The Role of TNF-α in Alzheimer’s Disease: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Molecular Structure, Receptors and Metabolism
3.1. Molecular Structure
3.2. TNF Receptor 1 (TNFR1) and TNF Receptor 2 (TNFR2)
3.3. TNF-α Metabolism
4. Rationale for the TNF-α Involvement in AD
5. Evidence in Humans
5.1. Cerebrospinal Fluid and Blood Studies
5.2. Genetic Studies
5.3. TNF-α Inhibitors
6. Evidence in Animal Models of Alzheimer’s Disease
6.1. Minocycline
6.2. Imipramine
6.3. Hydrogen Sulfide
6.4. Thalidomide and 3,6-Dithiothalidomide
6.5. Exendin-4
6.6. Atorvastatin
6.7. Infliximab, Etanercept and Adalimumab
6.8. TfRMAb-TNFR
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Pless, A.; Ware, D.; Saggu, S.; Rehman, H.; Morgan, J.; Wang, Q. Understanding Neuropsychiatric Symptoms in Alzheimer’s Disease: Challenges and Advances in Diagnosis and Treatment. Front. Neurosci. 2023, 17, 1263771. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. Risk Factors for Alzheimer’s Disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The amyloid cascade hypothesis: An updated critical review. Brain 2023, 146, 3969–3990. [Google Scholar] [CrossRef] [PubMed]
- Plantone, D.; Pardini, M.; Locci, S.; Nobili, F.; De Stefano, N. B Lymphocytes in Alzheimer’s Disease-A Comprehensive Review. J. Alzheimers Dis. 2022, 88, 1241–1262. [Google Scholar] [CrossRef]
- Halliday, G.; Robinson, S.R.; Shepherd, C.; Kril, J. Alzheimer’s Disease and Inflammation: A Review of Cellular and Therapeutic Mechanisms. Clin. Exp. Pharmacol. Physiol. 2000, 27, 1–8. [Google Scholar] [CrossRef]
- Ozben, T.; Ozben, S. Neuro-Inflammation and Anti-Inflammatory Treatment Options for Alzheimer’s Disease. Clin. Biochem. 2019, 72, 87–89. [Google Scholar] [CrossRef]
- Galasko, D.; Montine, T.J. Biomarkers of Oxidative Damage and Inflammation in Alzheimer’s Disease. Biomark. Med. 2010, 4, 27–36. [Google Scholar] [CrossRef]
- Cherbuin, N.; Walsh, E.I.; Leach, L.; Brüstle, A.; Burns, R.; Anstey, K.J.; Sachdev, P.S.; Baune, B.T. Systemic Inflammation Predicts Alzheimer Pathology in Community Samples without Dementia. Biomedicines 2022, 10, 1240. [Google Scholar] [CrossRef]
- McGeer, E.G.; McGeer, P.L. Brain Inflammation in Alzheimer Disease and the Therapeutic Implications. Curr. Pharm. Des. 2023, 5, 821–836. [Google Scholar] [CrossRef]
- Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune Attack: The Role of Inflammation in Alzheimer Disease. Nat. Rev. Neurosci. 2015, 16, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Holtzman, D.M. Emerging Roles of Innate and Adaptive Immunity in Alzheimer’s Disease. Immunity 2022, 55, 2236–2254. [Google Scholar] [CrossRef] [PubMed]
- Walters, A.; Phillips, E.; Zheng, R.; Biju, M.; Kuruvilla, T. Evidence for Neuroinflammation in Alzheimer’s Disease. Prog. Neurol. Psychiatry 2016, 20, 25–31. [Google Scholar] [CrossRef]
- Hesse, R.; Wahler, A.; Gummert, P.; Kirschmer, S.; Otto, M.; Tumani, H.; Lewerenz, J.; Schnack, C.; von Arnim, C.A.F. Decreased IL-8 Levels in CSF and Serum of AD Patients and Negative Correlation of MMSE and IL-1β. BMC Neurol. 2016, 16, 185. [Google Scholar] [CrossRef] [PubMed]
- Khemka, V.K.; Ganguly, A.; Bagchi, D.; Ghosh, A.; Bir, A.; Biswas, A.; Chattopadhyay, S.; Chakrabarti, S. Raised Serum Proinflammatory Cytokines in Alzheimer’s Disease with Depression. Aging Dis. 2014, 5, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lee, K.J.; Kim, H. Serum Tumour Necrosis Factor-α and Interleukin-6 Levels in Alzheimer’s Disease and Mild Cognitive Impairment. Psychogeriatrics 2017, 17, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Brosseron, F.; Krauthausen, M.; Kummer, M.; Heneka, M.T. Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer’s Disease: A Comparative Overview. Mol. Neurobiol. 2014, 50, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Caldito, N. Role of Tumor Necrosis Factor-Alpha in the Central Nervous System: A Focus on Autoimmune Disorders. Front. Immunol. 2023, 14, 1213448. [Google Scholar] [CrossRef]
- Fresegna, D.; Bullitta, S.; Musella, A.; Rizzo, F.R.; De Vito, F.; Guadalupi, L.; Caioli, S.; Balletta, S.; Sanna, K.; Dolcetti, E.; et al. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020, 9, 2290. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (Tnf-α) in Autoimmune Disease and Current Tnf-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Olmos, G.; Lladó, J. Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity. Mediat. Inflamm. 2014, 2014, 861231. [Google Scholar] [CrossRef] [PubMed]
