Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders
Abstract
:1. Brain Glycogen
2. Lafora Disease
3. Lafora Bodies in Neurons and Astrocytes
4. Role of Astrocytic LBs in the Pathophysiology of LD
5. Corpora amylacea
6. Adult Polyglucosan Body Disease
7. RBCK1 Deficiency
8. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen Metabolism in Humans. BBA Clin. 2016, 5, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Gessler, K.; Usón, I.; Takaha, T.; Krauss, N.; Smith, S.M.; Okada, S.; Sheldrick, G.M.; Saenger, W. V-Amylose at Atomic Resolution: X-ray Structure of a Cycloamylose with 26 Glucose Residues (Cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA 1999, 96, 4246–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez, R.; Meléndez-Hevia, E.; Mas, F.; Mach, J.; Cascante, M. Physical Constraints in the Synthesis of Glycogen That Influence Its Structural Homogeneity: A Two-Dimensional Approach. Biophys. J. 1998, 75, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Hevia, E.; Waddell, T.G.; Shelton, E.D. Optimization of Molecular Design in the Evolution of Metabolism: The Glycogen Molecule. Biochem. J. 1993, 295, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.M. Brain Glycogen Re-Awakened. J. Neurochem. 2004, 89, 537–552. [Google Scholar] [CrossRef]
- Pfeiffer-Guglielmi, B.; Bröer, S.; Bröer, A.; Hamprecht, B. Isozyme Pattern of Glycogen Phosphorylase in the Rat Nervous System and Rat Astroglia-Rich Primary Cultures: Electrophoretic and Polymerase Chain Reaction Studies. Neurochem. Res. 2000, 25, 1485–1491. [Google Scholar] [CrossRef]
- Oe, Y.; Baba, O.; Ashida, H.; Nakamura, K.C.; Hirase, H. Glycogen Distribution in the Microwave-Fixed Mouse Brain Reveals Heterogeneous Astrocytic Patterns. Glia 2016, 64, 1532–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, K.; Hamprecht, B.; Scheich, H. Ultrastructural Localization of Glycogen Phosphorylase Predominantly in Astrocytes of the Gerbil Brain. Glia 1996, 17, 263–273. [Google Scholar] [CrossRef]
- Cataldo, A.M.; Broadwell, R.D. Cytochemical Identification of Cerebral Glycogen and Glucose-6-Phosphatase Activity under Normal and Experimental Conditions. II. Choroid Plexus and Ependymal Epithelia, Endothelia and Pericytes. J. Neurocytol. 1986, 15, 511–524. [Google Scholar] [CrossRef]
- Sagar, S.M.; Sharp, F.R.; Swanson, R.A. The Regional Distribution of Glycogen in Rat Brain Fixed by Microwave Irradiation. Brain Res. 1987, 417, 172–174. [Google Scholar] [CrossRef]
- Saez, I.; Duran, J.; Sinadinos, C.; Beltran, A.; Yanes, O.; Tevy, M.F.; Martínez-Pons, C.; Milán, M.; Guinovart, J.J. Neurons Have an Active Glycogen Metabolism That Contributes to Tolerance to Hypoxia. J. Cereb. Blood Flow Metab. 2014, 34, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.; Gruart, A.; Varea, O.; López-Soldado, I.; Delgado-García, J.M.; Guinovart, J.J. Lack of Neuronal Glycogen Impairs Memory Formation and Learning-Dependent Synaptic Plasticity in Mice. Front. Cell. Neurosci. 2019, 13, 374. [Google Scholar] [CrossRef] [Green Version]
