Insect Insights at the Single-Cell Level: Technologies and Applications
Abstract
:1. Introduction
2. The Effectiveness and Overview of the Single-Cell RNA-Sequencing Workflow
3. Single-Cell Transcriptomics in Insects: Applications
3.1. General Overview
Insects | Tissue | Stage | Sequencing Technology | Research Direction | Reference |
---|---|---|---|---|---|
Drosophila melanogaster | Brain | Pupae | Smart-seq2 | Olfactory projection neuron | [63] |
D. melanogaster | Mid brain | Adult | Drop-Seq | Cellular diversity | [64] |
D. melanogaster | Brain | Different days old adults | 10× Genomics | Diversity of cell types during aging | [51] |
D. melanogaster | Brain (normal/starved) | Larvae | 10× | Cell diversity | [65] |
D. melanogaster | Central Nervous System, Brain, Ventral Nerve Cord | 1, 24, 48 and 96 h ALH | 10× | Developmental biology and neuroscience | [66] |
D. melanogaster | Brain | 3rd instar larvae | 10× | Neuron development | [67] |
D. melanogaster | Brain | Pupae | 10× | Neuronal differentiation | [68] |
D. melanogaster | Brain | Larvae | Drop-seq | Tyrosine kinase pathway | [69] |
D. melanogaster | Brain | 3rd instar larvae (m + f) | 10× | Neurogenesis | [70] |
D. melanogaster | Brain | Adults | 10× | Behavioral changes | [71] |
D. melanogaster | Brain | Adults | 10× | Neurobiology | [72] |
D. melanogaster | Brain | Adults | 10×, CELL-seq 2 | Circadian and dopaminergic neurons | [73] |
D. melanogaster | Brain | (0–6 h APF, 24–30 h APF, 48–54 h APF, and 1–5 day adults). | Smart-seq 2 | Olfactory | [74] |
D. melanogaster | Optic lobes | Pupae | 10× | Neuronal transcriptomes | [75] |
D. melanogaster | Optic lobes | Pupae | 10× | Neuronal diversity, brain development across species | [76] |
D. melanogaster | Optic lobe | Adults | Drop-seq | Development and function of brain | [77] |
D. melanogaster | Optic lobe | 3rd instar larvae (male + female) | 10× | Neuronal diversity | [78] |
D. melanogaster | Ventral nerve cord | Adults | 10× | neuroblast tumors | [54] |
D. melanogaster | Ventral nerve cord | Adults (male + female) | 10× | Neuro development and behavior | [59] |
D. melanogaster | Nervous system (Brain ventral nerve cord) | 1 h, 24 h, 48 h, or 96 h after larval hatching | 10× | Neural developmental | [57] |
D. melanogaster | Pupal CNS | Pupae (male + female) | 10× | Reproductive behaviors | [79] |
D. melanogaster | larval CNS | 1, 24 and 48 h after larval hatching | 10× | Development | [58] |
D. melanogaster | Stored cells (T4/T5 neurons) | Pupae | 10× | Neuronal connectivity | [80] |
D. melanogaster | lamina neurons | Pupae | 10× | Cell-type specific expression of wiring genes | [81] |
D. melanogaster | Blood | Larvae | 10× | Cellular heterogeneity | [82] |
D. melanogaster | Blood | Larvae | inDrop; 10× | Diversity of hemocytes | [83] |
D. melanogaster | Hemocyte | Larvae | 10× | Insect immunity | [55] |
D. melanogaster | Hemocyte | Larvae | 10× | Immunity (evolution) | [56] |
D. melanogaster | Ovary | Adults | 10× | Cell types and subtypes | [84] |
D. melanogaster | Ovary | Adults | 10× | Stem cells | [85] |
D. melanogaster | Ovary | Virgin female adults | 10× | Germ stem cell research | [45] |
D. melanogaster | Ovary | Adults | 10× | Tumorigenesis | [53] |
D. melanogaster | Ovary | Adults | 10× | Cell atlas of the adult Drosophila ovary | [86] |
D. melanogaster | Ovary | Adults | 10× | Oogenesis | [87] |
D. melanogaster | Ovary | Larvae | 10x | Ovary morphogenesis | [49] |
D. melanogaster | Gut | Adults | 10× | Enteroendocrine cells | [88] |
D. melanogaster | Midgut | 7-day old adults (female) | inDrop and 10× | Gene function | [89] |
D. melanogaster | Midgut | Adults (7, 30 and 60 days old) | 10× | Age related tissue homeostasis, intestinal stem cells | [52] |