- Arnett, H.A.; Mason, J.; Marino, M.; Suzuki, K.; Matsushima, G.K.; Ting, J.P.Y. TNFα Promotes Proliferation of Oligodendrocyte Progenitors and Remyelination. Nat. Neurosci. 2001, 4, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Maier, O. Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF. Oxid. Med. Cell Longev. 2015, 2015, 610813. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; O’Connor, T.; Vassar, R. The Contribution of Activated Astrocytes to Aβ Production: Implications for Alzheimer’s Disease Pathogenesis. J. Neuroinflamm. 2011, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Blasko, I.; Marx, F.; Steiner, E.; Hartmann, T.; Grubeck-Loebenstein, B. TNFalpha plus IFNgamma Induce the Production of Alzheimer Beta-Amyloid Peptides and Decrease the Secretion of APPs. FASEB J. 1999, 13, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Liaoi, Y.F.; Wang, B.J.; Cheng, H.T.; Kuo, L.H.; Wolfe, M.S. Tumor Necrosis Factor-α, Interleukin-1β, and Interferon-γ Stimulate γ-Secretase-Mediated Cleavage of Amyloid Precursor Protein through a JNK-Dependent MAPK Pathway. J. Biol. Chem. 2004, 279, 49523–49532. [Google Scholar] [CrossRef]
- Koenigsknecht-Talboo, J.; Landreth, G.E. Microglial Phagocytosis Induced by Fibrillar β-Amyloid and IgGs Are Differentially Regulated by Proinflammatory Cytokines. J. Neurosci. 2005, 25, 8240–8249. [Google Scholar] [CrossRef]
- Zahedipour, F.; Hosseini, S.; Henney, N.; Barreto, G.; Sahebkar, A. Phytochemicals as Inhibitors of Tumor Necrosis Factor Alpha and Neuroinflammatory Responses in Neurodegenerative Diseases. Neural Regen. Res. 2022, 17, 1675–1684. [Google Scholar]
- Chang, R.; Yee, K.-L.; Sumbria, R.K. Tumor Necrosis Factor α Inhibition for Alzheimer’s Disease. J. Cent. Nerv. Syst. Dis. 2017, 9, 1179573517709278. [Google Scholar] [CrossRef]
- Decourt, B.; Lahiri, D.K.; Sabbagh, M.N. Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 14, 412–425. [Google Scholar] [CrossRef]
- O’Malley, W.E.; Achinstein, B.; Shear, M.J. Action of Bacterial Polysaccharide on Tumors. II. Damage of Sarcoma 37 by Serum of Mice Treated with Serratia Marcescens Polysaccharide, and Induced Tolerance. J. Natl. Cancer Inst. 1962, 29, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; Liu, X.Z.; Sun, J.; Yin, Y.W.; Sun, Q.Q. Association between TNF α Gene Polymorphisms and the Risk of Duodenal Ulcer: A Meta-Analysis. PLoS ONE 2013, 8, e57167. [Google Scholar] [CrossRef] [PubMed]
- Black, R.A. Tumor necrosis factor-alpha converting enzyme. Int. J. Biochem. Cell Biol. 2002, 34, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kriegler, M.; Perez, C.; DeFay, K.; Albert, I.; Lu, S.D. A Novel Form of TNF/Cachectin Is a Cell Surface Cytotoxic Transmembrane Protein: Ramifications for the Complex Physiology of TNF. Cell 1988, 53, 45–53. [Google Scholar] [CrossRef]
- Horiuchi, T.; Mitoma, H.; Harashima, S.I.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-α: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef]
- Tang, P.; Hung, M.C.; Klostergaard, J. Human Pro-Tumor Necrosis Factor Is a Homotrimer. Biochemistry 1996, 35, 8216–8225. [Google Scholar] [CrossRef]
- Ardestani, S.; Li, B.; Deskins, D.L.; Wu, H.; Massion, P.P.; Young, P.P. Membrane versus Soluble Isoforms of TNF-α Exert Opposing Effects on Tumor Growth and Survival of Tumor-Associated Myeloid Cells. Cancer Res. 2013, 73, 3938–3950. [Google Scholar] [CrossRef]
- Grell, M.; Douni, E.; Wajant, H.; Löhden, M.; Clauss, M.; Maxeiner, B.; Georgopoulos, S.; Lesslauer, W.; Kollias, G.; Pfizenmaier, K.; et al. The Transmembrane Form of Tumor Necrosis Factor Is the Prime Activating Ligand of the 80 KDa Tumor Necrosis Factor Receptor. Cell 1995, 83, 793–802. [Google Scholar] [CrossRef]
- Parameswaran, N.; Partial, S. Tumor Necrosis Factor-α Signalling in Macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Su, Z.; Dhusia, K.; Wu, Y. Understanding the Functional Role of Membrane Confinements in TNF-Mediated Signaling by Multiscale Simulations. Commun. Biol. 2022, 5, 228. [Google Scholar] [CrossRef]
- Lainez, B.; Fernandez-Real, J.M.; Romero, X.; Esplugues, E.; Cañete, J.D.; Ricart, W.; Engel, P. Identification and Characterization of a Novel Spliced Variant That Encodes Human Soluble Tumor Necrosis Factor Receptor 2. Int. Immunol. 2004, 16, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.P.; Dendrou, C.A.; Attfield, K.E.; Haghikia, A.; Xifara, D.K.; Butter, F.; Poschmann, G.; Kaur, G.; Lambert, L.; Leach, O.A.; et al. TNF Receptor 1 Genetic Risk Mirrors Outcome of Anti-TNF Therapy in Multiple Sclerosis. Nature 2012, 488, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Philippe, C.; Roux-Lombard, P.; Fouqueray, B.; Perez, J.; Dayer, J.-M.; Baud, L. Membrane Expression and Shedding of Tumour Necrosis Factor Receptors during Activation of Human Blood Monocytes: Regulation by Desferrioxamine. Immunology 1993, 80, 300–305. [Google Scholar] [PubMed]