- Swanson, R.A.; Choi, D.W. Glial Glycogen Stores Affect Neuronal Survival during Glucose Deprivation In Vitro. J. Cereb. Blood Flow Metab. 1993, 13, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Dienel, G.A.; Carlson, G.M. Major Advances in Brain Glycogen Research: Understanding of the Roles of Glycogen Have Evolved from Emergency Fuel Reserve to Dynamic, Regulated Participant in Diverse Brain Functions. In Brain Glycogen Metabolism; Advances in Neurobiology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 23, pp. 1–16. [Google Scholar] [CrossRef]
- Dienel, G.A.; Cruz, N.F. Contributions of Glycogen to Astrocytic Energetics during Brain Activation. Metab. Brain Dis. 2015, 30, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Dienel, G.A. Brain Glucose Metabolism: Integration of Energetics with Function. Physiol. Rev. 2019, 99, 949–1045. [Google Scholar] [CrossRef]
- Swanson, R.A.; Morton, M.M.; Sagar, S.M.; Sharp, F.R. Sensory Stimulation Induces Local Cerebral Glycogenolysis: Demonstration by Autoradiography. Neuroscience 1992, 51, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.; Saez, I.; Gruart, A.; Guinovart, J.J.; Delgado-García, J.M. Impairment in Long-Term Memory Formation and Learning-Dependent Synaptic Plasticity in Mice Lacking Glycogen Synthase in the Brain. J. Cereb. Blood Flow Metab. 2013, 33, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Duran, J.; Brewer, M.K.; Hervera, A.; Gruart, A.; Del Rio, J.A.; Delgado-García, J.M.; Guinovart, J.J. Lack of Astrocytic Glycogen Alters Synaptic Plasticity but Not Seizure Susceptibility. Mol. Neurobiol. 2020, 57, 4657–4666. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.E.; Anderson, D.G.; Hertz, L. Inhibition of Glycogenolysis in Astrocytes Interrupts Memory Consolidation in Young Chickens. Glia 2006, 54, 214–222. [Google Scholar] [CrossRef]
- Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation. Cell 2011, 144, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, L.; Magistretti, P.J. Glutamate Uptake into Astrocytes Stimulates Aerobic Glycolysis: A Mechanism Coupling Neuronal Activity to Glucose Utilization. Proc. Natl. Acad. Sci. USA 1994, 91, 10625–10629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNuzzo, M.; Mangia, S.; Maraviglia, B.; Giove, F. Glycogenolysis in Astrocytes Supports Blood-Borne Glucose Channeling Not Glycogen-Derived Lactate Shuttling to Neurons: Evidence from Mathematical Modeling. J. Cereb. Blood Flow Metab. 2010, 30, 1895–1904. [Google Scholar] [CrossRef] [Green Version]
- Roach, P.J. Glycogen Phosphorylation and Lafora Disease. Mol. Aspects Med. 2015, 46, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayarre, J.; Duran-Trío, L.; Criado Garcia, O.; Aguado, C.; Juana-López, L.; Crespo, I.; Knecht, E.; Bovolenta, P.; de Córdoba, S.R. The Phosphatase Activity of Laforin Is Dispensable to Rescue Epm2a-/- Mice from Lafora Disease. Brain 2014, 137, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, F.; Sullivan, M.A.; Wang, P.; Zhao, X.; Chown, E.E.; Perri, A.M.; Israelian, L.; Juana-López, L.; Bovolenta, P.; de Córdoba, S.R.; et al. Abnormal Glycogen Chain Length Pattern, Not Hyperphosphorylation, Is Critical in Lafora Disease. EMBO Mol. Med. 2017, 9, 906–917. [Google Scholar] [CrossRef]
