Prime Editing for Human Gene Therapy: Where Are We Now?
Abstract
:1. Introduction
CRISPR/Cas9 | Base Editing | Prime Editing | |
---|---|---|---|
Off-target effects | Significant off-target effects | Little or no off-target effects | Little or no off-target effects |
|
|
| |
Flexibility |
|
|
|
Programmability 1 | Only if a DNA donor template is given | Yes | Yes |
Efficient in vivo delivery | Currently possible | Currently possible (but more difficult than CRISPR/Cas9 because of its larger size) | Need to be improved (too big for conventional vehicles) |
2. Application of Prime Editing to Liver Hereditary Diseases
3. Application of Prime Editing to Eye Hereditary Diseases
4. Application of Prime Editing to Skin Disease
5. Application of Prime Editing to Skeletal and Cardiac Muscle Diseases
Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells or Animal Model | Length (nt) | Edit Position from the Nick | Delivery Method | Prime Editor Form | Comments | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | |||||||||||
DMD Exon 52 | 2-nt AC insertion | C | PE3 | 54 | ΔEx51 iPSC model | 20 | 13 | 15 | +4 to +6 | Nucleofection | Plasmid | sgRNA inducing a nick at position +52. | Chemello 2021 [44] |
DMD Exon 59 | c.8713C > T | I | PE2 | 6.5 | HEK293T | 21 | 14 | 16 | +13 | Lipo 2000 | Plasmid | Mbakam 2022 [45,46] | |
PE3 | 10.5 | sgRNA inducing a nick at position +62. | |||||||||||
PE2-VQR | 5.5 | 13 | 13 | +1 | |||||||||
PE2-RY | 5.5 | 15 | 17 | +3 | |||||||||
PE2 | 7.3 | 14 | 16 | +13 | The PAM was mutated in the RTT (position +6 G > T). | ||||||||
PE3 | 11 | The PAM was mutated in the RTT (position +6 G > T) (it had 36% of edition), using a sgRNA inducing a nick at position +62. | |||||||||||
PE3 | 21 | A mutation at position +19 has been added, using a sgRNA inducing a nick at position +62. | |||||||||||
PE2 | 28 | 19 | The PAM was mutated in the RTT (position +6 G > T), using a sgRNA inducing a nick at position +62. | ||||||||||
PE3 | 42 | The PAM was mutated in the RTT (position +6 G > T), using a sgRNA inducing a nick at position +62. | |||||||||||
PE3 | 58 | A mutation at position +3 (T > C) has been added, using a sgRNA inducing a nick at position +62. | |||||||||||
C | PE3 | 17 | Myoblast | 21 | 14 | 19 | +13 | Electroporation | A mutation at position +9 (T > C) and a mutation in the PAM (position +6 (G > T) have been added, using a sgRNA inducing a nick at position +62. | ||||
PE5max | 21 | ||||||||||||
DMD Exon 9 | C > T | I | PE2 | 4 | HEK293T | 13 | 13 | +3 | Lipo 2000 | ||||
DMD Exon 35 | C > T | PE2 | 6 | +1 | |||||||||
G > T | PE3 | 20 | 10 | sgRNA inducing a nick at position +57 | |||||||||
PE2 | 14 | 16 | |||||||||||
PE3 | 38 | sgRNA inducing a nick at position +57 | |||||||||||
DMD Exon 20 | G > T | PE2 | 5 | 10 | +10 | ||||||||
DMD Exon 43 | C > T | 3.5 | 10 | +1 | |||||||||
DMD Exon 55 | A > T | 3.5 | 13 | +3 | |||||||||
DMD Exon 61 | C > T | 6 | 15 | 13 | +5 | ||||||||
c.428 G > A | C | PE3 | 8 | Myoblast | 20 | 14 | 16 | +4 | Electroporation | sgRNA targeted at +60 nucleotides from the first nick site | |||
29 | After 4 treatments, sgRNA targeted at +60 nucleotides from the first nick site. | ||||||||||||
SMN2 | 9 nt deletion | C | PE3 | 16.15 | HEK293T | 15 | 27 | jetPRIME | Plasmid | Zhou 2022 [47] | |||
29.17 | SMA-iPSC | Nucleofection |