- Tartaglia, L.A.; Ayres, T.M.; Wong, G.H.W.; Goeddel, D.V. A Novel Domain within the 55 Kd TNF Receptor Signals Cell Death. Cell 1993, 74, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Hyun, H.P.; Lo, Y.C.; Lin, S.C.; Wang, L.; Jin, K.Y.; Wu, H. The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation. Annu. Rev. Immunol. 2007, 25, 561–586. [Google Scholar] [CrossRef]
- Ting, A.T.; Bertrand, M.J.M. More to Life than NF-ΚB in TNFR1 Signaling. Trends Immunol. 2016, 37, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.; Blaser, H.; Mak, T.W. Regulation of Tumour Necrosis Factor Signalling: Live or Let Die. Nat. Rev. Immunol. 2015, 15, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor Necrosis Factor Signaling. Cell Death Differ. 2003, 10, 45–65. [Google Scholar] [CrossRef]
- Xie, P. TRAF Molecules in Cell Signaling and in Human Diseases. J. Mol. Signal 2013, 8, 7. [Google Scholar] [CrossRef]
- Naudé, P.J.W.; Den Boer, J.A.; Luiten, P.G.M.; Eisel, U.L.M. Tumor Necrosis Factor Receptor Cross-Talk. FEBS J. 2011, 278, 888–898. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef] [PubMed]
- Bemelmans, M.H.A.; Van Tits, L.J.H.; Buurman, W.A. Tumor Necrosis Factor: Function, Release and Clearance. Crit. Rev. Immunol. 2017, 37, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Breder, C.D.; Tsujimoto, M.; Terano, Y.; Scott, D.W.; Saper, C.B. Distribution and Characterization of Tumor Necrosis Factor-α-like Immunoreactivity in the Murine Central Nervous System. J. Comp. Neurol. 1993, 337, 543–567. [Google Scholar] [CrossRef] [PubMed]
- Vitkovic, L.; Bockaert, J.; Jacque, C. “Inflammatory” Cytokines’ Neuromodulators in Normal Brain? J. Neurochem. 2000, 74, 457–471. [Google Scholar] [CrossRef]
- Boulanger, L.M. Immune Proteins in Brain Development and Synaptic Plasticity. Neuron 2009, 64, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Probert, L. TNF and Its Receptors in the CNS: The Essential, the Desirable and the Deleterious Effects. Neuroscience 2015, 302, 2–22. [Google Scholar] [CrossRef]
- Raffaele, S.; Lombardi, M.; Verderio, C.; Fumagalli, M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020, 9, 2145. [Google Scholar] [CrossRef]
- Stellwagen, D.; Beattie, E.C.; Seo, J.Y.; Malenka, R.C. Differential Regulation of AMPA Receptor and GABA Receptor Trafficking by Tumor Necrosis Factor-α. J. Neurosci. 2005, 25, 3219–3228. [Google Scholar] [CrossRef]
- He, P.; Liu, Q.; Wu, J.; Shen, Y. Genetic Deletion of TNF Receptor Suppresses Excitatory Synaptic Transmission via Reducing AMPA Receptor Synaptic Localization in Cortical Neurons. FASEB J. 2012, 26, 334–345. [Google Scholar] [CrossRef]
- Ogoshi, F.; Yin, H.Z.; Kuppumbatti, Y.; Song, B.; Amindari, S.; Weiss, J.H. Tumor Necrosis-Factor-Alpha (TNF-α) Induces Rapid Insertion of Ca2+-Permeable α-Amino-3-Hydroxyl-5-Methyl-4-Isoxazole- Propionate (AMPA)/Kainate (Ca-A/K) Channels in a Subset of Hippocampal Pyramidal Neurons. Exp. Neurol. 2005, 193, 384–393. [Google Scholar] [CrossRef]
- Pribiag, H.; Stellwagen, D. Tnf-α Downregulates Inhibitory Neurotransmission through Protein Phosphatase 1-Dependent Trafficking of GABAA Receptors. J. Neurosci. 2013, 33, 15879–15893. [Google Scholar] [CrossRef]
- Leonoudakis, D.; Zhao, P.; Beattie, E.C. Rapid Tumor Necrosis Factor α-Induced Exocytosis of Glutamate Receptor 2-Lacking AMPA Receptors to Extrasynaptic Plasma Membrane Potentiates Excitotoxicity. J. Neurosci. 2008, 28, 2119–2130. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Bezzi, P.; Volterra, A. TNFα Controls Glutamatergic Gliotransmission in the Hippocampal Dentate Gyrus. Neuron 2011, 69, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell. Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef]
- Cao, Y.; Song, Y.; Ning, P.; Zhang, L.; Wu, S.; Quan, J.; Li, Q. Association between Tumor Necrosis Factor Alpha and Obstructive Sleep Apnea in Adults: A Meta-Analysis Update. BMC Pulm. Med. 2020, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, N.; Ramesh, V.; Gozal, D. TNF-α and Temporal Changes in Sleep Architecture in Mice Exposed to Sleep Fragmentation. PLoS ONE 2012, 7, e45610. [Google Scholar] [CrossRef]
- Dickstein, J.B.; Moldofsky, H.; Lue, F.A.; Hay, J.B. Intracerebroventricular Injection of TNF-α Promotes Sleep and Is Recovered in Cervical Lymph. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999, 276, R1018–R1022. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Dunbrasky, D.L.; Taishi, P.; Souza, G.; Krueger, J.M. Vagotomy Attenuates Brain Cytokines and Sleep Induced by Peripherally Administered Tumor Necrosis Factor-α and Lipopolysaccharide in Mice. Sleep 2013, 36, 1227–1238. [Google Scholar] [CrossRef]
