Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Sampling
2.2. Primary Culture of Myenteric Neurons
2.3. Neuroimaging with Voltage Sensitive Dye
2.4. Neuroimaging: Acute and Chronic Effect of Cocaine on Isolated Enteric Neurons
2.5. Organ Bath Experiments: Effect of Cocaine on Gastric and Intestinal Motility In Vitro
2.6. Ussing Chamber Experiments: Effect of Cocaine on Intestinal Epithelial Secretion In Vitro
2.7. Statistical Analysis
3. Results
3.1. Acute and Chronic Effect of Cocaine on Isolated Enteric Neurons
3.2. Organ Bath Experiments: Effect of Cocaine on Gastric and Intestinal Motility In Vitro
3.3. Ussing Chamber Experiments: Effect of Cocaine on Intestinal Epithelial Secretion In Vitro
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drugs, E.M.C.F.; Addiction, D. European Drug Report 2022: Trends and Developments; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Drugs, E.M.C.F.; Addiction, D. European Drug Report 2021: Trends and Developments; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Thomas, M.J.; Kalivas, P.W.; Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 2008, 154, 327–342. [Google Scholar] [CrossRef]
- Heikkila, R.E.; Orlansky, H.; Mytilineou, C.; Cohen, G. Amphetamine: Evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J. Pharmacol. Exp. Ther. 1975, 194, 47–56. [Google Scholar]
- Reith, M.E.; Meisler, B.E.; Sershen, H.; Lajtha, A. Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior. Biochem. Pharmacol. 1986, 35, 1123–1129. [Google Scholar] [CrossRef]
- Ritz, M.C.; Lamb, R.J.; Goldberg, S.R.; Kuhar, M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987, 237, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Galloway, M.P. Neurochemical interactions of cocaine with dopaminergic systems. Trends Pharmacol. Sci. 1988, 9, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 2004, 25, 210–218. [Google Scholar] [CrossRef]
- Schmidt, H.D.; Pierce, R.C. Cocaine-induced neuroadaptations in glutamate transmission: Potential therapeutic targets for craving and addiction. Ann. NY Acad. Sci. 2010, 1187, 35–75. [Google Scholar] [CrossRef]
- Kupchik, Y.M.; Scofield, M.D.; Rice, K.C.; Cheng, K.; Roques, B.P.; Kalivas, P.W. Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum. J. Neurosci. 2014, 34, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rodriguez, A.; Zhang, L.; Zhou, F.; Gong, S.; Gu, H.; De Biasi, M.; Zhou, F.M.; Dani, J.A. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release. Front. Synaptic Neurosci. 2014, 6, 19. [Google Scholar] [CrossRef]
- Amenta, F.; Ricci, A.; Tayebati, S.K.; Zaccheo, D. The peripheral dopaminergic system: Morphological analysis, functional and clinical applications. Ital. J. Anat. Embryol. 2002, 107, 145–167. [Google Scholar] [PubMed]
- Magnaghi, V.; Ballabio, M.; Consoli, A.; Lambert, J.J.; Roglio, I.; Melcangi, R.C. GABA receptor-mediated effects in the peripheral nervous system: A cross-interaction with neuroactive steroids. J. Mol. Neurosci. 2006, 28, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Brookes, S.H. Architecture of enteric neural circuits involved in intestinal motility. Eur. Rev. Med. Pharmacol. Sci. 2008, 12 (Suppl. S1), 3–19. [Google Scholar] [PubMed]
- McConalogue, K.; Furness, J.B. Gastrointestinal neurotransmitters. Baillieres Clin. Endocrinol. Metab. 1994, 8, 51–76. [Google Scholar] [CrossRef]
