Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Fibroblast Markers Identified during Single-Cell Sequencing
4.2. Fibroblasts’ Markers Utilized in Antibody-Based Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leach, F. Targeting prostate-specific membrane antigen in cancer therapy: Can molecular medicine be brought to the surface? Cancer Biol. Ther. 2004, 3, 559–560. [Google Scholar] [CrossRef] [PubMed]
- Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014, 5, 123. [Google Scholar] [CrossRef] [PubMed]
- Cavagnero, K.J.; Gallo, R.L. Essential immune functions of fibroblasts in innate host defense. Front. Immunol. 2022, 13, 1058862. [Google Scholar] [CrossRef] [PubMed]
- Veleva, D.; Ay, M.; Ovchinnikov, D.A.; Prowse, A.B.J.; Menezes, M.J.; Nafisinia, M. Generation of fibroblast-derived induced pluripotent stem cell (iPSC) lines from two paediatric patients with phenylketonuria. Stem Cell Res. 2024, 77, 103405. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kim, D.B.; Kim, J.I.; Kim, P.Y. In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. Toxicol. In Vitro 2000, 14, 345–349. [Google Scholar] [CrossRef]
- Pereira, S.P.; Deus, C.M.; Serafim, T.L.; Cunha-Oliveira, T.; Oliveira, P.J. Metabolic and Phenotypic Characterization of Human Skin Fibroblasts After Forcing Oxidative Capacity. Toxicol. Sci. 2018, 164, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Korosec, A.; Frech, S.; Gesslbauer, B.; Vierhapper, M.; Radtke, C.; Petzelbauer, P.; Lichtenberger, B.M. Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin. J. Investig. Dermatol. 2019, 139, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Doppler, S.A.; Carvalho, C.; Lahm, H.; Deutsch, M.A.; Dressen, M.; Puluca, N.; Lange, R.; Krane, M. Cardiac fibroblasts: More than mechanical support. J. Thorac. Dis. 2017, 9, S36–S51. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Wang, X.J. TGFbeta Signaling in Photoaging and UV-Induced Skin Cancer. J. Investig. Dermatol. 2021, 141, 1104–1110. [Google Scholar] [CrossRef]
- Morita, A.; Torii, K.; Maeda, A.; Yamaguchi, Y. Molecular basis of tobacco smoke-induced premature skin aging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 53–55. [Google Scholar] [CrossRef]
- Laurent, G.J.; Chambers, R.C.; Hill, M.R.; McAnulty, R.J. Regulation of matrix turnover: Fibroblasts, forces, factors and fibrosis. Biochem. Soc. Trans. 2007, 35, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2013, 504, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.; Tung, L.W.; Rossi, F.M.V. Fibroblast and Myofibroblast Subtypes: Single Cell Sequencing. Methods Mol. Biol. 2021, 2299, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Gyftaki-Venieri, D.A.; Abraham, D.J.; Ponticos, M. Insights into myofibroblasts and their activation in scleroderma: Opportunities for therapy? Curr. Opin. Rheumatol. 2018, 30, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Y.; Zheng, D.; Ho, C.; Wen, D.; Sun, J.; Huang, L.; Liu, Y.; Li, Q.; Zhang, Y. HDAC5-mediated Smad7 silencing through MEF2A is critical for fibroblast activation and hypertrophic scar formation. Int. J. Biol. Sci. 2022, 18, 5724–5739. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Oh, S.J.; Yeo, E.; Park, J.H.; Bae, J.H.; Kim, S.H.; Lee, D.; Lee, J.H. Integrated Analysis of Single-Cell and Spatial Transcriptomics in Keloids: Highlights on Fibrovascular Interactions in Keloid Pathogenesis. J. Investig. Dermatol. 2022, 142, 2128–2139.e11. [Google Scholar] [CrossRef] [PubMed]
- Buechler, M.B.; Pradhan, R.N.; Krishnamurty, A.T.; Cox, C.; Calviello, A.K.; Wang, A.W.; Yang, Y.A.; Tam, L.; Caothien, R.; Roose-Girma, M.; et al. Cross-tissue organization of the fibroblast lineage. Nature 2021, 593, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Ascension, A.M.; Fuertes-Alvarez, S.; Ibanez-Sole, O.; Izeta, A.; Arauzo-Bravo, M.J. Human Dermal Fibroblast Subpopulations Are Conserved across Single-Cell RNA Sequencing Studies. J. Investig. Dermatol. 2021, 141, 1735–1744.e35. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.C.; Hu, Y.F.; Zhu, D.H.; Cheng, Q.; Gu, J.J.; Feng, Q.L.; Zhang, L.X.; Xu, Y.P.; Wang, D.; Rong, Z.; et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 2021, 12, 3709. [Google Scholar] [CrossRef]