- Papazian, I.; Tsoukala, E.; Boutou, A.; Karamita, M.; Kambas, K.; Iliopoulou, L.; Fischer, R.; Kontermann, R.E.; Denis, M.C.; Kollias, G.; et al. Fundamentally Different Roles of Neuronal TNF Receptors in CNS Pathology: TNFR1 and IKKβ Promote Microglial Responses and Tissue Injury in Demyelination While TNFR2 Protects against Excitotoxicity in Mice. J. Neuroinflamm. 2021, 18, 222. [Google Scholar] [CrossRef]
- Cauwels, A.; Janssen, B.; Waeytens, A.; Cuvelier, C.; Brouckaert, P. Caspase Inhibition Causes Hyperacute Tumor Necrosis Factor-Induced Shock via Oxidative Stress and Phospholipase A2. Nat. Immunol. 2003, 4, 387–393. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Declercq, W.; Van Herreweghe, F.; Berghe, T. Vanden The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis. Sci. Signal 2010, 3, re4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Shao, J.; Lin, J.; Zhang, N.; Lu, B.J.; Lin, S.C.; Dong, M.Q.; Han, J. RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis. Science 2009, 325, 332–336. [Google Scholar] [CrossRef]
- Chen, X.; Subleski, J.J.; Kopf, H.; Howard, O.M.Z.; Männel, D.N.; Oppenheim, J.J. Cutting Edge: Expression of TNFR2 Defines a Maximally Suppressive Subset of Mouse CD4+CD25+FoxP3+ T Regulatory Cells: Applicability to Tumor-Infiltrating T Regulatory Cells. J. Immunol. 2008, 180, 6467–6471. [Google Scholar] [CrossRef] [PubMed]
- Tchélingérian, J.-L.; Monge, M.; Le Saux, F.; Zalc, B.; Jacque, C. Differential Oligodendroglial Expression of the Tumor Necrosis Factor Receptors In Vivo and In Vitro. J. Neurochem. 1995, 65, 2377–2380. [Google Scholar] [CrossRef] [PubMed]
- Rothe, M.; Sarma, V.; Dixit, V.; Goeddel, D. TRAF-2-Mediated Activation of NF-KappaB by TNF Receptor 2 and CD40. Science 1995, 269, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Hsu, K.C.; Chao, M.V. Upregulation of NF-ΚB-Dependent Gene Expression Mediated by the P75 Tumor Necrosis Factor Receptor. J. Interferon Cytokine Res. 1995, 15, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, A.E.; Sundan, A.; Espevik, T. Involvement of the Tumor Necrosis Factor Receptor P75 in Mediating Cytotoxicity and Gene Regulating Activities. Eur. J. Immunol. 1994, 24, 2842–2849. [Google Scholar] [CrossRef]
- Weiss, T.; Grell, M.; Hessabi, B.; Bourteele, S.; Müller, G.; Scheurich, P.; Wajant, H. Enhancement of TNF Receptor P60-Mediated Cytotoxicity by TNF Receptor P80: Requirement of the TNF Receptor-Associated Factor-2 Binding Site. J. Immunol. 1997, 158, 2398–2404. [Google Scholar] [CrossRef]
- Maier, O.; Fischer, R.; Agresti, C.; Pfizenmaier, K. TNF Receptor 2 Protects Oligodendrocyte Progenitor Cells against Oxidative Stress. Biochem. Biophys. Res. Commun. 2013, 440, 336–341. [Google Scholar] [CrossRef]
- Neta, R.; Sayers, T.J.; Oppenheim, J.J. Relationship of TNF to Interleukins. Immunol. Ser. 1992, 56, 499–566. [Google Scholar]
- Montgomery, S.L.; Narrow, W.C.; Mastrangelo, M.A.; Olschowka, J.A.; O’Banion, M.K.; Bowers, W.J. Chronic Neuron- and Age-Selective down-Regulation of TNF Receptor Expression in Triple-Transgenic Alzheimer Disease Mice Leads to Significant Modulation of Amyloid- and Tau-Related Pathologies. Am. J. Pathol. 2013, 182, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.; Yang, J.; Simanauskaite, J.; Choi, M.; Castellanos, D.M.; Chang, R.; Sun, J.; Jagadeesan, N.; Parfitt, K.D.; Cribbs, D.H.; et al. Biologic TNF-α Inhibitors Reduce Microgliosis, Neuronal Loss, and Tau Phosphorylation in a Transgenic Mouse Model of Tauopathy. J. Neuroinflamm. 2021, 18, 312. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Colonna, M. Microglia in Alzheimer’s Disease: A Target for Immunotherapy. J. Leukoc. Biol. 2019, 106, 219–227. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s Disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef]
- Mandrekar-Colucci, S.; Landreth, G.E. Microglia and Inflammation in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2012, 9, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Mrak, R.E. Microglia in Alzheimer’s Brain: A Neuropathological Perspective. Int. J. Alzheimers Dis. 2012, 2012, 165021. [Google Scholar] [CrossRef]
- Mazaheri, F.; Snaidero, N.; Kleinberger, G.; Madore, C.; Daria, A.; Werner, G.; Krasemann, S.; Capell, A.; Trümbach, D.; Wurst, W.; et al. TREM 2 Deficiency Impairs Chemotaxis and Microglial Responses to Neuronal Injury. EMBO Rep. 2017, 18, 1186–1198. [Google Scholar] [CrossRef]
- Jay, T.R.; Von Saucken, V.E.; Landreth, G.E. TREM2 in Neurodegenerative Diseases. Mol. Neurodegener. 2017, 12, 56. [Google Scholar] [CrossRef]
- Gratuze, M.; Leyns, C.E.G.; Holtzman, D.M. New Insights into the Role of TREM2 in Alzheimer’s Disease. Mol. Neurodegener. 2018, 13, 66. [Google Scholar] [CrossRef]
