Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila
Abstract
1. Introduction
2. Materials and Methods
2.1. Drosophila Strains, Culture, Drug Treatments, and Lifespan Assay
2.2. FLP-Out Activation of E75B-RNAi
2.3. FLP-Out without E75B-RNAi Target Transgene
2.4. Midgut Diameter Assay
2.5. Egg Laying Assay
2.6. Weight Assay
2.7. Quantitative Real-Time PCR Assay
3. Results
3.1. Confounding Effects of 37 °C Temperature Pulse in Young Adult Flies
3.2. FLP-Out Transgene Activation in Third Instar Larvae
3.3. FLP Recombination Does Not Significantly Alter Lifespan
3.4. Effect of FLP-Out Transgene Activation on Egg Production
3.5. Effect of FLP-Out Transgene Activation and FLP-Out Recombination on Fly Weight
3.6. Quantitative Real-Time PCR Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baulieu, E.E. RU 486 (mifepristone). A short overview of its mechanisms of action and clinical uses at the end of 1996. Ann. N. Y. Acad. Sci. 1997, 828, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Shao, J.; Gao, Y.; Xu, J.; Yu, S.; Liu, Z.; Jia, L. The unique pharmacological characteristics of mifepristone (RU486): From terminating pregnancy to preventing cancer metastasis. Med. Res. Rev. 2014, 34, 979–1000. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Ticsa, M.S.; Qadir, S.; Rezene, A.; Khanna, D. Multiple Clinical Indications of Mifepristone: A Systematic Review. Cureus 2023, 15, e48372. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.; Blasey, C.M.; Roe, R.L.; Belanoff, J.K. Mifepristone reduces weight gain and improves metabolic abnormalities associated with risperidone treatment in normal men. Obesity 2010, 18, 2295–2300. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Sore, I.; Navarro-Marquez, M.; Osorio-Fuentealba, C.; Diaz-Castro, F.; Del Campo, A.; Donoso-Barraza, C.; Porras, O.; Lavandero, S.; Troncoso, R. Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells. Mol. Cell. Endocrinol. 2018, 461, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Gubbi, S.; Muniyappa, R.; Sharma, S.T.; Grewal, S.; McGlotten, R.; Nieman, L.K. Mifepristone Improves Adipose Tissue Insulin Sensitivity in Insulin Resistant Individuals. J. Clin. Endocrinol. Metab. 2021, 106, 1501–1515. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Castro, F.; Monsalves-Alvarez, M.; Rojo, L.E.; Del Campo, A.; Troncoso, R. Mifepristone for Treatment of Metabolic Syndrome: Beyond Cushing’s Syndrome. Front. Pharmacol. 2020, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Lam, L.N.; Yang, K.; Zhou, A.Y.; Koliwad, S.; Wang, J.C. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J. Biol. Chem. 2012, 287, 8444–8456. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; He, J.; Jiang, H.; Zu, L.; Zhai, W.; Pu, S.; Xu, G. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol. Endocrinol. 2009, 23, 1161–1170. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, Y.; Liang, Q.; Yin, Y.; Wang, S.; Han, R.; Huo, C.; Deng, H. Mifepristone (RU486) inhibits dietary lipid digestion by antagonizing the role of glucocorticoid receptor on lipase transcription. iScience 2021, 24, 102507. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Han, Y.; Shi, Y.; Rong, H.; Zheng, S.; Jin, S.; Lin, S.Y.; Lin, S.C.; Li, Y. Revealing a steroid receptor ligand as a unique PPARgamma agonist. Cell Res. 2012, 22, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.J.; Sun, X.H.; Wang, S.W.; Chen, J.L.; Bi, Y.H.; Jiang, D.X. Mifepristone alleviates cerebral ischemia-reperfusion injury in rats by stimulating PPAR gamma. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5688–5696. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Bell, H.S.; Peng, O.; Bognar, B.; Tong, A.; Manea, T.D.; Bao, H.; Han, X.; Tower, J. Dhr96[1] mutation and maternal tudor[1] mutation increase life span and reduce the beneficial effects of mifepristone in mated female Drosophila. PLoS ONE 2023, 18, e0292820. [Google Scholar] [CrossRef] [PubMed]