D. melanogaster | eye disc | Larvae | Drop-seq | Apoptosis due to mutation | [90] |
D. melanogaster | eye | Adults | 10× | Visual system | [91] |
D. melanogaster | Eye-antennal discs | 3rd instar larvae | 10× | Neuronal differentiation | [92] |
D. melanogaster | Antenna | Mid pupal stage | Smart-seq 2 | Olfactory system | [93] |
D. melanogaster | 3rd antennal segment | Adults | Smart-seq 2 | Development of olfactory system | [94] |
D. melanogaster | Testis | Males | Smart-seq 2 | Spermatogenesis | [44] |
D. melanogaster | Testis | 2–3 days old males | 10× | Male fertility + spermatid elongation | [95] |
D. melanogaster | Testis | One day old males | 10× | Wolbachia affected germ cells | [50] |
D. melanogaster | Testis | Young and old males | 10× | Mutational signatures of the Drosophila ageing germline | [96] |
D. melanogaster | Testis | Males | 10× | Germline | [97] |
D. melanogaster | Testis | Adults | 10× | Spermatogenesis | [98] |
D. melanogaster | multiple | Adults (male + female) | 10× and Smart-seq2 | Cell Atlas | [99] |
D. melanogaster | Lymph gland | Larvae | Drop seq | Hemocyte development and cellular immunity | [100] |
D. melanogaster | Foreleg | Pupae (pupal development) | 10× | Sensory organs | [101] |
D. melanogaster | Leg disc | Larvae | 10× | Leg development | [102] |
D. melanogaster | Embryo | Embryos | Drop-seq | Virtual embryo | [47] |
D. melanogaster | Embryo | Embryos | Drop-seq | Embryonic development | [48] |
D. melanogaster | Abdominal cuticle (adipose tissue, oenocytes, and abdominal muscles) | Adults | 10× | Homeostasis | [103] |
D. melanogaster | Wing disc | Larvae | Drop-seq | Developmental processes | [104] |
D. melanogaster | Wing disc | 3rd instar Larvae | Drop-seq | Muscle diversification | [105] |
D. melanogaster | Wing disc | Pupae | 10× | Cell–cell interactions between epithelial and myogenic cells. | [106] |
Bombyx mori (Silkworm) | Silk gland | Larvae | 10× | Silk gland cells and their gene expression dynamics, | [107] |
Bombyx mori (Silkworm) | Hemocytes | Larvae | 10× | Cellular characteristics upon virus infection | [108] |
Aedes aegypti (Mosquito) | Midgut | Adults (female) | 10× | Heterogeneity of midgut cells, Cellular homeostasis, nutritional absorption | [109] |
Anopheles gambiae (Mosquito) | Hemocytes | Adults (female) | 10× | Mosquito immunity to malaria infection | [110] |
Harpegnathos saltator (Ant) | Brain | Adults (worker and gamergates) | 10× | Caste-specific cellular plasticity | [60] |
Monomorium pharaonis (Ant) | Brain | Queens, gynes (virgin queens), workers and males | Drop-seq | Caste/sex-specific changes in cell types (behavior) | [61] |
Apis mellifera (Honey bee) | Brain | Adults (soldiers and foragers) | 10× | Relationship between genotypic variation and phenotypic variation in collective behavior. | [62] |
Dalotia coriaria (Rove beetle) | Tergal gland | Males | 10× | Evolution | [111] |
3.2. Application in the Insect Nervous System
3.2.1. The Whole Brain
3.2.2. Olfactory and Visual System
3.3. Application in the Insect Digestive System
3.4. Application in the Insect Reproductive System
3.5. Application in the Insect Immune System
3.6. Application in the Insect Exocrine System
4. Challenges and Future Directions (Outlook)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kchouk, M.; Gibrat, J.-F.; Elloumi, M. Generations of sequencing technologies: From first to next generation. Biol. Med. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. MRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Methods, N. Methods of the year 2013. 2014. Available online: https://www.nature.com/articles/nmeth.2801 (accessed on 8 December 2023).