- Li, R.; Zhang, J.; Wang, Q.; Cheng, M.; Lin, B. TPM1 Mediates Inflammation Downstream of TREM2 via the PKA/CREB Signaling Pathway. J. Neuroinflamm. 2022, 19, 257. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Xu, R.; Kaelber, D.C.; Gurney, M.E. Tumor Necrosis Factor (TNF) Blocking Agents Are Associated with Lower Risk for Alzheimer’s Disease in Patients with Rheumatoid Arthritis and Psoriasis. PLoS ONE 2020, 15, e0229819. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, V.; Mata, I.F.; González, P.; Lahoz, C.H.; Martínez, C.; Peña, J.; Guisasola, L.M.; Coto, E. Association between the TNFα-308 A/G Polymorphism and the Onset-Age of Alzheimer Disease. Am. J. Med. Genet. 2002, 114, 574–577. [Google Scholar] [CrossRef]
- Wang, T. TNF-Alpha G308A Polymorphism and the Susceptibility to Alzheimer’s Disease: An Updated Meta-Analysis. Arch. Med. Res. 2015, 46, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, E.; Andreasen, N.; Tarkowski, A.; Blennow, K. Intrathecal Inflammation Precedes Development of Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1200–1205. [Google Scholar] [CrossRef]
- Culjak, M.; Perkovic, M.N.; Uzun, S.; Strac, D.S.; Erjavec, G.N.; Leko, M.B.; Simic, G.; Tudor, L.; Konjevod, M.; Kozumplik, O.; et al. The Association between TNF-Alpha, IL-1 Alpha and IL-10 with Alzheimer’s Disease. Curr. Alzheimer Res. 2020, 17, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.; Cunningham, C.; Zotova, E.; Woolford, J.; Dean, C.; Kerr, S.; Culliford, D.; Perry, V.H. Systemic Inflammation and Disease Progression in Alzheimer Disease. Neurology 2009, 73, 768–774. [Google Scholar] [CrossRef]
- Contreras, J.A.; Aslanyan, V.; Sweeney, M.D.; Sanders, L.M.J.; Sagare, A.P.; Zlokovic, B.V.; Toga, A.W.; Han, S.D.; Morris, J.C.; Fagan, A.; et al. Functional Connectivity among Brain Regions Affected in Alzheimer’s Disease Is Associated with CSF TNF-α in APOE4 Carriers. Neurobiol. Aging 2020, 86, 112–122. [Google Scholar] [CrossRef]
- Llano, D.A.; Li, J.; Waring, J.F.; Ellis, T.; Devanarayan, V.; Witte, D.G.; Lenz, R.A. Cerebrospinal Fluid Cytokine Dynamics Differ between Alzheimer Disease Patients and Elderly Controls. Alzheimer Dis. Assoc. Disord. 2012, 26, 322–328. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Y.; Deng, Y. TNF Receptors Are Associated with Tau Pathology and Conversion to Alzheimer’s Dementia in Subjects with Mild Cognitive Impairment. Neurosci. Lett. 2020, 738, 135392. [Google Scholar] [CrossRef] [PubMed]
- Di Bona, D.; Candore, G.; Franceschi, C.; Licastro, F.; Colonna-Romano, G.; Cammà, C.; Lio, D.; Caruso, C. Systematic Review by Meta-Analyses on the Possible Role of TNF-α Polymorphisms in Association with Alzheimer’s Disease. Brain Res. Rev. 2009, 61, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lu, R.; Jiang, L.; Liu, Z.; Peng, Y. Expression and Genetic Analysis of Tumor Necrosis Factor-α (TNF-α) G-308A Polymorphism in Sporadic Alzheimer’s Disease in a Southern China Population. Brain Res. 2009, 1247, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for Rheumatoid Arthritis and Risk of Alzheimer’s Disease: A Nested Case-Control Analysis. CNS Drugs 2016, 30, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Chen, H.H.; Lan, J.L.; Chen, D.Y. Improvement of Cognition, a Potential Benefit of Anti-TNF Therapy in Elderly Patients with Rheumatoid Arthritis. Jt. Bone Spine 2010, 77, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Butchart, J.; Brook, L.; Hopkins, V.; Teeling, J.; Puntener, U.; Culliford, D.; Sharples, R.; Sharif, S.; McFarlane, B.; Raybould, R.; et al. Etanercept in Alzheimer Disease: A Randomized, Placebo-Controlled, Double-Blind, Phase 2 Trial. Neurology 2015, 84, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Tobinick, E.; Gross, H.; Weinberger, A.; Cohen, H. TNF-Alpha Modulation for Treatment of Alzheimer’s Disease: A 6-Month Pilot Study. MedGenMed 2006, 8, 25. [Google Scholar]
- Tobinick, E. Perispinal Etanercept for Treatment of Alzheimers Disease. Curr. Alzheimer Res. 2007, 4, 550–552. [Google Scholar] [CrossRef]
- Tobinick, E.L.; Gross, H. Rapid Cognitive Improvement in Alzheimer’s Disease Following Perispinal Etanercept Administration. J. Neuroinflamm. 2008, 5, 2. [Google Scholar] [CrossRef]
- Griffin, W.S.T. Perispinal Etanercept: Potential as an Alzheimer Therapeutic. J. Neuroinflamm. 2008, 5, 3. [Google Scholar] [CrossRef]
- Cheng, S.; Hou, J.; Zhang, C.; Xu, C.; Wang, L.; Zou, X.; Yu, H.; Shi, Y.; Yin, Z.; Chen, G. Minocycline Reduces Neuroinflammation but Does Not Ameliorate Neuron Loss in a Mouse Model of Neurodegeneration. Sci. Rep. 2015, 5, 10535. [Google Scholar] [CrossRef] [PubMed]