- Wolfner, M.F. Tokens of love: Functions and regulation of Drosophila male accessory gland products. Insect Biochem. Mol. Biol. 1997, 27, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Zipper, L.; Jassmann, D.; Burgmer, S.; Gorlich, B.; Reiff, T. Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARgamma-homolog Eip75B in Drosophila. eLife 2020, 9, e55795. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.H.; Maldera, J.A.; Krunic, D.; Paiva-Silva, G.O.; Penalva, C.; Teleman, A.A.; Edgar, B.A. Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature 2020, 584, 415–419. [Google Scholar] [CrossRef] [PubMed]
- White, M.A.; Bonfini, A.; Wolfner, M.F.; Buchon, N. Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc. Natl. Acad. Sci. USA 2021, 118, e2018112118. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.H.; Spradling, A.C. Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation. Curr. Biol. 2015, 25, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Reiff, T.; Jacobson, J.; Cognigni, P.; Antonello, Z.; Ballesta, E.; Tan, K.J.; Yew, J.Y.; Dominguez, M.; Miguel-Aliaga, I. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 2015, 4, e06930. [Google Scholar] [CrossRef] [PubMed]
- Thanh, M.T.; Pham, T.L.A.; Tran, B.D.; Nguyen, Y.D.H.; Kaeko, K. Drosophila model for studying the link between lipid metabolism and development. Front. Biosci. 2020, 25, 147–158. [Google Scholar] [CrossRef]
- Baumann, A.A.; Texada, M.J.; Chen, H.M.; Etheredge, J.N.; Miller, D.L.; Picard, S.; Warner, R.; Truman, J.W.; Riddiford, L.M. Genetic tools to study juvenile hormone action in Drosophila. Sci. Rep. 2017, 7, 2132. [Google Scholar] [CrossRef] [PubMed]
- Tower, J.; Landis, G.N.; Shen, J.; Choi, R.; Fan, Y.; Lee, D.; Song, J. Mifepristone/RU486 acts in Drosophila melanogaster females to counteract the life span-shortening and pro-inflammatory effects of male Sex Peptide. Biogerontology 2017, 18, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Wigby, S.; Chapman, T. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 2005, 15, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Salomon, M.P.; Keroles, D.; Brookes, N.; Sekimura, T.; Tower, J. The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila. Aging 2015, 7, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Doherty, D.V.; Yen, C.A.; Wang, L.; Fan, Y.; Wang, I.; Vroegop, J.; Wang, T.; Wu, J.; Patel, P.; et al. Metabolic Signatures of Life Span Regulated by Mating, Sex Peptide, and Mifepristone/RU486 in Female Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Hilsabeck, T.A.U.; Bell, H.S.; Ronnen-Oron, T.; Wang, L.; Doherty, D.V.; Tejawinata, F.I.; Erickson, K.; Vu, W.; Promislow, D.E.L.; et al. Mifepristone Increases Life Span of Virgin Female Drosophila on Regular and High-fat Diet Without Reducing Food Intake. Front. Genet. 2021, 12, 751647. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Piper, M.D.; Wertheim, B.; Partridge, L. Quantification of food intake in Drosophila. PLoS ONE 2009, 4, e6063. [Google Scholar] [CrossRef] [PubMed]
- Ja, W.W.; Carvalho, G.B.; Mak, E.M.; de la Rosa, N.N.; Fang, A.Y.; Liong, J.C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 2007, 104, 8253–8256. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yu, G.; Park, S.J.; Gao, Y.; Ja, W.W.; Yang, M. Excreta Quantification (EX-Q) for Longitudinal Measurements of Food Intake in Drosophila. iScience 2020, 23, 100776. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Ko, S.; Peng, O.; Bognar, B.; Khmelkov, M.; Bell, H.S.; Tower, J. A screen of small molecule and genetic modulators of life span in female Drosophila identifies etomoxir, RH5849 and unanticipated temperature effects. Fly 2022, 16, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Deshpande, S.A.; Keebaugh, E.S.; Ehrlich, M.R.; Soto Obando, A.; Ja, W.W. Mifepristone Reduces Food Palatability and Affects Drosophila Feeding and Lifespan. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Riggan, L.; Bell, H.S.; Vu, W.; Wang, T.; Wang, I.; Tejawinata, F.I.; Ko, S.; Tower, J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. Front. Aging 2022, 3, 924957. [Google Scholar] [CrossRef]