- Duran, J.; Gruart, A.; García-Rocha, M.; Delgado-García, J.M.; Guinovart, J.J. Glycogen Accumulation Underlies Neurodegeneration and Autophagy Impairment in Lafora Disease. Hum. Mol. Genet. 2014, 23, 3147–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varea, O.; Duran, J.; Aguilera, M.; Prats, N.; Guinovart, J.J. Suppression of Glycogen Synthesis as a Treatment for Lafora Disease: Establishing the Window of Opportunity. Neurobiol. Dis. 2021, 147, 105173. [Google Scholar] [CrossRef]
- Pellegrini, P.; Hervera, A.; Varea, O.; Brewer, M.K.; López-Soldado, I.; Guitart, A.; Aguilera, M.; Prats, N.; Del Río, J.A.; Guinovart, J.J.; et al. Lack of p62 Impairs Glycogen Aggregation and Exacerbates Pathology in a Mouse Model of Myoclonic Epilepsy of Lafora. Mol. Neurobiol. 2022, 59, 1214–1229. [Google Scholar] [CrossRef] [PubMed]
- Sinadinos, C.; Valles-Ortega, J.; Boulan, L.; Solsona, E.; Tevy, M.F.; Marquez, M.; Duran, J.; Lopez-Iglesias, C.; Calbó, J.; Blasco, E.; et al. Neuronal Glycogen Synthesis Contributes to Physiological Aging. Aging Cell 2014, 13, 935–945. [Google Scholar] [CrossRef]
- Turnbull, J.; Tiberia, E.; Striano, P.; Genton, P.; Carpenter, S.; Ackerley, C.A.; Minassian, B.A. Lafora Disease. Epileptic Disord. 2016, 18, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Verhalen, B.; Arnold, S.; Minassian, B.A. Lafora Disease: A Review of Molecular Mechanisms and Pathology. Neuropediatrics 2018, 49, 357–362. [Google Scholar] [CrossRef]
- Pondrelli, F.; Muccioli, L.; Licchetta, L.; Mostacci, B.; Zenesini, C.; Tinuper, P.; Vignatelli, L.; Bisulli, F. Natural History of Lafora Disease: A Prognostic Systematic Review and Individual Participant Data Meta-Analysis. Orphanet J. Rare Dis. 2021, 16, 362. [Google Scholar] [CrossRef]
- Minassian, B.A.; Lee, J.R.; Herbrick, J.A.; Huizenga, J.; Soder, S.; Mungall, A.J.; Dunham, I.; Gardner, R.; Fong, C.Y.; Carpenter, S.; et al. Mutations in a Gene Encoding a Novel Protein Tyrosine Phosphatase Cause Progressive Myoclonus Epilepsy. Nat. Genet. 1998, 20, 171–174. [Google Scholar] [CrossRef]
- Serratosa, J.M.; Gómez-Garre, P.; Gallardo, M.E.; Anta, B.; de Bernabé, D.B.; Lindhout, D.; Augustijn, P.B.; Tassinari, C.A.; Malafosse, R.M.; Topcu, M.; et al. A Novel Protein Tyrosine Phosphatase Gene Is Mutated in Progressive Myoclonus Epilepsy of the Lafora Type (EPM2). Hum. Mol. Genet. 1999, 8, 345–352. [Google Scholar] [CrossRef]
- Chan, E.M.; Young, E.J.; Ianzano, L.; Munteanu, I.; Zhao, X.; Christopoulos, C.C.; Avanzini, G.; Elia, M.; Ackerley, C.A.; Jovic, N.J.; et al. Mutations in NHLRC1 Cause Progressive Myoclonus Epilepsy. Nat. Genet. 2003, 35, 125–127. [Google Scholar] [CrossRef]
- Cheng, A.; Zhang, M.; Gentry, M.S.; Worby, C.A.; Dixon, J.E.; Saltiel, A.R. A Role for AGL Ubiquitination in the Glycogen Storage Disorders of Lafora and Cori’s Disease. Genes Dev. 2007, 21, 2399–2409. [Google Scholar] [CrossRef] [Green Version]
- Worby, C.A.; Gentry, M.S.; Dixon, J.E. Malin Decreases Glycogen Accumulation by Promoting the Degradation of Protein Targeting to Glycogen (PTG). J. Biol. Chem. 2008, 283, 4069–4076. [Google Scholar] [CrossRef] [Green Version]