6. Application of Prime Editing to Neurodegenerative Diseases
7. Application of Prime Editing to Cystic Fibrosis
8. Application of Prime Editing to Beta-Thalassemia
9. Application of Prime Editing to X-Linked Severe Combined Immunodeficiency
10. Application of Prime Editing to Cancer
Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells or Animal Model | Length (nt) | Edit Position from the Nick | Delivery Method | Prime Editor Form | Comments | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | ||||||||||||
TP53 | L194F | c.580 C > T | C | PE3 | 0.043 | T47D cells | 21 | 15 | 28 | +26 | Electroporation | Plasmid | Abuhamad 2022 [60] | |
0.2 | HEK293T | |||||||||||||
KRAS | G13V | c.38G > T | C | PE2 | 25 | HEK293T/17 | 20 | 13 | 16 | Lipo 2000 or Lipo 3000 | Plasmid | Jang 2022 [61] | ||
PE3 | 45.7 | |||||||||||||
G12D | c.35G > A | 46.4 | epegRNA containing tmpknot RNA motif | |||||||||||
G12V | c.35G > T | 44.6 | ||||||||||||
G13D | c.38G > A | 38.2 | epegRNA containing tmpknot RNA motif | |||||||||||
G12C | c.34G > T | 54.2 | epegRNA containing tevopreQ1 RNA motif | |||||||||||
G12A | c.35G > C | 41.9 | ||||||||||||
G12S | c.34G > A | 45.6 | ||||||||||||
G12R | c.34G > C | 48.3 | ||||||||||||
G13C | c.37G > T | 49.6 | ||||||||||||
G13S | c.37G > A | 49.8 | epegRNA containing tmpknot RNA motif | |||||||||||
G13R | c.37G > C | 50.2 | epegRNA containing tevopreQ1 RNA motif | |||||||||||
G13A | c.38G > C | 45.4 | ||||||||||||
G13V | c.38G > T | 49.1 | ||||||||||||
G12D | c.35G > A | 25 | ||||||||||||
G12V | c.35G > T | 24 | epegRNA containing tmpknot RNA motif | |||||||||||
G13C | c.37G > T | 32 | ||||||||||||
G13D | c.38G > A | 32 | epegRNA containing tevopreQ1 RNA motif | |||||||||||
G12V | c.35G > T | PE5max | 11.4 | CFPAC-1 cells | ||||||||||
G12D | c.35G > A | PE3 | 2.7 | ASPC-1 cells | ||||||||||
PE5max | 18.7 | |||||||||||||
kras | G12V | c.35G > T | I | PE3 | 14 | Zebrafish embryos | 19 | 11 | 16 | +6 | Microinjection | RNP | sgRNA cut at position +55; pegRNA:PE protein ratio 4:1; the molar ratio of pegRNA/ngRNA in PE3 was 10:1. | Petri 2022 [42] |
11. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Sherkow, J.S.; Zettler, P.J.; Greely, H.T. Is it “gene therapy”? J. Law Biosci. 2018, 5, 786–793. [Google Scholar] [CrossRef] [PubMed]
- September 14, 1990: The Beginning. Hum. Gene Ther. 1990, 1, 371–372. [CrossRef] [PubMed]
- Tamura, R.; Toda, M. Historic Overview of Genetic Engineering Technologies for Human Gene Therapy. Neurol. Med.-Chir. 2020, 60, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhao, H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 2013, 110, 1811–1821. [Google Scholar] [CrossRef]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum. Mol. Genet. 2014, 23, R40–R46. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Wu, X.; Kriz, A.J.; Sharp, P.A. Target specificity of the CRISPR-Cas9 system. Quant. Biol. 2014, 2, 59–70. [Google Scholar] [CrossRef]
- Miyaoka, Y.; Berman, J.R.; Cooper, S.B.; Mayerl, S.J.; Chan, A.H.; Zhang, B.; Karlin-Neumann, G.A.; Conklin, B.R. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 2016, 6, 23549. [Google Scholar] [CrossRef]
- Sfeir, A.; Symington, L.S. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem. Sci. 2015, 40, 701–714. [Google Scholar] [CrossRef]