- Loch, G.; Zinke, I.; Mori, T.; Carrera, P.; Schroer, J.; Takeyama, H.; Hoch, M. Antimicrobial peptides extend lifespan in Drosophila. PLoS ONE 2017, 12, e0176689. [Google Scholar] [CrossRef] [PubMed]
- Osterwalder, T.; Yoon, K.S.; White, B.H.; Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 2001, 98, 12596–12601. [Google Scholar] [CrossRef] [PubMed]
- Roman, G.; Endo, K.; Zong, L.; Davis, R.L. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2001, 98, 12602–12607. [Google Scholar] [CrossRef] [PubMed]
- Roman, G.; Davis, R.L. Conditional expression of UAS-transgenes in the adult eye with a new gene-switch vector system. Genesis 2002, 34, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Ford, D.; Hoe, N.; Landis, G.N.; Tozer, K.; Luu, A.; Bhole, D.; Badrinath, A.; Tower, J. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp. Gerontol. 2007, 42, 483–497. [Google Scholar] [CrossRef] [PubMed]
- King-Jones, K.; Thummel, C.S. Nuclear receptors—A perspective from Drosophila. Nat. Rev. Genet. 2005, 6, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Horner, M.A.; Pardee, K.; Liu, S.; King-Jones, K.; Lajoie, G.; Edwards, A.; Krause, H.M.; Thummel, C.S. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes Dev. 2009, 23, 2711–2716. [Google Scholar] [CrossRef]
- King-Jones, K.; Horner, M.A.; Lam, G.; Thummel, C.S. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab. 2006, 4, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.H.; Thummel, C.S. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metab. 2009, 10, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.H.; Thummel, C.S. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab. 2012, 15, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, I.R.; Joshi, M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161, bqz046. [Google Scholar] [CrossRef] [PubMed]
- Bialecki, M.; Shilton, A.; Fichtenberg, C.; Segraves, W.A.; Thummel, C.S. Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev. Cell 2002, 3, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Magwire, M.M.; Yamamoto, A.; Carbone, M.A.; Roshina, N.V.; Symonenko, A.V.; Pasyukova, E.G.; Morozova, T.V.; Mackay, T.F. Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genet. 2010, 6, e1001037. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Campbell, T.; Carbone, M.A.; Jones, W.E.; Unselt, D.; Anholt, R.R.H.; Mackay, T.F.C. Context-dependent genetic architecture of Drosophila life span. PLoS Biol. 2020, 18, e3000645. [Google Scholar] [CrossRef] [PubMed]
- Carnes, M.U.; Campbell, T.; Huang, W.; Butler, D.G.; Carbone, M.A.; Duncan, L.H.; Harbajan, S.V.; King, E.M.; Peterson, K.R.; Weitzel, A.; et al. The Genomic Basis of Postponed Senescence in Drosophila melanogaster. PLoS ONE 2015, 10, e0138569. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.A.; Kohn, N.; Spirina, A.; McMillen, A.; Huang, W.; Mackay, T.F.C. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 2020, 10, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Hoedjes, K.M.; Kostic, H.; Flatt, T.; Keller, L. A Single Nucleotide Variant in the PPARgamma-homolog Eip75B Affects Fecundity in Drosophila. Mol. Biol. Evol. 2023, 40, msad018. [Google Scholar] [CrossRef] [PubMed]
- Barwell, T.; Geld, S.; Seroude, L. Comparison of GAL80ts and Tet-off GAL80 transgenes. MicroPubl. Biol. 2023, 2023. [Google Scholar] [CrossRef]
- McGuire, S.E.; Le, P.T.; Osborn, A.J.; Matsumoto, K.; Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003, 302, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Basler, K.; Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 1994, 368, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Struhl, G.; Basler, K. Organizing activity of wingless protein in Drosophila. Cell 1993, 72, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Pignoni, F.; Zipursky, S.L. Induction of Drosophila eye development by decapentaplegic. Development 1997, 124, 271–278. [Google Scholar] [CrossRef]