- Solaz-Fuster, M.C.; Gimeno-Alcañiz, J.V.; Ros, S.; Fernandez-Sanchez, M.E.; Garcia-Fojeda, B.; Garcia, O.C.; Vilchez, D.; Dominguez, J.; Garcia-Rocha, M.; Sanchez-Piris, M.; et al. Regulation of Glycogen Synthesis by the Laforin–Malin Complex Is Modulated by the AMP-Activated Protein Kinase Pathway. Hum. Mol. Genet. 2008, 17, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.A.; Nitschke, S.; Steup, M.; Minassian, B.A.; Nitschke, F. Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan. Int. J. Mol. Sci. 2017, 18, 1743. [Google Scholar] [CrossRef] [Green Version]
- Turco, E.; Savova, A.; Gere, F.; Ferrari, L.; Romanov, J.; Schuschnig, M.; Martens, S. Reconstitution Defines the Roles of p62, NBR1 and TAX1BP1 in Ubiquitin Condensate Formation and Autophagy Initiation. Nat. Commun. 2021, 12, 5212. [Google Scholar] [CrossRef]
- Moscat, J.; Diaz-Meco, M.T. To Aggregate or Not to Aggregate? A New Role for p62. EMBO Rep. 2009, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. J. Cell Biol. 2005, 171, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, S.; Delgado-Escueta, A.V.; Sakamoto, T.; Avila, M.R.; Machado-Salas, J.; Hoshii, Y.; Akagi, T.; Gomi, H.; Suzuki, T.; Amano, K.; et al. Targeted Disruption of the Epm2a Gene Causes Formation of Lafora Inclusion Bodies, Neurodegeneration, Ataxia, Myoclonus Epilepsy and Impaired Behavioral Response in Mice. Hum. Mol. Genet. 2002, 11, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, J.; DePaoli-Roach, A.A.; Zhao, X.; Cortez, M.A.; Pencea, N.; Tiberia, E.; Piliguian, M.; Roach, P.J.; Wang, P.; Ackerley, C.A.; et al. PTG Depletion Removes Lafora Bodies and Rescues the Fatal Epilepsy of Lafora Disease. PLoS Genet. 2011, 7, e1002037. [Google Scholar] [CrossRef] [Green Version]
- Valles-Ortega, J.; Duran, J.; Garcia-Rocha, M.; Bosch, C.; Saez, I.; Pujadas, L.; Serafin, A.; Cañas, X.; Soriano, E.; Delgado-García, J.M.; et al. Neurodegeneration and Functional Impairments Associated with Glycogen Synthase Accumulation in a Mouse Model of Lafora Disease. EMBO Mol. Med. 2011, 3, 667–681. [Google Scholar] [CrossRef]
- DePaoli-Roach, A.A.; Tagliabracci, V.S.; Segvich, D.M.; Meyer, C.M.; Irimia, J.M.; Roach, P.J. Genetic Depletion of the Malin E3 Ubiquitin Ligase in Mice Leads to Lafora Bodies and the Accumulation of Insoluble Laforin. J. Biol. Chem. 2010, 285, 25372–25381. [Google Scholar] [CrossRef] [Green Version]
- Criado, O.; Aguado, C.; Gayarre, J.; Duran-Trio, L.; Garcia-Cabrero, A.M.; Vernia, S.; San Millán, B.; Heredia, M.; Romá-Mateo, C.; Mouron, S.; et al. Lafora Bodies and Neurological Defects in Malin-Deficient Mice Correlate with Impaired Autophagy. Hum. Mol. Genet. 2012, 21, 1521–1533. [Google Scholar] [CrossRef]
- García-Cabrero, A.M.; Marinas, A.; Guerrero, R.; de Córdoba, S.R.; Serratosa, J.M.; Sánchez, M.P. Laforin and Malin Deletions in Mice Produce Similar Neurologic Impairments. J. Neuropathol. Exp. Neurol. 2012, 71, 413–421. [Google Scholar] [CrossRef]
- Duran, J.; Hervera, A.; Markussen, K.H.; Varea, O.; López-Soldado, I.; Sun, R.C.; Del Río, J.A.; Gentry, M.S.; Guinovart, J.J. Astrocytic Glycogen Accumulation Drives the Pathophysiology of Neurodegeneration in Lafora Disease. Brain 2021, 144, 2349–2360. [Google Scholar] [CrossRef]