- He, H.; Suryawanshi, H.; Morozov, P.; Gay-Mimbrera, J.; Del Duca, E.; Kim, H.J.; Kameyama, N.; Estrada, Y.; Der, E.; Krueger, J.G.; et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 2020, 145, 1615–1628. [Google Scholar] [CrossRef]
- Tabib, T.; Huang, M.; Morse, N.; Papazoglou, A.; Behera, R.; Jia, M.; Bulik, M.; Monier, D.E.; Benos, P.V.; Chen, W.; et al. Myofibroblast transcriptome indicates SFRP2(hi) fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 2021, 12, 4384. [Google Scholar] [CrossRef] [PubMed]
- Francis, L.; McCluskey, D.; Ganier, C.; Jiang, T.; Du-Harpur, X.; Gabriel, J.; Dhami, P.; Kamra, Y.; Visvanathan, S.; Barker, J.N.; et al. Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. Nat. Commun. 2024, 15, 913. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, D.; Hu, Y.; Jiang, K.; Huang, H.; Du, Y.; Wu, W.; Wang, J.; Sui, J.; Wang, W.; et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature 2022, 601, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Korosec, A.; Frech, S.; Lichtenberger, B.M. Isolation of Papillary and Reticular Fibroblasts from Human Skin by Fluorescence-activated Cell Sorting. J. Vis. Exp. 2019, 147, e59372. [Google Scholar] [CrossRef]
- Tabib, T.; Morse, C.; Wang, T.; Chen, W.; Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 Define Major Fibroblast Populations in Human Skin. J. Investig. Dermatol. 2018, 138, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Sole-Boldo, L.; Raddatz, G.; Schutz, S.; Mallm, J.P.; Rippe, K.; Lonsdorf, A.S.; Rodriguez-Paredes, M.; Lyko, F. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 2020, 3, 188. [Google Scholar] [CrossRef] [PubMed]
- Riedl, J.A.; Riddle, M.; Xia, L.; Eide, C.; Boull, C.; Ebens, C.L.; Tolar, J. Interrogation of RDEB Epidermal Allografts after BMT Reveals Coexpression of Collagen VII and Keratin 15 with Proinflammatory Immune Cells and Fibroblasts. J. Investig. Dermatol. 2022, 142, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, W.; Zeng, Q.; Ma, B.; Li, Z.; Meng, T.; Chen, J.; Yu, N.; Zhou, Z.; Long, X. Single-Cell RNA-Sequencing Reveals Lineage-Specific Regulatory Changes of Fibroblasts and Vascular Endothelial Cells in Keloids. J. Investig. Dermatol. 2022, 142, 124–135.e11. [Google Scholar] [CrossRef] [PubMed]
- Alkon, N.; Assen, F.P.; Arnoldner, T.; Bauer, W.M.; Medjimorec, M.A.; Shaw, L.E.; Rindler, K.; Holzer, G.; Weber, P.; Weninger, W.; et al. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J. Allergy Clin. Immunol. 2023, 152, 420–435. [Google Scholar] [CrossRef]
- Zhang, B.; Roesner, L.M.; Traidl, S.; Koeken, V.; Xu, C.J.; Werfel, T.; Li, Y. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 2023, 78, 439–453. [Google Scholar] [CrossRef]
- Patel, J.R.; Joel, M.Z.; Lee, K.K.; Kambala, A.; Cornman, H.; Oladipo, O.; Taylor, M.; Imo, B.U.; Ma, E.Z.; Manjunath, J.; et al. Single-Cell RNA Sequencing Reveals Dysregulated POSTN+WNT5A+ Fibroblast Subclusters in Prurigo Nodularis. J. Investig. Dermatol. 2024, 144, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Hu, Z.; Mei, X.; Ouyang, L.; Song, Y.; Zhou, W.; Kong, Y.; Wu, R.; Rao, S.; Long, H.; et al. Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus. Nat. Commun. 2022, 13, 7489. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Li, X.; Lee, H.S.; Kim, K.; Chaparala, V.; Murphy, W.; Zhou, W.; Cao, J.; Lowes, M.A.; et al. Single-cell transcriptomics suggest distinct upstream drivers of IL-17A/F in hidradenitis versus psoriasis. J. Allergy Clin. Immunol. 2023, 152, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xia, Y.; Kong, S.; Yang, K.; Chen, H.; Zhang, Y.; Liu, D.; Chen, L.; Sun, X. Single-cell RNA-seq reveals actinic keratosis-specific keratinocyte subgroups and their crosstalk with secretory-papillary fibroblasts. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Pich-Bavastro, C.; Yerly, L.; Di Domizio, J.; Tissot-Renaud, S.; Gilliet, M.; Kuonen, F. Activin A-Mediated Polarization of Cancer-Associated Fibroblasts and Macrophages Confers Resistance to Checkpoint Immunotherapy in Skin Cancer. Clin. Cancer Res. 2023, 29, 3498–3513. [Google Scholar] [CrossRef] [PubMed]