- Sakuma, T.; Nakade, S.; Sakane, Y.; Suzuki, K.-I.T.; Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 2015, 11, 118–133. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, X.; Wei, X.; Lu, L. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet. Biol. 2016, 86, 47–57. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Kurt, I.C.; Zhou, R.; Iyer, S.; Garcia, S.P.; Miller, B.R.; Langner, L.M.; Grünewald, J.; Joung, J.K. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 2020, 39, 41–46. [Google Scholar] [CrossRef]
- Porto, E.M.; Komor, A.C.; Slaymaker, I.M.; Yeo, G.W. Base editing: Advances and therapeutic opportunities. Nat. Rev. Drug Discov. 2020, 19, 839–859. [Google Scholar] [CrossRef]
- Cao, T.; Liu, S.; Qiu, Y.; Gao, M.; Wu, J.; Wu, G.; Liang, P.; Huang, J. Generation of C-to-G transversion in mouse embryos via CG editors. Transgenic Res. 2022, 31, 445–455. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Koblan, L.; Liu, D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Merkle, F.T.; Neuhausser, W.M.; Santos, D.; Valen, E.; Gagnon, J.A.; Maas, K.; Sandoe, J.; Schier, A.F.; Eggan, K. Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus. Cell Rep. 2015, 11, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, J.; Zhong, Z.; Vanegas, J.A.; Gao, X.; Kolomeisky, A.B. A general theoretical framework to design base editors with reduced bystander effects. Nat. Commun. 2021, 12, 6529. [Google Scholar] [CrossRef] [PubMed]
- Kantor, A.; McClements, M.E.; MacLaren, R.E. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int. J. Mol. Sci. 2020, 21, 6240. [Google Scholar] [CrossRef] [PubMed]
- Schene, I.F.; Joore, I.P.; Oka, R.; Mokry, M.; van Vugt, A.H.M.; van Boxtel, R.; van der Doef, H.P.J.; van der Laan, L.J.W.; Verstegen, M.M.A.; van Hasselt, P.M.; et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 2020, 11, 5352. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liang, S.-Q.; Zheng, C.; Mintzer, E.; Zhao, Y.G.; Ponnienselvan, K.; Mir, A.; Sontheimer, E.J.; Gao, G.; Flotte, T.R.; et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 2021, 12, 2121. [Google Scholar] [CrossRef] [PubMed]
- Habib, O.; Habib, G.; Hwang, G.-H.; Bae, S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res. 2022, 50, 1187–1197. [Google Scholar] [CrossRef]
- Lung, G. Precise Correction of A1AT E342K by Modified NGA PAM Prime Editing and Determination of Prime Editing Inhibition by TREX2. Master’s Thesis, Harvard University Division of Continuing Education, Cambridge, MA, USA, 2021. [Google Scholar]
- Böck, D.; Rothgangl, T.; Villiger, L.; Schmidheini, L.; Matsushita, M.; Mathis, N.; Ioannidi, E.; Rimann, N.; Man Grisch-Chan, H.; Kreutzer, S.; et al. In Vivo Prime Editing of a Metabolic Liver Disease in Mice. Sci. Transl. Med. 2022, 14, eabl9238. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, X.-O.; Weng, Z.; Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 2021, 40, 227–234. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, S.-A.; Yu, J.; Eom, J.; Jang, K.; Yoon, S.; Hong, D.H.; Seo, D.; Lee, S.-N.; Woo, J.-S.; et al. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 2021, 28, 1614–1624.e5. [Google Scholar] [CrossRef]
- Jang, H.; Jo, D.H.; Cho, C.S.; Shin, J.H.; Seo, J.H.; Yu, G.; Gopalappa, R.; Kim, D.; Cho, S.-R.; Kim, J.H.; et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat. Biomed. Eng. 2021, 6, 181–194. [Google Scholar] [CrossRef]