- Puri, R.; Suzuki, T.; Yamakawa, K.; Ganesh, S. Dysfunctions in Endosomal-Lysosomal and Autophagy Pathways Underlie Neuropathology in a Mouse Model for Lafora Disease. Hum. Mol. Genet. 2012, 21, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Aguado, C.; Sarkar, S.; Korolchuk, V.I.; Criado, O.; Vernia, S.; Boya, P.; Sanz, P.; de Córdoba, S.R.; Knecht, E.; Rubinsztein, D.C. Laforin, the Most Common Protein Mutated in Lafora Disease, Regulates Autophagy. Hum. Mol. Genet. 2010, 19, 2867–2876. [Google Scholar] [CrossRef] [Green Version]
- Knecht, E.; Criado-García, O.; Aguado, C.; Gayarre, J.; Duran-Trio, L.; Garcia-Cabrero, A.M.; Vernia, S.; San Millán, B.; Heredia, M.; Romá-Mateo, C.; et al. Malin Knockout Mice Support a Primary Role of Autophagy in the Pathogenesis of Lafora Disease. Autophagy 2012, 8, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, J.; Epp, J.R.; Goldsmith, D.; Zhao, X.; Pencea, N.; Wang, P.; Frankland, P.W.; Ackerley, C.A.; Minassian, B.A. PTG Protein Depletion Rescues Malin-Deficient Lafora Disease in Mouse. Ann. Neurol. 2014, 75, 442–446. [Google Scholar] [CrossRef]
- Pederson, B.A.; Turnbull, J.; Epp, J.R.; Weaver, S.A.; Zhao, X.; Pencea, N.; Roach, P.J.; Frankland, P.W.; Ackerley, C.A.; Minassian, B.A. Inhibiting Glycogen Synthesis Prevents Lafora Disease in a Mouse Model. Ann. Neurol. 2013, 74, 297–300. [Google Scholar] [CrossRef]
- Duran, J.; Tevy, M.F.; Garcia-Rocha, M.; Calbó, J.; Milán, M.; Guinovart, J.J. Deleterious Effects of Neuronal Accumulation of Glycogen in Flies and Mice. EMBO Mol. Med. 2012, 4, 719–729. [Google Scholar] [CrossRef]
- Ahonen, S.; Nitschke, S.; Grossman, T.R.; Kordasiewicz, H.; Wang, P.; Zhao, X.; Guisso, D.R.; Kasiri, S.; Nitschke, F.; Minassian, B.A. Gys1 Antisense Therapy Rescues Neuropathological Bases of Murine Lafora Disease. Brain 2021, 144, 2985–2993. [Google Scholar] [CrossRef]
- Nitschke, S.; Chown, E.E.; Zhao, X.; Gabrielian, S.; Petković, S.; Guisso, D.R.; Perri, A.M.; Wang, P.; Ahonen, S.; Nitschke, F.; et al. An Inducible Glycogen Synthase-1 Knockout Halts but Does Not Reverse Lafora Disease Progression in Mice. J. Biol. Chem. 2021, 296, 100150. [Google Scholar] [CrossRef]
- Gumusgoz, E.; Kasiri, S.; Guisso, D.R.; Wu, J.; Dear, M.; Verhalen, B.; Minassian, B.A. AAV-Mediated Artificial MiRNA Reduces Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2022, 19, 982–993. [Google Scholar] [CrossRef]
- Gumusgoz, E.; Guisso, D.R.; Kasiri, S.; Wu, J.; Dear, M.; Verhalen, B.; Nitschke, S.; Mitra, S.; Nitschke, F.; Minassian, B.A. Targeting Gys1 with AAV-SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2021, 18, 1414–1425. [Google Scholar] [CrossRef]
- Lafora, G.R. Über das Vorkommen amyloider Körperchen im Innern der Ganglienzellen. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1911, 205, 295–303. [Google Scholar] [CrossRef]
- Machado-Salas, J.; Avila-Costa, M.R.; Guevara, P.; Guevara, J.; Durón, R.M.; Bai, D.; Tanaka, M.; Yamakawa, K.; Delgado-Escueta, A.V. Ontogeny of Lafora Bodies and Neurocytoskeleton Changes in Laforin-Deficient Mice. Exp. Neurol. 2012, 236, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Gentry, M.S.; Guinovart, J.J.; Minassian, B.A.; Roach, P.J.; Serratosa, J.M. Lafora Disease Offers a Unique Window into Neuronal Glycogen Metabolism. J. Biol. Chem. 2018, 293, 7117–7125. [Google Scholar] [CrossRef] [Green Version]