- Obaid, A.L.; Koyano, T.; Lindstrom, J.; Sakai, T.; Salzberg, B.M. Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: Optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 1999, 19, 3073–3093. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; LePard, K.J.; Schneider, D.A.; Zhou, X. Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J. Auton. Nerv. Syst. 2000, 81, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.G.; Jiang, N.; Huang, Y.B.; Ma, X.K.; Brek Eaton, J.; Gao, M.; Chang, Y.C.; Lukas, R.J.; Whiteaker, P.; Neisewander, J.; et al. Cocaine potently blocks neuronal α(3)β(4) nicotinic acetylcholine receptors in SH-SY5Y cells. Acta Pharmacol. Sin. 2020, 41, 163–172. [Google Scholar] [CrossRef]
- Fozard, J.R.; Mobarok Ali, A.T.; Newgrosh, G. Blockade of serotonin receptors on autonomic neurones by (-)-cocaine and some related compounds. Eur. J. Pharmacol. 1979, 59, 195–210. [Google Scholar] [CrossRef]
- Nalbandian, H.; Sheth, N.; Dietrich, R.; Georgiou, J. Intestinal ischemia caused by cocaine ingestion: Report of two cases. Surgery 1985, 97, 374–376. [Google Scholar]
- Cregler, L.L.; Mark, H. Medical complications of cocaine abuse. N. Engl. J. Med. 1986, 315, 1495–1500. [Google Scholar] [CrossRef]
- Linder, J.D.; Mönkemüller, K.E.; Raijman, I.; Johnson, L.; Lazenby, A.J.; Wilcox, C.M. Cocaine-associated ischemic colitis. S. Med. J. 2000, 93, 909–913. [Google Scholar] [CrossRef]
- Ellis, C.N.; McAlexander, W.W. Enterocolitis associated with cocaine use. Dis. Colon. Rectum. 2005, 48, 2313–2316. [Google Scholar] [CrossRef]
- Gibbons, T.E.; Sayed, K.; Fuchs, G.J. Massive pan-gastrointestinal bleeding following cocaine use. World J. Pediatr. 2009, 5, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Scorza, C.; Piccini, C.; Martínez Busi, M.; Abin Carriquiry, J.A.; Zunino, P. Alterations in the Gut Microbiota of Rats Chronically Exposed to Volatilized Cocaine and Its Active Adulterants Caffeine and Phenacetin. Neurotox. Res. 2019, 35, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Chivero, E.T.; Ahmad, R.; Thangaraj, A.; Periyasamy, P.; Kumar, B.; Kroeger, E.; Feng, D.; Guo, M.-L.; Roy, S.; Dhawan, P.; et al. Cocaine Induces Inflammatory Gut Milieu by Compromising the Mucosal Barrier Integrity and Altering the Gut Microbiota Colonization. Sci. Rep. 2019, 9, 12187. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Gong, X.; Xie, L.; Ma, B. Gut Microbiota Analysis in Rats with Methamphetamine-Induced Conditioned Place Preference. Front. Microbiol. 2017, 8, 1620. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, D.D.; Walker, D.M.; Calipari, E.S.; Labonte, B.; Issler, O.; Pena, C.J.; Ribeiro, E.A.; Russo, S.J.; Nestler, E.J. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci. Rep. 2016, 6, 35455. [Google Scholar] [CrossRef]
- Kugler, E.M.; Michel, K.; Zeller, F.; Demir, I.E.; Ceyhan, G.O.; Schemann, M.; Mazzuoli-Weber, G. Mechanical stress activates neurites and somata of myenteric neurons. Front. Cell. Neurosci. 2015, 9, 342. [Google Scholar] [CrossRef]
- Ussing, H.H.; Zerahn, K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 1951, 23, 110–127. [Google Scholar] [CrossRef]
- Hall, F.S.; Sora, I.; Drgonova, J.; Li, X.F.; Goeb, M.; Uhl, G.R. Molecular mechanisms underlying the rewarding effects of cocaine. Ann. NY Acad. Sci. 2004, 1025, 47–56. [Google Scholar] [CrossRef]
- Nestler, E.J. The neurobiology of cocaine addiction. Sci. Pract. Perspect. 2005, 3, 4–10. [Google Scholar] [CrossRef]
- Tiwari, A.; Moghal, M.; Meleagros, L. Life threatening abdominal complications following cocaine abuse. J. R. Soc. Med. 2006, 99, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Khroyan, T.V.; Yasuda, D.; Toll, L.; Polgar, W.E.; Zaveri, N.T. High affinity α3β4 nicotinic acetylcholine receptor ligands AT-1001 and AT-1012 attenuate cocaine-induced conditioned place preference and behavioral sensitization in mice. Biochem. Pharmacol. 2015, 97, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Ren, J.; Brown, E.; Schneider, D.; Caraballo-Lopez, Y.; Galligan, J.J. Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons. J. Pharmacol. Exp. Ther. 2002, 302, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Howell, L.L.; Cunningham, K.A. Serotonin 5-HT2 receptor interactions with dopamine function: Implications for therapeutics in cocaine use disorder. Pharmacol. Rev. 2015, 67, 176–197. [Google Scholar] [CrossRef]