- Godbout, K.; Tremblay, J.P. Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics 2022, 14, 2129. [Google Scholar] [CrossRef]
- Li, H.; Busquets, O.; Verma, Y.; Syed, K.M.; Kutnowski, N.; Pangilinan, G.R.; Gilbert, A.L.; Bateup, H.S.; Rio, D.C.; Hockemeyer, D.; et al. Highly efficient generation of isogenic pluripotent stem cell models using prime editing. Elife 2022, 11, e79208. [Google Scholar] [CrossRef]
- Bothmer, A.; Phadke, T.; Barrera, L.A.; Margulies, C.M.; Lee, C.S.; Buquicchio, F.; Moss, S.; Abdulkerim, H.S.; Selleck, W.; Jayaram, H.; et al. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat. Commun. 2017, 8, 13905. [Google Scholar] [CrossRef]
- Wilkinson, P.D.; Delgado, E.R.; Alencastro, F.; Leek, M.P.; Roy, N.; Weirich, M.P.; Stahl, E.C.; Otero, P.A.; Chen, M.I.; Brown, W.K.; et al. The Polyploid State Restricts Hepatocyte Proliferation and Liver Regeneration in Mice. Hepatology 2019, 69, 1242–1258. [Google Scholar] [CrossRef]
- Ledford, H. CRISPR treatment inserted directly into the body for first time. Nature 2020, 579, 185. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Lu, Z.; Huang, S.; Wu, S.; Yu, W.; Liu, Y.; Zheng, X.; Huang, X.; Sun, Q.; et al. Modeling a cataract disorder in mice with prime editing. Mol. Ther.-Nucleic Acids 2021, 25, 494–501. [Google Scholar] [CrossRef]
- Lv, X.; Zheng, Z.; Zhi, X.; Zhou, Y.; Lv, J.; Zhou, Y.; Wu, B.; Liu, S.; Shi, W.; Song, Z.; et al. Identification of RPGR ORF15 mutation for X-linked retinitis pigmentosa in a large Chinese family and in vitro correction with prime editor. Gene Ther. 2022, 1–7. [Google Scholar] [CrossRef]
- Cideciyan, A.V. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res. 2010, 29, 398–427. [Google Scholar] [CrossRef]
- Sahel, J.-A. Spotlight on childhood blindness. J. Clin. Investig. 2011, 121, 2145–2149. [Google Scholar] [CrossRef]
- Hong, S.-A.; Kim, S.-E.; Lee, A.-Y.; Hwang, G.-H.; Kim, J.H.; Iwata, H.; Kim, S.-C.; Bae, S.; Lee, S.E. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol. Ther. 2022, 30, 2664–2679. [Google Scholar] [CrossRef]
- Petri, K.; Zhang, W.; Ma, J.; Schmidts, A.; Lee, H.; Horng, J.E.; Kim, D.Y.; Kurt, I.C.; Clement, K.; Hsu, J.Y.; et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 2021, 40, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.S.; Loeckermann, S.; Fritsch, A.; Hausser, I.; Roth, W.; Magin, T.M.; Mack, C.; Müller, M.L.; Paul, O.; Ruther, P.; et al. Mechanisms of Fibroblast Cell Therapy for Dystrophic Epidermolysis Bullosa: High Stability of Collagen VII Favors Long-term Skin Integrity. Mol. Ther. 2009, 17, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Chemello, F.; Chai, A.C.; Li, H.; Rodriguez-Caycedo, C.; Sanchez-Ortiz, E.; Atmanli, A.; Mireault, A.A.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Precise Correction of Duchenne Muscular Dystrophy Exon Deletion Mutations by Base and Prime Editing. Sci. Adv. 2021, 7, eabg4910. [Google Scholar] [CrossRef] [PubMed]
- Mbakam, C.H.; Rousseau, J.; Tremblay, G.; Yameogo, P.; Tremblay, J.P. Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. Int. J. Mol. Sci. 2022, 23, 6160. [Google Scholar] [CrossRef] [PubMed]