- Wen, L.; Tang, F. Boosting the power of single-cell analysis. Nat. Biotechnol. 2018, 36, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jin, Q.; Gao, C.; Chen, Y.; Sun, Z.; Guo, G.; Peng, J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022, 11, 3290. [Google Scholar] [CrossRef] [PubMed]
- Gawad, C.; Koh, W.; Quake, S.R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 2016, 17, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Kelley, S.O. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 2020, 4, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Schwartzman, O.; Tanay, A. Single-cell epigenomics: Techniques and emerging applications. Nat. Rev. Genet. 2015, 16, 716–726. [Google Scholar] [CrossRef]
- Shapiro, E.; Biezuner, T.; Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 2013, 14, 618–630. [Google Scholar] [CrossRef]
- Stuart, T.; Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 2019, 20, 257–272. [Google Scholar] [CrossRef]
- Tanay, A.; Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 2017, 541, 331–338. [Google Scholar] [CrossRef]
- Huang, H.; Gao, C.; Wang, S.; Wu, F.; Wei, J.; Peng, J. Bulk RNA-seq and scRNA-seq analysis reveal an activation of immune response and compromise of secretory function in major salivary glands of obese mice. Comput. Struct. Biotechnol. J. 2023, 21, 105–119. [Google Scholar] [CrossRef]
- Tang, X.; Huang, Y.; Lei, J.; Luo, H.; Zhu, X. The single-cell sequencing: New developments and medical applications. Cell Biosci. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grün, D.; Lyubimova, A.; Kester, L.; Wiebrands, K.; Basak, O.; Sasaki, N.; Clevers, H.; Van Oudenaarden, A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015, 525, 251–255. [Google Scholar] [CrossRef]
- Segerstolpe, Å.; Palasantza, A.; Eliasson, P.; Andersson, E.-M.; Andréasson, A.-C.; Sun, X.; Picelli, S.; Sabirsh, A.; Clausen, M.; Bjursell, M.K. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016, 24, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Treutlein, B.; Brownfield, D.G.; Wu, A.R.; Neff, N.F.; Mantalas, G.L.; Espinoza, F.H.; Desai, T.J.; Krasnow, M.A.; Quake, S.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 2014, 509, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Jaitin, D.A.; Weiner, A.; Yofe, I.; Lara-Astiaso, D.; Keren-Shaul, H.; David, E.; Salame, T.M.; Tanay, A.; van Oudenaarden, A.; Amit, I. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 2016, 167, 1883–1896.e1815. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Huang, K.; Cai, C.; Cai, L.; Jiang, C.-y.; Feng, Y.; Liu, Z.; Zeng, Q.; Cheng, L.; Sun, Y.E.; et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500, 593–597. [Google Scholar] [CrossRef]
- Deng, Q.; Ramsköld, D.; Reinius, B.; Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014, 343, 193–196. [Google Scholar] [CrossRef]
- Reinius, B.; Mold, J.E.; Ramsköld, D.; Deng, Q.; Johnsson, P.; Michaëlsson, J.; Frisén, J.; Sandberg, R. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat. Genet. 2016, 48, 1430–1435. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Yan, L.; Yong, J.; Liu, X.; Hu, Y.; Fan, X.; Wu, X.; Guo, H.; Wang, X.; et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 2017, 20, 858–873.e854. [Google Scholar] [CrossRef]
- Petropoulos, S.; Edsgärd, D.; Reinius, B.; Deng, Q.; Panula, S.P.; Codeluppi, S.; Plaza Reyes, A.; Linnarsson, S.; Sandberg, R.; Lanner, F. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016, 165, 1012–1026. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.H.; Camara, P.G.; Kandror, E.K.; Roberts, T.J.; Schieren, I.; Maniatis, T.; Rabadan, R. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 2017, 35, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Treutlein, B.; Lee, Q.Y.; Camp, J.G.; Mall, M.; Koh, W.; Shariati, S.A.; Sim, S.; Neff, N.F.; Skotheim, J.M.; Wernig, M.; et al. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 2016, 534, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Packer, J.; Trapnell, C. Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation. Trends Genet. 2018, 34, 653–665. [Google Scholar] [CrossRef]
- Chen, G.; Ning, B.; Shi, T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front. Genet. 2019, 10, 317. [Google Scholar] [CrossRef]
- Hashimshony, T.; Wagner, F.; Sher, N.; Yanai, I. CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012, 2, 666–673. [Google Scholar] [CrossRef]