- Filip, M.; Bubar, M.J.; Cunningham, K.A. Contribution of serotonin (5-HT) 5-HT2 receptor subtypes to the discriminative stimulus effects of cocaine in rats. Psychopharmacology 2006, 183, 482–489. [Google Scholar] [CrossRef]
- Fletcher, P.J.; Grottick, A.J.; Higgins, G.A. Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 2002, 27, 576–586. [Google Scholar] [CrossRef]
- Huang, C.-C.; Liang, Y.-C.; Lee, C.-C.; Wu, M.-Y.; Hsu, K.-S. Repeated Cocaine Administration Decreases 5-HT2A Receptor-Mediated Serotonergic Enhancement of Synaptic Activity in Rat Medial Prefrontal Cortex. Neuropsychopharmacology 2009, 34, 1979–1992. [Google Scholar] [CrossRef]
- Craig, D.A.; Clarke, D.E. Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea pig ileum with properties similar to the 5-hydroxytryptamine receptor. J. Pharmacol. Exp. Ther. 1990, 252, 1378–1386. [Google Scholar]
- Kilbinger, H.; Wolf, D. Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. Naunyn Schmiedebergs Arch. Pharmacol. 1992, 345, 270–275. [Google Scholar] [CrossRef]
- Gershon, M.D.; Takaki, M.; Tamir, H.; Branchek, T. The enteric neural receptor for 5-hydroxytryptamine. Experientia 1985, 41, 863–868. [Google Scholar] [CrossRef]
- Ruetsch, Y.A.; Böni, T.; Borgeat, A. From cocaine to ropivacaine: The history of local anesthetic drugs. Curr. Top. Med. Chem. 2001, 1, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Vignali, S.; Peter, N.; Ceyhan, G.; Demir, I.E.; Zeller, F.; Senseman, D.; Michel, K.; Schemann, M. Recordings from human myenteric neurons using voltage-sensitive dyes. J. Neurosci. Methods 2010, 192, 240–248. [Google Scholar] [CrossRef]
- Dong, H.; Jiang, Y.; Srinivasan, S.; Mittal, R.K. Morphological, immunocytochemical, and functional characterization of esophageal enteric neurons in primary culture. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G129–G138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, C.; Unterweger, P.; Parry, L.J.; Bornstein, J.C.; Foong, J.P. VPAC1 receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G748–G758. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.; Neunlist, M.; Schemann, M.; Frieling, T. Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J. Physiol. 2001, 536, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Cooke, H.J.; Shonnard, K.; Highison, G.; Wood, J.D. Effects of neurotransmitter release on mucosal transport in guinea pig ileum. Am. J. Physiol. 1983, 245, G745–G750. [Google Scholar] [CrossRef]
- Cooke, H.J. Influence of enteric cholinergic neurons on mucosal transport in guinea pig ileum. Am. J. Physiol. 1984, 246, G263–G267. [Google Scholar] [CrossRef]
- Carey, H.V.; Tien, X.Y.; Wallace, L.J.; Cooke, H.J. Muscarinic receptor subtypes mediating the mucosal response to neural stimulation of guinea pig ileum. Am. J. Physiol. 1987, 253, G323–G329. [Google Scholar] [CrossRef]
- Kuwahara, A.; Bowen, S.; Wang, J.; Condon, C.; Cooke, H.J. Epithelial responses evoked by stimulation of submucosal neurons in guinea pig distal colon. Am. J. Physiol. 1987, 252, G667–G674. [Google Scholar] [CrossRef]
- Diener, M.; Knobloch, S.F.; Bridges, R.J.; Keilmann, T.; Rummel, W. Cholinergic-mediated secretion in the rat colon: Neuronal and epithelial muscarinic responses. Eur. J. Pharmacol. 1989, 168, 219–229. [Google Scholar] [CrossRef]