- Mbakam, C.H.; Rousseau, J.; Lu, Y.; Bigot, A.; Mamchaoui, K.; Mouly, V.; Tremblay, J.P. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol. Ther.-Nucleic Acids 2022, 30, 272–285. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, S.; Duan, N.; Xie, M.; Li, Z.; Feng, M.; Wu, L.; Hu, Z.; Liang, D. Targeted-Deletion of a Tiny Sequence via Prime Editing to Restore SMN Expression. Int. J. Mol. Sci. 2022, 23, 7941. [Google Scholar] [CrossRef]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.-F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef]
- da Silva, J.F.; Oliveira, G.P.; Arasa-Verge, E.A.; Kagiou, C.; Moretton, A.; Timelthaler, G.; Jiricny, J.; Loizou, J.I. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 2022, 13, 760. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, S. Enhancing prime editing via inhibition of mismatch repair pathway. Mol. Biomed. 2022, 3, 7. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, D.; Sui, T.; Chen, M.; Liu, Z.; Liu, H.; Zhang, T.; Chen, S.; Lai, L.; Li, Z. Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discov. 2021, 7, 50. [Google Scholar] [CrossRef]
- Frisch, A.; Colombo, R.; Michaelovsky, E.; Karpati, M.; Goldman, B.; Peleg, L. Origin and spread of the 1278insTATC mutation causing Tay-Sachs disease in Ashkenazi Jews: Genetic drift as a robust and parsimonious hypothesis. Hum. Genet. 2004, 114, 366–376. [Google Scholar] [CrossRef]
- Tremblay, G.; Rousseau, J.; Mbakam, C.H.; Tremblay, J.P. Insertion of the Icelandic Mutation (A673T) by Prime Editing: A Potential Preventive Treatment for Familial and Sporadic Alzheimer's Disease. CRISPR J. 2022, 5, 109–122. [Google Scholar] [CrossRef]
- Tremblay, G.; Rousseau, J.; Happi-Mbakam, C.; Guyon, A.; Tremblay, J.P. Development of a therapeutic approach for hereditary diseases with prime editing: A study on Alzheimer's disease. Alzheimer's Dement. 2021, 17, e050660. [Google Scholar] [CrossRef]
- Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.F.; Maloney, J.; et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012, 488, 96–99. [Google Scholar] [CrossRef]
- Geurts, M.H.; de Poel, E.; Pleguezuelos-Manzano, C.; Oka, R.; Carrillo, L.; Andersson-Rolf, A.; Boretto, M.; Brunsveld, E.J.; van Boxtel, R.; Beekman, J.M.; et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci. Alliance 2021, 4, e202000940. [Google Scholar] [CrossRef]
- Schwank, G.; Koo, B.-K.; Sasselli, V.; Dekkers, J.F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, C.K.; et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell 2013, 13, 653–658. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, R.; Fei, J.; Chen, H.; Lu, D. Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing. Int. J. Mol. Sci. 2022, 23, 5948. [Google Scholar] [CrossRef]
- Hou, Y.; Ureña-Bailén, G.; Gol, T.M.; Gratz, P.G.; Gratz, H.P.; Roig-Merino, A.; Antony, J.S.; Lamsfus-Calle, A.; Daniel-Moreno, A.; Handgretinger, R.; et al. Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes 2022, 13, 2348. [Google Scholar] [CrossRef]
- Abuhamad, A.Y.; Zamberi, N.N.M.; Sheen, L.; Naes, S.M.; Yusuf, S.N.H.M.; Tajudin, A.A.; Mohtar, M.A.; Hamzah, A.S.A.; Syafruddin, S.E. Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells 2022, 11, 1612. [Google Scholar] [CrossRef]