- Picelli, S.; Björklund, Å.K.; Faridani, O.R.; Sagasser, S.; Winberg, G.; Sandberg, R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 2013, 10, 1096–1098. [Google Scholar] [CrossRef]
- Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Elefant, N.; Paul, F.; Zaretsky, I.; Mildner, A.; Cohen, N.; Jung, S.; Tanay, A.; et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014, 343, 776–779. [Google Scholar] [CrossRef]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef]
- Zheng, G.X.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.; et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Packer, J.S.; Ramani, V.; Cusanovich, D.A.; Huynh, C.; Daza, R.; Qiu, X.; Lee, C.; Furlan, S.N.; Steemers, F.J.; et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017, 357, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Sheng, K.; Cao, W.; Niu, Y.; Deng, Q.; Zong, C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat. Methods 2017, 14, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Aicher, T.P.; Carroll, S.; Raddi, G.; Gierahn, T.; Wadsworth, M.H., 2nd; Hughes, T.K.; Love, C.; Shalek, A.K. Seq-Well: A Sample-Efficient, Portable Picowell Platform for Massively Parallel Single-Cell RNA Sequencing. Methods Mol. Biol. 2019, 1979, 111–132. [Google Scholar]
- Li, H. Single-cell RNA sequencing in Drosophila: Technologies and applications. Wiley interdisciplinary reviews. Dev. Biol. 2021, 10, e396. [Google Scholar]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef]
- See, P.; Lum, J.; Chen, J.; Ginhoux, F. A Single-Cell Sequencing Guide for Immunologists. Front. Immunol. 2018, 9, 2425. [Google Scholar] [CrossRef]
- Mereu, E.; Lafzi, A.; Moutinho, C.; Ziegenhain, C.; McCarthy, D.J.; Alvarez-Varela, A.; Batlle, E.; Sagar; Grun, D.; Lau, J.K.; et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 2020, 38, 747–755. [Google Scholar] [CrossRef]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e1821. [Google Scholar] [CrossRef]
- Lun, A.T.; McCarthy, D.J.; Marioni, J.C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 2016, 5, 2122. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fu, Y.; Li, Z.; Huang, Q.; Tang, J.; Sun, C.; Zhou, P.; He, L.; Sun, F.; Cheng, X.; et al. Single-cell RNA sequencing reveals cell landscape following antimony exposure during spermatogenesis in Drosophila testes. Cell Death Discov. 2023, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Nystul, T.G.; Zhong, G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep. 2023, 24, e56475. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, N.; Wahle, P.; Alles, J.; Boltengagen, A.; Ayoub, S.; Kipar, C.; Kocks, C.; Rajewsky, N.; Zinzen, R.P. The Drosophila embryo at single-cell transcriptome resolution. Science 2017, 358, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Seroka, A.; Lai, S.L.; Doe, C.Q. Transcriptional profiling from whole embryos to single neuroblast lineages in Drosophila. Dev. Biol. 2022, 489, 21–33. [Google Scholar] [CrossRef]
- Slaidina, M.; Banisch, T.U.; Gupta, S.; Lehmann, R. A single-cell atlas of the developing Drosophila ovary identifies follicle stem cell progenitors. Genes Dev. 2020, 34, 239–249. [Google Scholar] [CrossRef]
- Dou, W.; Sun, B.; Miao, Y.; Huang, D.; Xiao, J. Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis. Proc. R. Soc. B 2023, 290, 20221963. [Google Scholar] [CrossRef]
- Davie, K.; Janssens, J.; Koldere, D.; De Waegeneer, M.; Pech, U.; Kreft, L.; Aibar, S.; Makhzami, S.; Christiaens, V.; Bravo Gonzalez-Blas, C.; et al. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018, 174, 982–998.e920. [Google Scholar] [CrossRef]
- Tauc, H.M.; Rodriguez-Fernandez, I.A.; Hackney, J.A.; Pawlak, M.; Ronnen Oron, T.; Korzelius, J.; Moussa, H.F.; Chaudhuri, S.; Modrusan, Z.; Edgar, B.A.; et al. Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. eLife 2021, 10, e62250. [Google Scholar] [CrossRef] [PubMed]
- Jevitt, A.; Huang, Y.C.; Zhang, S.M.; Chatterjee, D.; Wang, X.F.; Xie, G.Q.; Deng, W.M. Modeling Notch-Induced Tumor Cell Survival in the Drosophila Ovary Identifies Cellular and Transcriptional Response to Nuclear NICD Accumulation. Cells 2021, 10, 2222. [Google Scholar] [CrossRef] [PubMed]
- Genovese, S.; Clement, R.; Gaultier, C.; Besse, F.; Narbonne-Reveau, K.; Daian, F.; Foppolo, S.; Luis, N.M.; Maurange, C. Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors. eLife 2019, 8, e50375. [Google Scholar] [CrossRef] [PubMed]