- Ren, C.; Finkel, S.E.; Tower, J. Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity. Exp. Gerontol. 2009, 44, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Webster, P.; Finkel, S.E.; Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 2007, 6, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Doherty, D.; Tower, J. Analysis of Drosophila melanogaster Lifespan. Methods Mol. Biol. 2020, 2144, 47–56. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Micchelli, C.A. Whole-mount immunostaining of the adult Drosophila gastrointestinal tract. Methods 2014, 68, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Johnston, D.M.; Sedkov, Y.; Petruk, S.; Riley, K.M.; Fujioka, M.; Jaynes, J.B.; Mazo, A. Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Mol. Cell 2011, 44, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Webster, S.H.; Vella, M.R.; Scott, M.J. Development and testing of a novel killer-rescue self-limiting gene drive system in Drosophila melanogaster. Proc. Biol. Sci. 2020, 287, 20192994. [Google Scholar] [CrossRef] [PubMed]
- Bradburn, M.J.; Clark, T.G.; Love, S.B.; Altman, D.G. Survival analysis part II: Multivariate data analysis—An introduction to concepts and methods. Br. J. Cancer 2003, 89, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Buszczak, M.; Freeman, M.R.; Carlson, J.R.; Bender, M.; Cooley, L.; Segraves, W.A. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 1999, 126, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Carney, G.E.; Bender, M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 2000, 154, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.X.; Spradling, A.C. Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. PLoS ONE 2012, 7, e46109. [Google Scholar] [CrossRef] [PubMed]
- Chapman, T.; Liddle, L.F.; Kalb, J.M.; Wolfner, M.F.; Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 1995, 373, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Mossman, J.A.; Mabeza, R.M.S.; Blake, E.; Mehta, N.; Rand, D.M. Age of Both Parents Influences Reproduction and Egg Dumping Behavior in Drosophila melanogaster. J. Hered. 2019, 110, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, C.D.; Wolfner, M.F. Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 17420–17425. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.F.; Shih, C.; Mack, A.; Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science 2003, 299, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Tricoire, H.; Battisti, V.; Trannoy, S.; Lasbleiz, C.; Pret, A.M.; Monnier, V. The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. Mech. Ageing Dev. 2009, 130, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Schupbach, T.; Wieschaus, E. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 1986, 113, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Boswell, R.E.; Mahowald, A.P. Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 1985, 43, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Gravanis, A.; Schaison, G.; George, M.; de Brux, J.; Satyaswaroop, P.G.; Baulieu, E.E.; Robel, P. Endometrial and pituitary responses to the steroidal antiprogestin RU 486 in postmenopausal women. J. Clin. Endocrinol. Metab. 1985, 60, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Wardell, S.E.; Narayanan, R.; Weigel, N.L.; Edwards, D.P. Partial agonist activity of the progesterone receptor antagonist RU486 mediated by an amino-terminal domain coactivator and phosphorylation of serine400. Mol. Endocrinol. 2010, 24, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jonklaas, J.; Danielsen, M. The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids 2007, 72, 600–608. [Google Scholar] [CrossRef]