- Jang, G.; Kweon, J.; Kim, Y. CRISPR Prime Editing for Unconstrained Correction of Oncogenic KRAS Variants. 1 2. bioRxiv 2022. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Gao, B.-Q.; Li, G.; Wang, X.; Wang, Y.; Wei, J.; Han, W.; Wang, Z.; Li, J.; et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 2022, 13, 1669. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.W.; Randolph, P.B.; Shen, S.P.; Everette, K.A.; Chen, P.J.; Anzalone, A.V.; An, M.; Newby, G.A.; Chen, J.C.; Hsu, A.; et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 2021, 40, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Gregori, N.Z.; MacLaren, R.E.; Lam, B.L. Surgical Technique for Subretinal Gene Therapy in Humans with Inherited Retinal Degeneration. Retina 2019, 39, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Banskota, S.; Raguram, A.; Suh, S.; Du, S.W.; Davis, J.R.; Choi, E.H.; Wang, X.; Nielsen, S.C.; Newby, G.A.; Randolph, P.B.; et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022, 185, 250–265.e16. [Google Scholar] [CrossRef]
- Trojan, J.; Zeuzem, S.; Randolph, A.; Hemmerle, C.; Brieger, A.; Raedle, J.; Plotz, G.; Jiricny, J.; Marra, G. Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology 2002, 122, 211–219. [Google Scholar] [CrossRef]
Disease | Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells orAnimal Models | Length (nt) | Edit Position from the Nick | Delivery Method | Prime Editor Form | Comments | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | |||||||||||||
Liver cancer | CTNNB1 | 6 nt deletion | I | PE3 | 30 | Liver organoid | 20 | 12 | 17 | +1 | Electroporation | Plasmid | Schene 2020 [24] | ||
Bile salt export pump deficiency | ABCB11 | D482G | A > G | 20 | 20 | +7 | The PAM is also mutated (+5 G > A silent mutation) | ||||||||
DGAT1-deficiency | DGAT1 | S210del | Del CCT | C | 21 | Patient-derived intestinal cells | 20 | ||||||||
Bile salt export pump deficiency | ABCB11 | R1153H | G > A | 0 | Patient-derived liver organoids | ||||||||||
Alpha-1-antitrypsin deficiency | SERPINA1 | E342K | G > A | I | PE2 | 1.9 | HEK293T cells | 20 | 13 | 27 | Lipo 2000 | Plasmid | Liu 2021 [25] | ||
PE3 | 9.9 | ||||||||||||||
PE2* | 6.4 | ||||||||||||||
PE3* | 15.8 | ||||||||||||||
C | PE2 | 2.1 | PiZ mice | Hydrodynamic TVI | |||||||||||
PE2* | 6.7 | ||||||||||||||
PE3 | 3.1 | AAV8 | |||||||||||||
PE3 | 0.83 | hPSCs | 20 | 9 | 13 | +3 | Electroporation | Plasmid | Habib 2022 [26] | ||||||
PE2-NGA | 2.0–3.0 | HEK293T cells | 20 | 13 | 20 | Lipo 2000 | Plasmid | Lung 2021 [27] | |||||||
PE3-NGA | 3.0–5.0 | ||||||||||||||
PE2-NGA | 1.99 | Human primary fibroblasts | |||||||||||||
Liver disease | dnmt1 | G > C | I | Intein-split PE2∆RnH | 15 | C57BL/6J pups | 21 | AAV8 | Plasmid | Böck 2022 [28] | |||||
PE2∆RnH | 35.9 | C57BL/6J adult mice | AdV | ||||||||||||
58.2 | C57BL/6J pups | ||||||||||||||
Phenylketonuria | Pahenu2 | F263S | T > C | C | Intein-split PE2∆RnH | <1% | Pahenu2 mice | 20 | 13 | 19 | AAV8 | Plasmid | |||
PE2∆RnH | 2.0 | Adult Pahenu2 mice | AdV | ||||||||||||
6.9 | Neonates Pahenu2 mice | ||||||||||||||
PE3∆RnH | 11.1 | ||||||||||||||
PE3 | 19.6 | HEK293T cells | 16 | Lipo 2000 | |||||||||||
PE3 | 19.7 | 19 | |||||||||||||
Tyrosinemia type 1 | fah | C | PEDAR | 0.76 | FahΔExon5 mice | Hydrodynamic injection | Plasmid | Jiang 2022 [29] | |||||||
G > A | PE3 | 2.3 | HT1-mCdHs | 20 | 11 | 15 | Electroporation | Plasmid | sgRNA of PE3 nick in position -4 | Kim 2021 [30] | |||||