- Cattenoz, P.B.; Sakr, R.; Pavlidaki, A.; Delaporte, C.; Riba, A.; Molina, N.; Hariharan, N.; Mukherjee, T.; Giangrande, A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J. 2020, 39, e104486. [Google Scholar] [CrossRef]
- Leitao, A.B.; Arunkumar, R.; Day, J.P.; Geldman, E.M.; Morin-Poulard, I.; Crozatier, M.; Jiggins, F.M. Constitutive activation of cellular immunity underlies the evolution of resistance to infection in Drosophila. eLife 2020, 9, e59095. [Google Scholar] [CrossRef]
- Corrales, M.; Cocanougher, B.T.; Kohn, A.B.; Wittenbach, J.D.; Long, X.S.; Lemire, A.; Cardona, A.; Singer, R.H.; Moroz, L.L.; Zlatic, M. A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages. Neural Dev. 2022, 17, 8. [Google Scholar] [CrossRef]
- Dillon, N.; Cocanougher, B.; Sood, C.; Yuan, X.; Kohn, A.B.; Moroz, L.L.; Siegrist, S.E.; Zlatic, M.; Doe, C.Q. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev. 2022, 17, 7. [Google Scholar] [CrossRef]
- Allen, A.M.; Neville, M.C.; Birtles, S.; Croset, V.; Treiber, C.D.; Waddell, S.; Goodwin, S.F. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020, 9, e54074. [Google Scholar] [CrossRef]
- Sheng, L.; Shields, E.J.; Gospocic, J.; Glastad, K.M.; Ratchasanmuang, P.; Berger, S.L.; Raj, A.; Little, S.; Bonasio, R. Social reprogramming in ants induces longevity-associated glia remodeling. Sci. Adv. 2020, 6, eaba9869. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Zhang, P.; Liu, Y.; Guo, Q.; Zhu, Y.; Wen, T.; Dai, X.; Zhang, X.; Nagel, M.; et al. A single-cell transcriptomic atlas tracking the neural basis of division of labour in an ant superorganism. Nat. Ecol. Evol. 2022, 6, 1191–1204. [Google Scholar] [CrossRef]
- Traniello, I.M.; Bukhari, S.A.; Dibaeinia, P.; Serrano, G.; Avalos, A.; Ahmed, A.C.; Sankey, A.L.; Hernaez, M.; Sinha, S.; Zhao, S.D.; et al. Single-cell dissection of aggression in honeybee colonies. Nat. Ecol. Evol. 2023, 7, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Horns, F.; Wu, B.; Xie, Q.; Li, J.; Li, T.; Luginbuhl, D.J.; Quake, S.R.; Luo, L. Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. Cell 2017, 171, 1206–1220.e1222. [Google Scholar] [CrossRef]
- Croset, V.; Treiber, C.D.; Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 2018, 7, e34550. [Google Scholar] [CrossRef] [PubMed]
- Brunet Avalos, C.; Maier, G.L.; Bruggmann, R.; Sprecher, S.G. Single cell transcriptome atlas of the Drosophila larval brain. eLife 2019, 8, e50354. [Google Scholar] [CrossRef] [PubMed]
- Cocanougher, B.T.; Wittenbach, J.D.; Long, X.S.; Kohn, A.B.; Norekian, T.P.; Yan, J.; Colonell, J.; Masson, J.-B.; Truman, J.W.; Cardona, A. Comparative single-cell transcriptomics of complete insect nervous systems. BioRxiv 2019, 785931. [Google Scholar] [CrossRef]
- Ravenscroft, T.A.; Janssens, J.; Lee, P.T.; Tepe, B.; Marcogliese, P.C.; Makhzami, S.; Holmes, T.C.; Aerts, S.; Bellen, H.J. Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 7999–8024. [Google Scholar] [CrossRef] [PubMed]
- Hormann, N.; Schilling, T.; Ali, A.H.; Serbe, E.; Mayer, C.; Borst, A.; Pujol-Marti, J. A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in Drosophila. Development 2020, 147, dev186296. [Google Scholar] [CrossRef] [PubMed]
- Ariss, M.M.; Terry, A.R.; Islam, A.; Hay, N.; Frolov, M.V. Amalgam regulates the receptor tyrosine kinase pathway through Sprouty in glial cell development in the Drosophila larval brain. J. Cell Sci. 2020, 133, jcs250837. [Google Scholar] [CrossRef]
- Michki, N.S.; Li, Y.; Sanjasaz, K.; Zhao, Y.; Shen, F.Y.; Walker, L.A.; Cao, W.; Lee, C.Y.; Cai, D. The molecular landscape of neural differentiation in the developing Drosophila brain revealed by targeted scRNA-seq and multi-informatic analysis. Cell Rep. 2021, 35, 109039. [Google Scholar] [CrossRef]
- Mokashi, S.S.; Shankar, V.; MacPherson, R.A.; Hannah, R.C.; Mackay, T.F.C.; Anholt, R.R.H. Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain. Front. Psychiatry 2021, 12, 699033. [Google Scholar] [CrossRef]
- Bonanno, S.L.; Krantz, D.E. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl. Psychiatry 2023, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Herndon, N.; Le, J.Q.; Abruzzi, K.C.; Zinn, K.; Rosbash, M. Neural connectivity molecules best identify the heterogeneous clock and dopaminergic cell types in the Drosophila adult brain. Sci. Adv. 2023, 9, eade8500. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Brbic, M.; Horns, F.; Kolluru, S.S.; Jones, R.C.; Li, J.; Reddy, A.R.; Xie, A.; Kohani, S.; Li, Z.; et al. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife 2021, 10, e63450. [Google Scholar] [CrossRef] [PubMed]