- Minassian, B.A. Lafora’s Disease: Towards a Clinical, Pathologic, and Molecular Synthesis. Pediatr. Neurol 2001, 25, 21–29. [Google Scholar] [CrossRef]
- Augé, E.; Pelegrí, C.; Manich, G.; Cabezón, I.; Guinovart, J.J.; Duran, J.; Vilaplana, J. Astrocytes and Neurons Produce Distinct Types of Polyglucosan Bodies in Lafora Disease. Glia 2018, 66, 2094–2107. [Google Scholar] [CrossRef]
- Rubio-Villena, C.; Viana, R.; Bonet, J.; Garcia-Gimeno, M.A.; Casado, M.; Heredia, M.; Sanz, P. Astrocytes: New Players in Progressive Myoclonus Epilepsy of Lafora Type. Hum. Mol. Genet. 2018, 27, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Augé, E.; Duran, J.; Guinovart, J.J.; Pelegrí, C.; Vilaplana, J. Exploring the Elusive Composition of Corpora Amylacea of Human Brain. Sci. Rep. 2018, 8, 13525. [Google Scholar] [CrossRef] [Green Version]
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Konishi, H.; Koizumi, S.; Kiyama, H. Phagocytic Astrocytes: Emerging from the Shadows of Microglia. Glia 2022, 70, 1009–1026. [Google Scholar] [CrossRef]
- Lahuerta, M.; Gonzalez, D.; Aguado, C.; Fathinajafabadi, A.; García-Giménez, J.L.; Moreno-Estellés, M.; Romá-Mateo, C.; Knecht, E.; Pallardó, F.V.; Sanz, P. Reactive Glia-Derived Neuroinflammation: A Novel Hallmark in Lafora Progressive Myoclonus Epilepsy That Progresses with Age. Mol. Neurobiol. 2020, 57, 1607–1621. [Google Scholar] [CrossRef]
- Mollá, B.; Heredia, M.; Sanz, P. Modulators of Neuroinflammation Have a Beneficial Effect in a Lafora Disease Mouse Model. Mol. Neurobiol. 2021, 58, 2508–2522. [Google Scholar] [CrossRef]
- Coulter, D.A.; Steinhäuser, C. Role of Astrocytes in Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022434. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Song, D.; Xue, Z.; Gu, L.; Hertz, L.; Peng, L. Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain. Neurochem. Res. 2013, 38, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. Brain Glycogen-New Perspectives on Its Metabolic Function and Regulation at the Subcellular Level. Front. Neuroenergetics 2012, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- DiNuzzo, M.; Mangia, S.; Maraviglia, B.; Giove, F. Does Abnormal Glycogen Structure Contribute to Increased Susceptibility to Seizures in Epilepsy? Metab. Brain Dis. 2015, 30, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loiseau, H.; Marchal, C.; Vital, A.; Vital, C.; Rougier, A.; Loiseau, P. Occurrence of Polyglucosan Bodies in Temporal Lobe Epilepsy. J. Neurol. Neurosurg. Psychiatry 1992, 55, 1092–1093. [Google Scholar] [CrossRef] [Green Version]
- Ortolano, S.; Vieitez, I.; Agis-Balboa, R.C.; Spuch, C. Loss of GABAergic Cortical Neurons Underlies the Neuropathology of Lafora Disease. Mol. Brain 2014, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, J.B. Corpora-Amylacea and the Family of Polyglucosan Diseases. Brain Res. Rev. 1999, 29, 265–295. [Google Scholar] [CrossRef]
- Rohn, T.T. Corpora Amylacea in Neurodegenerative Diseases: Cause or Effect? Int. J. Neurol. Neurother. 2015, 2, 031. [Google Scholar] [CrossRef]
- Ramsey, H.J. Ultrastructure of Corpora Amylacea. J. Neuropathol. Exp. Neurol. 1965, 24, 25–39. [Google Scholar] [CrossRef]