- Yerly, L.; Pich-Bavastro, C.; Di Domizio, J.; Wyss, T.; Tissot-Renaud, S.; Cangkrama, M.; Gilliet, M.; Werner, S.; Kuonen, F. Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma. Nat. Commun. 2022, 13, 4897. [Google Scholar] [CrossRef] [PubMed]
- Ganier, C.; Mazin, P.; Herrera-Oropeza, G.; Du-Harpur, X.; Blakeley, M.; Gabriel, J.; Predeus, A.V.; Cakir, B.; Prete, M.; Harun, N.; et al. Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc. Natl. Acad. Sci. USA 2024, 121, e2313326120. [Google Scholar] [CrossRef] [PubMed]
- Schutz, S.; Sole-Boldo, L.; Lucena-Porcel, C.; Hoffmann, J.; Brobeil, A.; Lonsdorf, A.S.; Rodriguez-Paredes, M.; Lyko, F. Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat. Commun. 2023, 14, 5413. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, S.; Bian, X.; Zhang, L.; Lu, L.; Pei, S.; Dong, L.; Shi, W.; Huang, L.; Zhang, X.; et al. Signatures of EMT, immunosuppression, and inflammation in primary and recurrent human cutaneous squamous cell carcinoma at single-cell resolution. Theranostics 2022, 12, 7532–7549. [Google Scholar] [CrossRef]
- Zou, Z.; Long, X.; Zhao, Q.; Zheng, Y.; Song, M.; Ma, S.; Jing, Y.; Wang, S.; He, Y.; Esteban, C.R.; et al. A Single-Cell Transcriptomic Atlas of Human Skin Aging. Dev. Cell 2021, 56, 383–397.e8. [Google Scholar] [CrossRef]
- Ahlers, J.M.D.; Falckenhayn, C.; Holzscheck, N.; Sole-Boldo, L.; Schutz, S.; Wenck, H.; Winnefeld, M.; Lyko, F.; Gronniger, E.; Siracusa, A. Single-Cell RNA Profiling of Human Skin Reveals Age-Related Loss of Dermal Sheath Cells and Their Contribution to a Juvenile Phenotype. Front. Genet. 2021, 12, 797747. [Google Scholar] [CrossRef] [PubMed]
- Philippeos, C.; Telerman, S.B.; Oules, B.; Pisco, A.O.; Shaw, T.J.; Elgueta, R.; Lombardi, G.; Driskell, R.R.; Soldin, M.; Lynch, M.D.; et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J. Investig. Dermatol. 2018, 138, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Worthen, C.A.; Cui, Y.; Orringer, J.S.; Johnson, T.M.; Voorhees, J.J.; Fisher, G.J. CD26 Identifies a Subpopulation of Fibroblasts that Produce the Majority of Collagen during Wound Healing in Human Skin. J. Investig. Dermatol. 2020, 140, 2515–2524.e3. [Google Scholar] [CrossRef] [PubMed]
- Chipev, C.C.; Simon, M. Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol. 2002, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dodd, C.; Shankowsky, H.A.; Scott, P.G.; Tredget, E.E.; Wound Healing Research, G. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab. Investig. 2008, 88, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Gu, S.; Liu, C.; Zhang, L.; Zhang, Z.; Zhao, Y.; Khoong, Y.; Li, H.; Gao, Y.; Liu, Y.; et al. CD39(+) Fibroblasts Enhance Myofibroblast Activation by Promoting IL-11 Secretion in Hypertrophic Scars. J. Investig. Dermatol. 2022, 142, 1065–1076.e19. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, V.; Kyriazi, M.; Nefla, M.; Pucino, V.; Raza, K.; Buckley, C.D.; Alsaleh, G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front. Immunol. 2023, 14, 1137659. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhan, X.Z.; Malola, J.; Li, Z.Y.; Pawar, J.S.; Zhang, H.T.; Zha, Z.G. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020, 113, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Tarbit, E.; Singh, I.; Peart, J.N.; Rose’Meyer, R.B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail. Rev. 2019, 24, 1–15. [Google Scholar] [CrossRef]
- Fitzgerald, A.A.; Weiner, L.M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020, 39, 783–803. [Google Scholar] [CrossRef]