- Schwedes, C.C.; Carney, G.E. Ecdysone signaling in adult Drosophila melanogaster. J. Insect Physiol. 2012, 58, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Ameku, T.; Niwa, R. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. PLoS Genet. 2016, 12, e1006123. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, T.J.; Dubrovskaya, V.A.; Xie, X.; Dubrovsky, E.B. A view through a chromatin loop: Insights into the ecdysone activation of early genes in Drosophila. Nucleic Acids Res. 2014, 42, 10409–10424. [Google Scholar] [CrossRef] [PubMed]
- Karim, F.D.; Thummel, C.S. Ecdysone coordinates the timing and amounts of E74A and E74B transcription in Drosophila. Genes Dev. 1991, 5, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Segraves, W.A.; Hogness, D.S. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 1990, 4, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell Biol. 1999, 19, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Prusator, D.K.; Chang, L. Sex-Related Differences in GI Disorders. Handb. Exp. Pharmacol. 2017, 239, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Paik, H.Y.; Yoon, H.; Lee, J.E.; Kim, N.; Sung, M.K. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. WJG 2015, 21, 5167–5175. [Google Scholar] [CrossRef]
- Heo, J.W.; Kim, S.E.; Sung, M.K. Sex Differences in the Incidence of Obesity-Related Gastrointestinal Cancer. Int. J. Mol. Sci. 2021, 22, 1253. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.A. Adaptation of the maternal intestine during lactation. J. Mammary Gland. Biol. Neoplasia 1997, 2, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Sabet Sarvestani, F.; Rahmanifar, F.; Tamadon, A. Histomorphometric changes of small intestine in pregnant rat. Vet. Res. Forum 2015, 6, 69–73. [Google Scholar] [PubMed]
- Taylor, S.R.; Ramsamooj, S.; Liang, R.J.; Katti, A.; Pozovskiy, R.; Vasan, N.; Hwang, S.K.; Nahiyaan, N.; Francoeur, N.J.; Schatoff, E.M.; et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 2021, 597, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, E.; Anuradha, C.V. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice. Can. J. Diabetes 2017, 41, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Kohne, S.; Hillemacher, T.; Glahn, A.; Bach, P. Emerging drugs in phase II and III clinical development for the treatment of alcohol use disorder. Expert. Opin. Emerg. Drugs 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Gote, J.T.; Chhablani, J. Randomized controlled trials in central serous chorioretinopathy: A review. Eye 2023, 37, 3306–3312. [Google Scholar] [CrossRef] [PubMed]
Experiment | Genotype | Status | Drug | N | Med | 90% Mort | Med (%) | p |
---|---|---|---|---|---|---|---|---|
Control 1 | Hsp70-FLP; 75B-RNAi | VF | - | 93 | 48 | 56 | ||
Control 1 | Hsp70-FLP; 75B-RNAi | MF | - | 99 | 42 | 52 | −12.5 | 0.0012 |
Control 1 | Hsp70-FLP; 75B-RNAi | MF | Mif | 100 | 50 | 56 | 19.0 (4.2) | 0.0003 (0.7600) |
Experimental 1 | Hsp70-FLP; FO-GAL4; 75B-RNAi | VF | - | 72 | 45 | 51 | −6.25 | 0.0015 |
Experimental 1 | Hsp70-FLP; FO-GAL4; 75B-RNAi | MF | - | 66 | 37 | 54 | −17.8 | 0.7293 |
Experimental 1 | Hsp70-FLP; FO-GAL4; 75B-RNAi | MF | Mif | 77 | 41 | 53 | 10.8 (−8.9) | 0.7600 (0.6208) |
Control 2 | Hsp70-FLP; 75B-RNAi | VF | - | 100 | 51 | 58 | ||
Control 2 | Hsp70-FLP; 75B-RNAi | MF | - | 91 | 40 | 52 | −21.6 | 9.02 × 10−7 |
Control 2 | Hsp70-FLP; 75B-RNAi | MF | Mif | 92 | 52 | 58 | 30.0 (1.96) | 1.51 × 10−10 (0.1182) |
Experimental 2 | Hsp70-FLP; FO-GAL4; 75B-RNAi | VF | - | 99 | 46 | 54 | −9.80 | 0.0030 |
Experimental 2 | Hsp70-FLP; FO-GAL4; 75B-RNAi | MF | - | 87 | 40 | 54 | −13.0 | 0.6369 |
Experimental 2 | Hsp70-FLP; FO-GAL4; 75B-RNAi | MF | Mif | 83 | 34 | 52 | −15.0 (−26.0) | 0.0872 (0.0234) |
Call: coxph(formula = (Surv(Day) ~ FOG4 + Mating + Mif + FOG4:Mating + FOG4:mif), data = new_E75BC1C2) | |||||
n = 1059, number of events = 1059 | |||||