- Drabek, T.; Janata, A.; Wilson, C.D.; Stezoski, J.; Janesko-Feldman, K.; Tisherman, S.A.; Foley, L.M.; Verrier, J.D.; Kochanek, P.M. Minocycline Attenuates Brain Tissue Levels of TNF-α Produced by Neurons after Prolonged Hypothermic Cardiac Arrest in Rats. Resuscitation 2014, 85, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ling, Z.; Newman, M.B.; Bhatia, A.; Carvey, P.M. TNF-α Knockout and Minocycline Treatment Attenuates Blood-Brain Barrier Leakage in MPTP-Treated Mice. Neurobiol. Dis. 2007, 26, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Seabrook, T.J.; Jiang, L.; Maier, M.; Lemere, C.A. Minocycline Affects Microglia Activation, Aβ Deposition, and Behavior in APP-Tg Mice. Glia 2006, 53, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Biscaro, B.; Lindvall, O.; Tesco, G.; Ekdahl, C.T.; Nitsch, R.M. Inhibition of Microglial Activation Protects Hippocampal Neurogenesis and Improves Cognitive Deficits in a Transgenic Mouse Model for Alzheimer’s Disease. Neurodegener. Dis. 2012, 9, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Chavant, F.; Deguil, J.; Pain, S.; Ingrand, I.; Milin, S.; Fauconneau, B.; Pérault-Pochat, M.C.; Lafay-Chebassier, C. Imipramine, in Part through Tumor Necrosis Factor α Inhibition, Prevents Cognitive Decline and β-Amyloid Accumulation in a Mouse Model of Alzheimer’s Disease. J. Pharmacol. Exp. Ther. 2010, 332, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Paris, D.; Ganey, N.J.; Laporte, V.; Patel, N.S.; Beaulieu-Abdelahad, D.; Bachmeier, C.; March, A.; Ait-Ghezala, G.; Mullan, M.J. Reduction of β-Amyloid Pathology by Celastrol in a Transgenic Mouse Model of Alzheimer’s Disease. J. Neuroinflamm. 2010, 7, 17. [Google Scholar] [CrossRef]
- Xuan, A.; Long, D.; Li, J.; Ji, W.; Zhang, M.; Hong, L.; Liu, J. Hydrogen Sulfide Attenuates Spatial Memory Impairment and Hippocampal Neuroinflammation in Beta-Amyloid Rat Model of Alzheimer’s Disease. J. Neuroinflamm. 2012, 9, 202. [Google Scholar] [CrossRef]
- Paul, B.D.; Pieper, A.A. Protective Roles of Hydrogen Sulfide in Alzheimer’s Disease and Traumatic Brain Injury. Antioxidants 2023, 12, 1095. [Google Scholar] [CrossRef]
- Liu, H.; Deng, Y.; Gao, J.; Liu, Y.; Li, W.; Shi, J.; Gong, Q. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-ΚB Pathway in Rats. Curr. Alzheimer Res. 2015, 12, 673–683. [Google Scholar] [CrossRef]
- Moreira, A.L.; Sampaio, E.P.; Zmuidzinas, A.; Frindt, P.; Smith, K.A.; Kaplan, G. Thalidomide Exerts Its Inhibitory Action on Tumor Necrosis Factor α by Enhancing Mrna Degradation. J. Exp. Med. 1993, 177, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Gabbita, S.P.; Srivastava, M.K.; Eslami, P.; Johnson, M.F.; Kobritz, N.K.; Tweedie, D.; Greig, N.H.; Zemlan, F.P.; Sharma, S.P.; Harris-White, M.E. Early Intervention with a Small Molecule Inhibitor for Tumor Necrosis Factor-α Prevents Cognitive Deficits in a Triple Transgenic Mouse Model of Alzheimer’s Disease. J. Neuroinflamm. 2012, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Belarbi, K.; Jopson, T.; Tweedie, D.; Arellano, C.; Luo, W.; Greig, N.H.; Rosi, S. TNF-α Protein Synthesis Inhibitor Restores Neuronal Function and Reverses Cognitive Deficits Induced by Chronic Neuroinflammation. J. Neuroinflamm. 2012, 9, 23. [Google Scholar] [CrossRef]
- Tweedie, D.; Ferguson, R.A.; Fishman, K.; Frankola, K.A.; Van Praag, H.; Holloway, H.W.; Luo, W.; Li, Y.; Caracciolo, L.; Russo, I.; et al. Tumor Necrosis Factor-α Synthesis Inhibitor 3,6′-Dithiothalidomide Attenuates Markers of Inflammation, Alzheimer Pathology and Behavioral Deficits in Animal Models of Neuroinflammation and Alzheimer’s Disease. J. Neuroinflamm. 2012, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; et al. An Anti-Diabetes Agent Protects the Mouse Brain from Defective Insulin Signaling Caused by Alzheimer’s Disease-Associated Aβ Oligomers. J. Clin. Investig. 2012, 122, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Saxena, N.K.; Lin, S.; Gupta, N.; Anania, F.A. Exendin-4, a Glucagon-like Protein-1 (GLP-1) Receptor Agonist, Reverses Hepatic Steatosis in Ob/Ob Mice. Hepatology 2006, 43, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. [Google Scholar] [CrossRef]
- Rajabi, H.; Ahmadi, M.; Aslani, S.; Saberianpour, S.; Rahbarghazi, R. Exendin-4 as a Versatile Therapeutic Agent for the Amelioration of Diabetic Changes. Adv. Pharm. Bull. 2022, 12, 237–247. [Google Scholar] [CrossRef]
- Kapogiannis, D.; Boxer, A.; Schwartz, J.B.; Abner, E.L.; Biragyn, A.; Masharani, U.; Frassetto, L.; Petersen, R.C.; Miller, B.L.; Goetzl, E.J. Dysfunctionally Phosphorylated Type 1 Insulin Receptor Substrate in Neural-Derived Blood Exosomes of Preclinical Alzheimer’s Disease. FASEB J. 2015, 29, 589–596. [Google Scholar] [CrossRef]