- Traynor, T.R.; Brown, D.R.; O’Grady, S.M. Regulation of ion transport in porcine distal colon: Effects of putative neurotransmitters. Gastroenterology 1991, 100, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Berridge, K.C. Incentive-sensitization and addiction. Addiction 2001, 96, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Hope, B.T.; Widnell, K.L. Drug addiction: A model for the molecular basis of neural plasticity. Neuron 1993, 11, 995–1006. [Google Scholar] [CrossRef]
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001, 2, 119–128. [Google Scholar] [CrossRef]
- Robinson, T.E.; Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 1999, 11, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Morgan, K.G.; Morgan, J.P. Effects of cocaine on excitation-contraction coupling of aortic smooth muscle from the ferret. J. Clin. Investig. 1991, 87, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, C.; Yamamoto, H.; Kobayashi, S.; Kanaide, H. Extracellular Ca2+-dependent potentiation by cocaine of serotonin- and norepinephrine-induced contractions in rat vascular smooth muscle. Circ. Res. 1993, 72, 1191–1201. [Google Scholar] [CrossRef]
- Du, C.; Park, K.; Allen, C.P.; Hu, X.-T.; Volkow, N.D.; Pan, Y. Ca2+ channel blockade reduces cocaine’s vasoconstriction and neurotoxicity in the prefrontal cortex. Transl. Psychiatry 2021, 11, 459. [Google Scholar] [CrossRef]
- Wegener, J.W.; Schulla, V.; Koller, A.; Klugbauer, N.; Feil, R.; Hofmann, F. Control of intestinal motility by the Ca(v)1.2 L-type calcium channel in mice. FASEB J. 2006, 20, 1260–1262. [Google Scholar] [CrossRef]
- Parekh, A.B.; Penner, R. Store depletion and calcium influx. Physiol. Rev. 1997, 77, 901–930. [Google Scholar] [CrossRef]
- Bolton, T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 1979, 59, 606–718. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Rayner, C.K.; Wu, K.L.; Chuah, S.K.; Tai, W.C.; Chou, Y.P.; Chiu, Y.C.; Chiu, K.W.; Hu, T.H. Effect of ginger on gastric motility and symptoms of functional dyspepsia. World J. Gastroenterol. 2011, 17, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Schemann, M.; Michel, K.; Zeller, F.; Hohenester, B.; Rühl, A. Region-specific effects of STW 5 (Iberogast) and its components in gastric fundus, corpus and antrum. Phytomedicine 2006, 13 (Suppl. S5), 90–99. [Google Scholar] [CrossRef] [PubMed]
- Hohenester, B.; Rühl, A.; Kelber, O.; Schemann, M. The herbal preparation STW5 (lberogast) has potent and region-specific effects on gastric motility. Neurogastroenterol. Motil. 2004, 16, 765–773. [Google Scholar] [CrossRef]
- Annaházi, A.; Schröder, A.; Schemann, M. Region-specific effects of the cysteine protease papain on gastric motility. Neurogastroenterol. Motil. 2021, 33, e14105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elfers, K.; Menne, L.; Colnaghi, L.; Hoppe, S.; Mazzuoli-Weber, G. Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells 2023, 12, 577. https://doi.org/10.3390/cells12040577
Elfers K, Menne L, Colnaghi L, Hoppe S, Mazzuoli-Weber G. Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells. 2023; 12(4):577. https://doi.org/10.3390/cells12040577
Chicago/Turabian StyleElfers, Kristin, Laura Menne, Luca Colnaghi, Susanne Hoppe, and Gemma Mazzuoli-Weber. 2023. "Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions" Cells 12, no. 4: 577. https://doi.org/10.3390/cells12040577
APA StyleElfers, K., Menne, L., Colnaghi, L., Hoppe, S., & Mazzuoli-Weber, G. (2023). Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells, 12(4), 577. https://doi.org/10.3390/cells12040577