34.3 | HT1 mice | Transplantation | |||||||||||||
c.706G > A | PE3 | 61 | Fahmut/mut mice | 20 | +10 | Hydrodynamic TVI | Plasmid | Jang 2022 [31] | |||||||
PE2 | 33 | ||||||||||||||
FAH | 18.7 | HEK293T cells | Lentiviral vector |
Disease | Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells or Animal Model | Length (nt) | Delivery Method | Prime Editor Form | Comments | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | ||||||||||||
Leber congenital amaurosis | RPE65 | R44X | C > T | C | PE2 | 6.4 | rd12 mice | 19 | 9 | 14 | Trans-splicing AAV2 subretinal injection | Jang 2022 [31] | ||
14 | HEK293T cells | Lentiviral vector | ||||||||||||
Cataracts | crygc | G-del | I | PE3 | 80 | N2a cells | 20 | 13 | 10 | EZ Trans | Plasmid | Additional sgRNA nicked at position -25 | Lin 2022 [37] | |
13.8 to 100 | B6D2F1 mice | Injection | ||||||||||||
C | 33.3 | N2a mice | EZ Trans | |||||||||||
X-linked retinitis pigmentosa | RPGR ORF15 | c. 2234_2237del | C | ePE | 12.05 | HEK293-mRO cells | 20 | 14 | 14 | TurboFect | Plasmid | Lv 2022 [38] |
Disease | Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells or Animal Model | Length (nt) | Edit Position from the Nick | Delivery Method | Prime Editor Form | Comments | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | |||||||||||||
Recessive dystrophic epidermolysis bullosa | COL7A1 | c.3631C > T | C | PE3 | 10.5 | Patients-derived fibroblasts and male athymic nude mice | 22 | 13 | 14 | +10 | Electroporation | Plasmid | Hong 2021 [41] | ||
c.2005C > T | 5.2 | +12 | |||||||||||||
Oculocutaneous albinism | tyr | P302L | C > T | C | PE3 | 8 | Zebrafish embryo | 20 | 10 | 15 | +3 | Microinjection | RNP | sgRNA cut at position -83; pegRNA:PE protein ratio 4:1; the molar ratio of pegRNA/ngRNA in PE3 was 10:1. | Petri 202 [42] |
Disease | Gene | Mutation | Goal 1 | Prime Editor | % of Editing | Cells or Animal Model | Length (nt) | Edit Position from the Nick | Delivery method | Prime Editor Form | Comments | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spacer | PBS | RTT | ||||||||||||||
Tay–Sachs disease | HEXA | 4 nt insertion: TATC | I | PE3 | 37.5 | Rabbit embryos | 12 | 14 | Qian 2021 [51] | |||||||
Alzheimer’s Disease | APP | A673T | G > A | I | PE2 | 6 | HEK293T | 20 | 11 | 14 | +9 | Lipo 2000 | Plasmid | Tremblay 2022 [53,54] | ||
PE3 | 9.9 | sgRNA cut in position +79 | ||||||||||||||
25 | The PAM is mutated; sgRNA cut in position +79 | |||||||||||||||
65 | Treatment has been repeated 10 times; the PAM is mutated; sgRNA cut in position +79 | |||||||||||||||
V717I | 7.5 | HEK293T | 20 | 16 | 17 | The PAM is mutated; sgRNA cut in position +48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godbout, K.; Tremblay, J.P. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023, 12, 536. https://doi.org/10.3390/cells12040536
Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells. 2023; 12(4):536. https://doi.org/10.3390/cells12040536
Chicago/Turabian StyleGodbout, Kelly, and Jacques P. Tremblay. 2023. "Prime Editing for Human Gene Therapy: Where Are We Now?" Cells 12, no. 4: 536. https://doi.org/10.3390/cells12040536
APA StyleGodbout, K., & Tremblay, J. P. (2023). Prime Editing for Human Gene Therapy: Where Are We Now? Cells, 12(4), 536. https://doi.org/10.3390/cells12040536