- Li, X.-H.; Li, X.-H.; Zhang, Y.-Y.; Wang, M.; Wang, D. Atorvastatin Attenuates the Production of IL-1β, IL-6, and TNF-α in the Hippocampus of an Amyloid β1-42-Induced Rat Model of Alzheimer’s Disease. Clin. Interv. Aging 2013, 8, 103–110. [Google Scholar] [CrossRef]
- Shi, J.Q.; Shen, W.; Chen, J.; Wang, B.R.; Zhong, L.L.; Zhu, Y.W.; Zhu, H.Q.; Zhang, Q.Q.; Zhang, Y.D.; Xu, J. Anti-TNF-α Reduces Amyloid Plaques and Tau Phosphorylation and Induces CD11c-Positive Dendritic-like Cell in the APP/PS1 Transgenic Mouse Brains. Brain Res. 2011, 1368, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Solito, E.; Sastre, M. Microglia Function in Alzheimer’s Disease. Front. Pharmacol. 2012, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Kübra Elçioğlu, H.; Kabasakal, L.; Tufan, F.; Elçioğlu, Ö.H.; Solakoglu, S.; Kotil, T.; Karan, M.A. Effects of Systemic Thalidomide and Intracerebroventricular Etanercept and Infliximab Administration in a Streptozotocin Induced Dementia Model in Rats. Acta Histochem. 2015, 117, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, S.Y.; Shon, J.; Kim, K.; Lee, H.J.; Kim, K.A.; Lee, B.Y.; Oh, S.H.; Kim, N.K.; Kim, O.J. Adalimumab Improves Cognitive Impairment, Exerts Neuroprotective Effects and Attenuates Neuroinflammation in an Aβ1-40-Injected Mouse Model of Alzheimer’s Disease. Cytotherapy 2019, 21, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, H.; Ni, M.; Zhang, W.; Fang, F.; Sun, J.; Lyu, P.; Ma, P. Etanercept Reduces Neuron Injury and Neuroinflammation via Inactivating C-Jun N-Terminal Kinase and Nuclear Factor-ΚB Pathways in Alzheimer’s Disease: An In Vitro and In Vivo Investigation. Neuroscience 2022, 484, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-KappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Anfinogenova, N.D.; Quinn, M.T.; Schepetkin, I.A.; Atochin, D.N. Alarmins and C-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020, 9, 2350. [Google Scholar] [CrossRef]
- Ou, W.; Ohno, Y.; Yang, J.; Chandrashekar, D.V.; Abdullah, T.; Sun, J.; Murphy, R.; Roules, C.; Jagadeesan, N.; Cribbs, D.H.; et al. Efficacy and Safety of a Brain-Penetrant Biologic TNF-α Inhibitor in Aged APP/PS1 Mice. Pharmaceutics 2022, 14, 2200. [Google Scholar] [CrossRef]
- Petrovskaya, A.; Tverskoi, A.; Medvedeva, A.; Nazarova, M. Is blood-brain barrier a probable mediator of non-invasive brain stimulation effects on Alzheimer’s disease? Commun. Biol. 2023, 6, 416. [Google Scholar] [CrossRef]
- Nafea, M.; Elharoun, M.; Abd-Alhaseeb, M.M.; Helmy, M.W. Leflunomide abrogates neuroinflammatory changes in a rat model of Alzheimer’s disease: The role of TNF-α/NF-κB/IL-1β axis inhibition. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 485–498. [Google Scholar] [CrossRef]
- Shifrin, H.; Nadler-Milbauer, M.; Shoham, S.; Weinstock, M. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses. PLoS ONE 2013, 8, e57668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, Y. The protective effects of Donepezil (DP) against cartilage matrix destruction induced by TNF-α. Biochem. Biophys. Res. Commun. 2014, 454, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.A.; Makboul, R.M.; El-Mokhtar, M.A.; Abdel-Rahman, E.A.; Ahmed, E.A.; Nicola, M.A. Evaluation of the neuroprotective effect of donepezil in type 2 diabetic rats. Fundam. Clin. Pharmacol. 2021, 35, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Wu, X.; Zhou, J.; Meng, D.; Zhu, P. Risk of Adverse Events after Anti-TNF Treatment for Inflammatory Rheumatological Disease. A Meta-Analysis. Front. Pharmacol. 2021, 12, 746396. [Google Scholar] [CrossRef]
- Weinberg, J.M. A review of the safety of the tumor necrosis inhibitors infliximab, etanercept, and adalimumab. In TNF-Alpha Inhibitors; Milestones in Drug Therapy; Weinberg, J.M., Buchholz, R., Eds.; Birkhäuser: Basel, Switzerland, 2006; pp. 1–44. [Google Scholar] [CrossRef]
- Schaible, T.F. Long term safety of infliximab. Can. J. Gastroenterol. 2000, 14 (Suppl. C), 698523. [Google Scholar] [CrossRef]
Reference | Type of Study | Intervention | Main Findings |
---|---|---|---|
Tobinick et al., 2006 [107] | prospective, single-center, open-label, pilot study | 25–50 mg of etanercept was administered once weekly by perispinal administration for 6 months | significant improvement in cognition in treated patients |
Tobinick et al., 2008 [109] | prospective, single-center, open-label, pilot study | weekly administration of etanercept, 25–50 mg, perispinally for six months in 12 patients with mild to severe AD for 6 months | Significant improvement in cognition in treated patients and rapid improvement in verbal fluency and aphasia in two dementia patients, starting minutes after administration of perispinal etanercept. |