- Kurmangaliyev, Y.Z.; Yoo, J.; Valdes-Aleman, J.; Sanfilippo, P.; Zipursky, S.L. Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron 2020, 108, 1045–1057.e1046. [Google Scholar] [CrossRef] [PubMed]
- Ozel, M.N.; Simon, F.; Jafari, S.; Holguera, I.; Chen, Y.C.; Benhra, N.; El-Danaf, R.N.; Kapuralin, K.; Malin, J.A.; Konstantinides, N.; et al. Neuronal diversity and convergence in a visual system developmental atlas. Nature 2021, 589, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, N.; Kapuralin, K.; Fadil, C.; Barboza, L.; Satija, R.; Desplan, C. Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell 2018, 174, 622–635.e613. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, N.; Holguera, I.; Rossi, A.M.; Escobar, A.; Dudragne, L.; Chen, Y.C.; Tran, T.N.; Martinez Jaimes, A.M.; Ozel, M.N.; Simon, F.; et al. A complete temporal transcription factor series in the fly visual system. Nature 2022, 604, 316–322. [Google Scholar] [CrossRef]
- Palmateer, C.M.; Artikis, C.; Brovero, S.G.; Friedman, B.; Gresham, A.; Arbeitman, M.N. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023, 12, e78511. [Google Scholar] [CrossRef]
- Kurmangaliyev, Y.Z.; Yoo, J.; LoCascio, S.A.; Zipursky, S.L. Modular transcriptional programs separately define axon and dendrite connectivity. eLife 2019, 8, e50822. [Google Scholar] [CrossRef]
- Jain, S.; Lin, Y.; Kurmangaliyev, Y.Z.; Valdes-Aleman, J.; LoCascio, S.A.; Mirshahidi, P.; Parrington, B.; Zipursky, S.L. A global timing mechanism regulates cell-type-specific wiring programmes. Nature 2022, 603, 112–118. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, X.; Zhang, P.; van de Leemput, J.; Han, Z. Single-cell RNA sequencing identifies novel cell types in Drosophila blood. J. Genet. Genom. 2020, 47, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Tattikota, S.G.; Cho, B.; Liu, Y.; Hu, Y.; Barrera, V.; Steinbaugh, M.J.; Yoon, S.H.; Comjean, A.; Li, F.; Dervis, F.; et al. A single-cell survey of Drosophila blood. eLife 2020, 9, e54818. [Google Scholar] [CrossRef] [PubMed]
- Slaidina, M.; Gupta, S.; Banisch, T.U.; Lehmann, R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res. 2021, 31, 1938–1951. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Pang, L.; Liu, Z.; Sheng, Y.; Li, X.; Thibault, X.; Reilein, A.; Kalderon, D.; Huang, J. Single-cell expression profile of Drosophila ovarian follicle stem cells illuminates spatial differentiation in the germarium. BMC Biol. 2023, 21, 143. [Google Scholar] [CrossRef]
- Rust, K.; Byrnes, L.E.; Yu, K.S.; Park, J.S.; Sneddon, J.B.; Tward, A.D.; Nystul, T.G. A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat. Commun. 2020, 11, 5628. [Google Scholar] [CrossRef] [PubMed]
- Jevitt, A.; Chatterjee, D.; Xie, G.; Wang, X.F.; Otwell, T.; Huang, Y.C.; Deng, W.M. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol. 2020, 18, e3000538. [Google Scholar] [CrossRef]
- Guo, X.; Yin, C.; Yang, F.; Zhang, Y.; Huang, H.; Wang, J.; Deng, B.; Cai, T.; Rao, Y.; Xi, R. The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells. Cell Rep. 2019, 29, 4172–4185.e4175. [Google Scholar] [CrossRef]
- Hung, R.J.; Hu, Y.; Kirchner, R.; Liu, Y.; Xu, C.; Comjean, A.; Tattikota, S.G.; Li, F.; Song, W.; Ho Sui, S.; et al. A cell atlas of the adult Drosophila midgut. Proc. Natl. Acad. Sci. USA 2020, 117, 1514–1523. [Google Scholar] [CrossRef]
- Ariss, M.M.; Islam, A.; Critcher, M.; Zappia, M.P.; Frolov, M.V. Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. Nat. Commun. 2018, 9, 5024. [Google Scholar] [CrossRef]
- Yeung, K.; Bollepogu Raja, K.K.; Shim, Y.K.; Li, Y.; Chen, R.; Mardon, G. Single cell RNA sequencing of the adult Drosophila eye reveals distinct clusters and novel marker genes for all major cell types. Commun. Biol. 2022, 5, 1370. [Google Scholar] [CrossRef]