- Sbarbati, A.; Carner, M.; Colletti, V.; Osculati, F. Extrusion of Corpora Amylacea from the Marginal Gila at the Vestibular Root Entry Zone. J. Neuropathol. Exp. Neurol. 1996, 55, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Schipper, H.M.; Cissé, S. Mitochondrial Constituents of Corpora Amylacea and Autofluorescent Astrocytic Inclusions in Senescent Human Brain. Glia 1995, 14, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wander, C.M.; Tseng, J.-H.; Song, S.; Al Housseiny, H.A.; Tart, D.S.; Ajit, A.; Ian Shih, Y.-Y.; Lobrovich, R.; Song, J.; Meeker, R.B.; et al. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience 2020, 23, 101255. [Google Scholar] [CrossRef]
- Augé, E.; Bechmann, I.; Llor, N.; Vilaplana, J.; Krueger, M.; Pelegrí, C. Corpora Amylacea in Human Hippocampal Brain Tissue Are Intracellular Bodies That Exhibit a Homogeneous Distribution of Neo-Epitopes. Sci. Rep. 2019, 9, 2063. [Google Scholar] [CrossRef] [PubMed]
- Singhrao, S.K.; Neal, J.W.; Newman, G.R. Corpora Amylacea Could Be an Indicator of Neurodegeneration. Neuropathol. Appl. Neurobiol. 1993, 19, 269–276. [Google Scholar] [CrossRef]
- Augé, E.; Cabezón, I.; Pelegrí, C.; Vilaplana, J. New Perspectives on Corpora amylacea in the Human Brain. Sci. Rep. 2017, 7, 41807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riba, M.; Del Valle, J.; Augé, E.; Vilaplana, J.; Pelegrí, C. From Corpora amylacea to Wasteosomes: History and Perspectives. Ageing Res. Rev. 2021, 72, 101484. [Google Scholar] [CrossRef]
- Bruno, C.; Servidei, S.; Shanske, S.; Karpati, G.; Carpenter, S.; McKee, D.; Barohn, R.J.; Hirano, M.; Rifai, Z.; DiMauro, S. Glycogen Branching Enzyme Deficiency in Adult Polyglucosan Body Disease. Ann. Neurol. 1993, 33, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Bigio, E.H.; Weiner, M.F.; Bonte, F.J.; White, C.L. Familial Dementia Due to Adult Polyglucosan Body Disease. Clin. Neuropathol. 1997, 16, 227–234. [Google Scholar] [PubMed]
- Berkhoff, M.; Weis, J.; Schroth, G.; Sturzenegger, M. Extensive White-Matter Changes in Case of Adult Polyglucosan Body Disease. Neuroradiology 2001, 43, 234–236. [Google Scholar] [CrossRef]
- Brewer, M.K.; Putaux, J.-L.; Rondon, A.; Uittenbogaard, A.; Sullivan, M.A.; Gentry, M.S. Polyglucosan Body Structure in Lafora Disease. Carbohydr. Polym. 2020, 240, 116260. [Google Scholar] [CrossRef]
- Mochel, F.; Schiffmann, R.; Steenweg, M.E.; Akman, H.O.; Wallace, M.; Sedel, F.; Laforêt, P.; Levy, R.; Powers, J.M.; Demeret, S.; et al. Adult Polyglucosan Body Disease: Natural History and Key Magnetic Resonance Imaging Findings. Ann. Neurol. 2012, 72, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.; van Diggelen, O.P.; Cassandrini, D.; Gimpelev, M.; Giuffrè, B.; Donati, M.A.; Introvini, P.; Alegria, A.; Assereto, S.; Morandi, L.; et al. Clinical and Genetic Heterogeneity of Branching Enzyme Deficiency (Glycogenosis Type IV). Neurology 2004, 63, 1053–1058. [Google Scholar] [CrossRef]
- Orhan Akman, H.; Emmanuele, V.; Kurt, Y.G.; Kurt, B.; Sheiko, T.; DiMauro, S.; Craigen, W.J. A Novel Mouse Model That Recapitulates Adult-Onset Glycogenosis Type 4. Hum. Mol. Genet. 2015, 24, 6801–6810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chown, E.E.; Wang, P.; Zhao, X.; Crowder, J.J.; Strober, J.W.; Sullivan, M.A.; Xue, Y.; Bennett, C.S.; Perri, A.M.; Evers, B.M.; et al. GYS1 or PPP1R3C Deficiency Rescues Murine Adult Polyglucosan Body Disease. Ann. Clin. Transl. Neurol. 2020, 7, 2186–2198. [Google Scholar] [CrossRef]
