Scholar] [CrossRef] [PubMed]
- Komoroske, L.M.; Jeffries, K.M.; Connon, R.E.; Dexter, J.; Hasenbein, M.; Verhille, C.; Fangue, N.A. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 2016, 9, 963–981. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Wen, H.; Li, Y.; He, F.; Li, J.; Li, S.; He, H. Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis. BMC Genom. 2018, 19, 464. [Google Scholar] [CrossRef]
- Brondolin, M.; Berger, S.; Reinke, M.; Tanaka, H.; Ohshima, T.; Fuβ, B.; Hoch, M. Identification and Expression Analysis of the Zebrafish Homologs of the ceramide synthase Gene Family: Zebrafish ceramide synthase Gene Family. Dev. Dyn. 2013, 242, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Lavado, R.; Aparicio-Fabre, R.; Schlenk, D. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch). Fish. Physiol. Biochem. 2014, 40, 267–278. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małachowicz, M.; Krasnov, A.; Wenne, R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023, 12, 2760. https://doi.org/10.3390/cells12232760
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells. 2023; 12(23):2760. https://doi.org/10.3390/cells12232760
Chicago/Turabian StyleMałachowicz, Magdalena, Aleksei Krasnov, and Roman Wenne. 2023. "Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations" Cells 12, no. 23: 2760. https://doi.org/10.3390/cells12232760
APA StyleMałachowicz, M., Krasnov, A., & Wenne, R. (2023). Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells, 12(23), 2760. https://doi.org/10.3390/cells12232760