- Bravo Gonzalez-Blas, C.; Quan, X.J.; Duran-Romana, R.; Taskiran, I.I.; Koldere, D.; Davie, K.; Christiaens, V.; Makhzami, S.; Hulselmans, G.; de Waegeneer, M.; et al. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol. Syst. Biol. 2020, 16, e9438. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; Horns, F.; Li, J.; Xie, Q.; Xu, C.; Wu, B.; Kebschull, J.M.; McLaughlin, C.N.; Kolluru, S.S.; et al. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr. Biol. 2020, 30, 1189–1198.e1185. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, C.N.; Brbic, M.; Xie, Q.; Li, T.; Horns, F.; Kolluru, S.S.; Kebschull, J.M.; Vacek, D.; Xie, A.; Li, J.; et al. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife 2021, 10, e63856. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, Z.; Fu, Y.; Sun, F.; Chen, X.; Huang, Q.; He, L.; Yu, H.; Ji, L.; Cheng, X.; et al. Single-cell RNA-sequencing reveals the transcriptional landscape of ND-42 mediated spermatid elongation via mitochondrial derivative maintenance in Drosophila testes. Redox Biol. 2023, 62, 102671. [Google Scholar] [CrossRef] [PubMed]
- Witt, E.; Langer, C.B.; Svetec, N.; Zhao, L. Transcriptional and mutational signatures of the Drosophila ageing germline. Nat. Ecol. Evol. 2023, 7, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Raz, A.A.; Vida, G.S.; Stern, S.R.; Mahadevaraju, S.; Fingerhut, J.M.; Viveiros, J.M.; Pal, S.; Grey, J.R.; Grace, M.R.; Berry, C.W.; et al. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023, 12, e82201. [Google Scholar] [CrossRef] [PubMed]
- Witt, E.; Benjamin, S.; Svetec, N.; Zhao, L. Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. eLife 2019, 8, e47138. [Google Scholar] [CrossRef]
- Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.A.; Brbic, M.; Spanier, K.; et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022, 375, eabk2432. [Google Scholar] [CrossRef]
- Cho, B.; Yoon, S.H.; Lee, D.; Koranteng, F.; Tattikota, S.G.; Cha, N.; Shin, M.; Do, H.; Hu, Y.; Oh, S.Y.; et al. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 2020, 11, 4483. [Google Scholar] [CrossRef]
- Hopkins, B.R.; Barmina, O.; Kopp, A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol. 2023, 21, e3002148. [Google Scholar] [CrossRef]
- Tse, J.; Li, T.H.; Zhang, J.; Lee, A.C.K.; Lee, I.; Qu, Z.; Lin, X.; Hui, J.; Chan, T.F. Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development. Int. J. Mol. Sci. 2022, 23, 6796. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.C.; Tattikota, S.G.; Liu, Y.; Comjean, A.; Hu, Y.; Barrera, V.; Ho Sui, S.J.; Perrimon, N. Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. eLife 2020, 9, e56969. [Google Scholar] [CrossRef] [PubMed]
- Bageritz, J.; Willnow, P.; Valentini, E.; Leible, S.; Boutros, M.; Teleman, A.A. Gene expression atlas of a developing tissue by single cell expression correlation analysis. Nat. Methods 2019, 16, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Zappia, M.P.; de Castro, L.; Ariss, M.M.; Jefferson, H.; Islam, A.B.; Frolov, M.V. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep. 2020, 21, e49555. [Google Scholar] [CrossRef] [PubMed]
- Everetts, N.J.; Worley, M.I.; Yasutomi, R.; Yosef, N.; Hariharan, I.K. Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. eLife 2021, 10, e61276. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zeng, W.; Ba, Y.; Luo, Q.; Ou, Y.; Liu, R.; Ma, J.; Tang, Y.; Hu, J.; Wang, H.; et al. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat. Commun. 2022, 13, 3316. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Swevers, L.; Sun, J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front. Immunol. 2022, 13, 852702. [Google Scholar] [CrossRef]
- Cui, Y.; Franz, A.W.E. Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 2020, 127, 103496. [Google Scholar] [CrossRef]
- Raddi, G.; Barletta, A.B.F.; Efremova, M.; Ramirez, J.L.; Cantera, R.; Teichmann, S.A.; Barillas-Mury, C.; Billker, O. Mosquito cellular immunity at single-cell resolution. Science 2020, 369, 1128–1132. [Google Scholar] [CrossRef]
- Bruckner, A.; Badroos, J.M.; Learsch, R.W.; Yousefelahiyeh, M.; Kitchen, S.A.; Parker, J. Evolutionary assembly of cooperating cell types in an animal chemical defense system. Cell 2021, 184, 6138–6156.e6128. [Google Scholar] [CrossRef]
- Traniello, I.M.; Bukhari, S.A.; Kevill, J.; Ahmed, A.C.; Hamilton, A.R.; Naeger, N.L.; Schroeder, D.C.; Robinson, G.E. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci. Rep. 2020, 10, 3101. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Zhang, N.; He, J.; Shen, X.; Zhu, X.; Xiao, J.; Qian, Z.; Sun, C.; Shao, Y. Multiomics analysis reveals the molecular basis for increased body weight in silkworms (Bombyx mori) exposed to environmental concentrations of polystyrene micro- and nanoplastics. J. Adv. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhou, T.; Shen, X.; Zhang, N.; Sun, C.; Lu, S.; Shao, Y. Primer selection impacts the evaluation of microecological patterns in environmental microbiomes. iMeta 2023, 2, e135. [Google Scholar] [CrossRef]