- Robitaille, Y.; Carpenter, S.; Karpati, G.; DiMauro, S.D. A Distinct Form of Adult Polyglucosan Body Disease with Massive Involvement of Central and Peripheral Neuronal Processes and Astrocytes: A Report of Four Cases and a Review of the Occurrence of Polyglucosan Bodies in Other Conditions Such as Lafora’s Disease and Normal Ageing. Brain 1980, 103, 315–336. [Google Scholar] [CrossRef]
- Gray, F.; Gherardi, R.; Marshall, A.; Janota, I.; Poirier, J. Adult Polyglucosan Body Disease (APBD). J. Neuropathol. Exp. Neurol. 1988, 47, 459–474. [Google Scholar] [CrossRef]
- Dainese, L.; Monin, M.-L.; Demeret, S.; Brochier, G.; Froissart, R.; Spraul, A.; Schiffmann, R.; Seilhean, D.; Mochel, F. Abnormal Glycogen in Astrocytes Is Sufficient to Cause Adult Polyglucosan Body Disease. Gene 2013, 515, 376–379. [Google Scholar] [CrossRef]
- Boisson, B.; Laplantine, E.; Prando, C.; Giliani, S.; Israelsson, E.; Xu, Z.; Abhyankar, A.; Israël, L.; Trevejo-Nunez, G.; Bogunovic, D.; et al. Immunodeficiency, Autoinflammation and Amylopectinosis in Humans with Inherited HOIL-1 and LUBAC Deficiency. Nat. Immunol. 2012, 13, 1178–1186. [Google Scholar] [CrossRef]
- Nilsson, J.; Schoser, B.; Laforet, P.; Kalev, O.; Lindberg, C.; Romero, N.B.; Dávila López, M.; Akman, H.O.; Wahbi, K.; Iglseder, S.; et al. Polyglucosan Body Myopathy Caused by Defective Ubiquitin Ligase RBCK1. Ann. Neurol. 2013, 74, 914–919. [Google Scholar] [CrossRef]
- Nitschke, S.; Sullivan, M.A.; Mitra, S.; Marchioni, C.R.; Lee, J.P.Y.; Smith, B.H.; Ahonen, S.; Wu, J.; Chown, E.E.; Wang, P.; et al. Glycogen Synthase Downregulation Rescues the Amylopectinosis of Murine RBCK1 Deficiency. Brain 2022, 145, 2361–2377. [Google Scholar] [CrossRef] [PubMed]
- Kelsall, I.R.; McCrory, E.H.; Xu, Y.; Scudamore, C.L.; Nanda, S.K.; Mancebo-Gamella, P.; Wood, N.T.; Knebel, A.; Matthews, S.J.; Cohen, P. HOIL-1 Ubiquitin Ligase Activity Targets Unbranched Glucosaccharides and Is Required to Prevent Polyglucosan Accumulation. EMBO J. 2022, 41, e109700. [Google Scholar] [CrossRef]
- Thomsen, C.; Malfatti, E.; Jovanovic, A.; Roberts, M.; Kalev, O.; Lindberg, C.; Oldfors, A. Proteomic Characterisation of Polyglucosan Bodies in Skeletal Muscle in RBCK1 Deficiency. Neuropathol. Appl. Neurobiol. 2022, 48, e12761. [Google Scholar] [CrossRef]
- Varea, O.; Guinovart, J.J.; Duran, J. Malin Restoration as Proof of Concept for Gene Therapy for Lafora Disease. Brain Commun. 2022, 4, fcac168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran, J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023, 12, 722. https://doi.org/10.3390/cells12050722
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells. 2023; 12(5):722. https://doi.org/10.3390/cells12050722
Chicago/Turabian StyleDuran, Jordi. 2023. "Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders" Cells 12, no. 5: 722. https://doi.org/10.3390/cells12050722
APA StyleDuran, J. (2023). Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells, 12(5), 722. https://doi.org/10.3390/cells12050722