Butchart et al., 2015 [106] | randomized, placebo-controlled, double-blind, phase 2 trial registered with EudraCT (2009-013400-31) and ClinicalTrials.gov (NCT01068353) | peripheral subcutaneous administration of etanercept 50 mg once weekly for 24 weeks; 41 participants with mild to moderate Alzheimer disease | Treatment well tolerated but no significant change in cognition, behavior, or global function. |
Chen et al., 2010 [105] | pilot study | 15 elderly patients with rheumatoid arthritis: 8 received etanercept 25 mg twice weekly and 7 received adalimumab 40 mg twice monthly | Cognitive improvement in 11 of 15 participants; no improvement in depression. |
Reference | Animal Model | Compound | Methods | Main Findings |
---|---|---|---|---|
Seabrook et al., 2006 [114] | APP-tg mice | Minocycline | ELISA and memory and cognitive testing | Increasing in Aβ deposition but cognitive performance improved. Administration post-Aβ deposition suppressed microglial activation without impacting in Aβ levels or cognitive function. |
Biscaro et al., 2012 [115] | APP/PS1 mice | Minocycline | ELISA, cognitive testing and memory and cognitive testing | minocycline treatment increased the survival of dentate granule cells |
Chavant et al., 2010 [116] | APP-tg mice | Imipramine | Western blottings, ELISA, cognitive testing and memory and cognitive testing | reduce elevated Aβ levels |
Shi et al., 2011 [131] | APP/PS1 mice | Infliximab | Immunohistochemistry | Reduction in TNF-α levels, Aβ plaques and decreased pTau protein. An increase in CD11c-positive dendritic cells. |
Xuan et al., 2012 [118] | Wistar rats | NaHS | RT-PCR, analysis, memory and cognitive testing and working memory testing. | NaHS mitigates the presence of Aβ1-40 demonstrating a neuroprotective role and a reduction in the expression of TNF-α and IL-1 β levels. |
Gabbita et al., 2012 [122] | 3xTg-AD mice | Thalidomide and its analog 3,6-DT | Immunohistochemistry, RT-PCR analysis, and memory and cognitive testing. | An enhancement in working memory performance. 3,6-DT prevents cognitive impairment. |
Belarbi et al., 2012 [123] | AD mice | 3,6-DT | Immunohistochemistry, and cognitive testing. | The treatment successfully normalized TNF-α levels, although IL-1β remained elevated. |
Tweedie et al., 2012 [124] | 3xTg-AD mice | 3,6-DT | RT-PCR, Immunohistochemistry, and cognitive testing. | Decreased levels of pTau protein, Aβ peptide, and Aβ plaque numbers and memory improvement. |
Bomfim et al., 2012 [125] | APP/PS1 mice | Exendin-4 along with Infliximab | Immunohistochemistry, memory and cognitive testing. | Association between impaired brain insulin levels and cognitive impairments. |
X.-H. Li et al., 2013 [130] | Wistar rats | Atorvastatin | Immunohistochemistry, Memory and working memory testing. | Assessment of decreasing in neuroinflammatory cytokines, including IL-1β, IL-6 and TNF-α levels. |
Kübra Elçioğlu et al., 2015 [133] | Sprague–Dawley mice | Thalidomide, Etanercept and Infliximab | Memory and cognitive testing. | Results indicated that all treatment groups exhibited preventive effects on learning and memory deficits, in particular the thalidomide group. |
Park et al., 2019 [134] | Aβ1-40 mice | Adalimumab | Immunohistochemistry, Memory and working memory testing. | Adalimumab treatment not only reduced neuronal damage but also mitigated neuroinflammation. |
Y. Li et al., 2022 [135] | 3xTg-AD | Etanercept | Immunohistochemistry, Memory and working memory testing. | Etanercept treatment significantly enhanced spatial memory, long-term memory, and working memory and lowered cytokine levels in AD mice. |
Ou et al., 2022 [138] | APP/PS1 mice | TfRMAb-TNFR | Immunohistochemistry, Memory and working memory testing. | TfRMAb-TNFR exerted protective effects, effectively reducing the levels of Aβ plaques. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plantone, D.; Pardini, M.; Righi, D.; Manco, C.; Colombo, B.M.; De Stefano, N. The Role of TNF-α in Alzheimer’s Disease: A Narrative Review. Cells 2024, 13, 54. https://doi.org/10.3390/cells13010054
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer’s Disease: A Narrative Review. Cells. 2024; 13(1):54. https://doi.org/10.3390/cells13010054
Chicago/Turabian StylePlantone, Domenico, Matteo Pardini, Delia Righi, Carlo Manco, Barbara Maria Colombo, and Nicola De Stefano. 2024. "The Role of TNF-α in Alzheimer’s Disease: A Narrative Review" Cells 13, no. 1: 54. https://doi.org/10.3390/cells13010054
APA StylePlantone, D., Pardini, M., Righi, D., Manco, C., Colombo, B. M., & De Stefano, N. (2024). The Role of TNF-α in Alzheimer’s Disease: A Narrative Review. Cells, 13(1), 54. https://doi.org/10.3390/cells13010054