- Simon, F.; Konstantinides, N. Single-cell transcriptomics in the Drosophila visual system: Advances and perspectives on cell identity regulation, connectivity, and neuronal diversity evolution. Develop Biol. 2021, 479, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kim, S.M.; Kwon, J.Y. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells. Mol. Cells 2016, 39, 358–366. [Google Scholar] [PubMed]
- Nászai, M.; Carroll, L.R.; Cordero, J.B. Intestinal stem cell proliferation and epithelial homeostasis in the adult Drosophila midgut. Insect Biochem. Mol. Biol. 2015, 67, 9–14. [Google Scholar] [CrossRef]
- Caccia, S.; Casartelli, M.; Tettamanti, G. The amazing complexity of insect midgut cells: Types, peculiarities, and functions. Cell Tissue Res. 2019, 377, 505–525. [Google Scholar] [CrossRef]
- Shao, Y.; Mason, C.J.; Felton, G.W. Toward an Integrated Understanding of the Lepidoptera Microbiome. Annu. Rev. Entomol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef]
- Chen, B.; Yu, T.; Xie, S.; Du, K.; Liang, X.; Lan, Y.; Sun, C.; Lu, X.; Shao, Y. Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci. Data 2018, 5, 180285. [Google Scholar] [CrossRef]
- Chen, B.; Teh, B.S.; Sun, C.; Hu, S.; Lu, X.; Boland, W.; Shao, Y. Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci. Rep. 2016, 6, 29505. [Google Scholar] [CrossRef] [PubMed]
- Merkling, S.H.; Lambrechts, L. Taking insect immunity to the single-cell level. Trends Immunol. 2020, 41, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Severo, M.S.; Landry, J.J.; Lindquist, R.L.; Goosmann, C.; Brinkmann, V.; Collier, P.; Hauser, A.E.; Benes, V.; Henriksson, J.; Teichmann, S.A. Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proc. Natl. Acad. Sci. USA 2018, 115, E7568–E7577. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Xia, J.; Fei, S.; Peng, R.; Wang, X.; Zhou, Y.; Wang, P.; Swevers, L.; Sun, J. Identification of Silkworm Hemocyte Subsets and Analysis of Their Response to Baculovirus Infection Based on Single-Cell RNA Sequencing. Front. Immunol. 2021, 12, 645359. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Daugharthy, E.R.; Scheiman, J.; Kalhor, R.; Yang, J.L.; Ferrante, T.C.; Terry, R.; Jeanty, S.S.; Li, C.; Amamoto, R.; et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014, 343, 1360–1363. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Lubeck, E.; Zhou, W.; Cai, L. In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus. Neuron 2016, 92, 342–357. [Google Scholar] [CrossRef]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361, eaat5691. [Google Scholar] [CrossRef]
- Buenrostro, J.D.; Wu, B.; Litzenburger, U.M.; Ruff, D.; Gonzales, M.L.; Snyder, M.P.; Chang, H.Y.; Greenleaf, W.J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015, 523, 486–490. [Google Scholar] [CrossRef]
- Cusanovich, D.A.; Daza, R.; Adey, A.; Pliner, H.A.; Christiansen, L.; Gunderson, K.L.; Steemers, F.J.; Trapnell, C.; Shendure, J. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 2015, 348, 910–914. [Google Scholar] [CrossRef]
- Peterson, V.M.; Zhang, K.X.; Kumar, N.; Wong, J.; Li, L.; Wilson, D.C.; Moore, R.; McClanahan, T.K.; Sadekova, S.; Klappenbach, J.A. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotech. 2017, 35, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Droujinine, I.A.; Meyer, A.S.; Wang, D.; Udeshi, N.D.; Hu, Y.; Rocco, D.; McMahon, J.A.; Yang, R.; Guo, J.; Mu, L.; et al. Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat. Commun. 2021, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Shao, Y.; Iqbal, J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2024, 13, 91. https://doi.org/10.3390/cells13010091
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells. 2024; 13(1):91. https://doi.org/10.3390/cells13010091
Chicago/Turabian StyleSun, Chao, Yongqi Shao, and Junaid Iqbal. 2024. "Insect Insights at the Single-Cell Level: Technologies and Applications" Cells 13, no. 1: 91. https://doi.org/10.3390/cells13010091
APA StyleSun, C., Shao, Y., & Iqbal, J. (2024). Insect Insights at the Single-Cell Level: Technologies and Applications. Cells, 13(1), 91. https://doi.org/10.3390/cells13010091