coef | exp(coef) | se(coef) | z | Pr(>|z|) | |
FOG4 | 0.4689 | 1.5982 | 0.1065 | 4.404 | 1.06 × 10−5 *** |
Mating | 0.6941 | 2.0018 | 0.1048 | 6.624 | 3.49 × 10−11 *** |
Mif | −0.8364 | 0.4333 | 0.1058 | −7.903 | 2.73 × 10−15 *** |
FOG4:Mating | −0.6476 | 0.5233 | 0.1535 | −4.220 | 2.44 × 10−5 *** |
FOG4:Mif | 1.0368 | 2.8202 | 0.1558 | 6.655 | 2.83 × 10−11 *** |
--- | |||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |||||
exp(coef) | exp(-coef) | lower 0.95 | upper 0.95 | ||
FOG4 | 1.5982 | 0.6257 | 1.2972 | 1.9691 | |
Mating | 2.0018 | 0.4995 | 1.6302 | 2.4582 | |
Mif | 0.4333 | 2.3080 | 0.3521 | 0.5332 | |
FOG4:Mating | 0.5233 | 1.9110 | 0.3874 | 0.7069 | |
FOG4:Mif | 2.8202 | 0.3546 | 2.0781 | 3.8272 | |
--- | |||||
Concordance = 0.602 (se = 0.01) | |||||
Likelihood ratio test = 113.2 on 5 df, p = <2 × 10−16 | |||||
Wald test = 109 on 5 df, p = <2 × 10−16 | |||||
Score (logrank) test = 112.9 on 5 df, p = <2 × 10−16 |
Experiment | Genotype | Status | Drug | N | Med | 90% Mort | ΔMed (%) | p |
---|---|---|---|---|---|---|---|---|
Control 1 | Hsp70-FLP | VF | - | 98 | 47 | 51 | ||
Control 1 | Hsp70-FLP | MF | - | 90 | 36 | 47 | −23.4 | 1.32 × 10−7 |
Control 1 | Hsp70-FLP | MF | Mif | 89 | 47 | 56 | 30.1 (0.00) | 5.15 × 10−8 (0.1976) |
Experimental 1 | Hsp70-FLP; FO-GAL4 | VF | - | 100 | 44 | 49 | −6.38 | 0.0061 |
Experimental 1 | Hsp70-FLP; FO-GAL4 | MF | - | 93 | 32 | 42 | −27.3 | 5.81 × 10−17 |
Experimental 1 | Hsp70-FLP; FO-GAL4 | MF | Mif | 86 | 42 | 49 | 31.3 (−4.5) | 2.61 × 10−8 (0.3810) |
Control 2 | Hsp70-FLP | VF | - | 96 | 47 | 54 | ||
Control 2 | Hsp70-FLP | MF | - | 93 | 34 | 51 | −27.7 | 0.0115 |
Control 2 | Hsp70-FLP | MF | Mif | 97 | 47 | 54 | 38.2 (0.00) | 0.0004 (0.1576) |
Experimental 2 | Hsp70-FLP; FO-GAL4 | VF | - | 96 | 47 | 54 | 0.00 | 0.8256 |
Experimental 2 | Hsp70-FLP; FO-GAL4 | MF | - | 91 | 38 | 47 | −19.1 | 7.74 × 10−13 |
Experimental 2 | Hsp70-FLP; FO-GAL4 | MF | Mif | 82 | 44 | 49 | 15.8 (−6.4) | 9.88 × 10−7 (0.0225) |
Call: coxph(formula = (Surv(Day) ~ FOG4 + Mating + Mif + FOG4:Mating + FOG4:Mif), data = new_ctrlC1C2) | |||||
n = 1135, number of events = 1135 | |||||
coef | exp(coef) | se(coef) | z | Pr(>|z|) | |
FOG4 | 0.17199 | 1.18766 | 0.10142 | 1.696 | 0.089921 |
Mating | 0.57921 | 1.78462 | 0.10293 | 5.627 | 1.83 × 10−8 *** |
Mif | −0.80469 | 0.44723 | 0.10400 | −7.737 | 1.01 × 10−14 *** |
FOG4:Mating | 0.49064 | 1.63337 | 0.14640 | 3.351 | 0.000804 *** |
FOG4:Mif | 0.03748 | 1.03819 | 0.14754 | 0.254 | 0.799448 |
--- | |||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |||||
exp(coef) | exp(-coef) | lower 0.95 | upper 0.95 | ||
FOG4 | 1.1877 | 0.8420 | 0.9736 | 1.4488 | |
Mating | 1.7846 | 0.5603 | 1.4586 | 2.1835 | |
Mif | 0.4472 | 2.2360 | 0.3648 | 0.5483 | |
FOG4:Mating | 1.6334 | 0.6122 | 1.2259 | 2.1762 | |
FOG4:Mif | 1.0382 | 0.9632 | 0.7775 | 1.3863 | |
--- | |||||
Concordance = 0.64 (se = 0.01) | |||||
Likelihood ratio test = 203.5 on 5 df, p = <2 × 10−16 | |||||
Wald test = 219.2 on 5 df, p = <2 × 10−16 | |||||
Score (logrank) test = 236.9 on 5 df, p = <2 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landis, G.N.; Bell, H.S.; Peng, O.K.; Fan, Y.; Yan, K.; Baybutt, B.; Tower, J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells 2024, 13, 1123. https://doi.org/10.3390/cells13131123
Landis GN, Bell HS, Peng OK, Fan Y, Yan K, Baybutt B, Tower J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells. 2024; 13(13):1123. https://doi.org/10.3390/cells13131123
Chicago/Turabian StyleLandis, Gary N., Hans S. Bell, Oscar K. Peng, Yijie Fan, Karissa Yan, Britta Baybutt, and John Tower. 2024. "Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila" Cells 13, no. 13: 1123. https://doi.org/10.3390/cells13131123
APA StyleLandis, G. N., Bell, H. S., Peng, O. K., Fan, Y., Yan, K., Baybutt, B., & Tower, J. (2024). Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells, 13(13), 1123. https://doi.org/10.3390/cells13131123