- Demoulin, J.B.; Essaghir, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor. Rev. 2014, 25, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Saalbach, A.; Anderegg, U. Thy-1: More than a marker for mesenchymal stromal cells. FASEB J. 2019, 33, 6689–6696. [Google Scholar] [CrossRef] [PubMed]
- Arrindell, J.; Desnues, B. Vimentin: From a cytoskeletal protein to a critical modulator of immune response and a target for infection. Front. Immunol. 2023, 14, 1224352. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.; Shiwen, X.; Norman, J.; Abraham, D. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenes. Tissue Repair. 2013, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Bensa, T.; Tekkela, S.; Rognoni, E. Skin fibroblast functional heterogeneity in health and disease. J. Pathol. 2023, 260, 609–620. [Google Scholar] [CrossRef]
- Shimomura, Y.; Agalliu, D.; Vonica, A.; Luria, V.; Wajid, M.; Baumer, A.; Belli, S.; Petukhova, L.; Schinzel, A.; Brivanlou, A.H.; et al. APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 2010, 464, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Hemler, M.E. Targeting of tetraspanin proteins—Potential benefits and strategies. Nat. Rev. Drug Discov. 2008, 7, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, Y.; Shi, C.; Fu, S.; Sun, Y.F.; Li, C. Targeting GPC3(high) cancer-associated fibroblasts sensitizing the PD-1 blockage therapy in gastric cancer. Ann. Med. 2023, 55, 2189295. [Google Scholar] [CrossRef] [PubMed]
- Bonte, F.; Girard, D.; Archambault, J.C.; Desmouliere, A. Skin Changes During Ageing. Subcell. Biochem. 2019, 91, 249–280. [Google Scholar] [CrossRef]
- Serror, K.; Ferrero, L.; Boismal, F.; Sintes, M.; Thery, M.; Vianay, B.; Henry, E.; Gentien, D.; DE LA Grange, P.; Boccara, D.; et al. Evidence of inter- and intra-keloid heterogeneity through analysis of dermal fibroblasts: A new insight in deciphering keloid physiopathology. Exp. Dermatol. 2023, 32, 1096–1107. [Google Scholar] [CrossRef]
- Gil-Yarom, N.; Radomir, L.; Sever, L.; Kramer, M.P.; Lewinsky, H.; Bornstein, C.; Blecher-Gonen, R.; Barnett-Itzhaki, Z.; Mirkin, V.; Friedlander, G.; et al. CD74 is a novel transcription regulator. Proc. Natl. Acad. Sci. USA 2017, 114, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Piasek, A.M.; Levkovych, I.; Musolf, P.; Chmielewska, H.; Sciezynska, A.; Sobiepanek, A. Building Up Skin Models for Numerous Applications—From Two-Dimensional (2D) Monoculture to Three-Dimensional (3D) Multiculture. J. Vis. Exp. 2023, 200, e65773. [Google Scholar] [CrossRef] [PubMed]
- Hsia, L.T.; Ashley, N.; Ouaret, D.; Wang, L.M.; Wilding, J.; Bodmer, W.F. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers. Proc. Natl. Acad. Sci. USA 2016, 113, E2162–E2171. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.; Gyorfi, H.A.; Matei, A.E.; Dees, C.; Rauber, S.; Wohlfahrt, T.; Chen, C.W.; Ludolph, I.; Horch, R.E.; Bauerle, T.; et al. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol. 2020, 72, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberger, B.M.; Mastrogiannaki, M.; Watt, F.M. Epidermal beta-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat. Commun. 2016, 7, 10537. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, C.C.; Jank, P.; Jacke, C.O.; Albert, U.S.; Ebrahimsade, S.; Barth, P.J.; Moll, R. Prognostic relevance of the loss of stromal CD34 positive fibroblasts in invasive lobular carcinoma of the breast. Virchows Arch. 2020, 477, 717–724. [Google Scholar] [CrossRef]
- Silverstein, R.L.; Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal 2009, 2, re3. [Google Scholar] [CrossRef]
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|
[25] | Normal skin (Dorsal Forearm) | Papillary/[SFRP2/DPP4] fibroblasts | CD26, CD34, CD55 | NKD2, SFRP2, PCOLCE, WIF1 |
Reticular/[FMO1/LSP1] fibroblasts | CD34 | FMO1, LSP1, MYOC, IGFBP3 | ||
[26] | Normal skin (Inguinoiliac Region) | Papillary-secretory fibroblasts | Protein APCDD1 | ID1, WIF1, COL18A1, PTGDS |
Reticular-secretory fibroblasts | Tspan-8 | CTHRC1, MFAP5, WISP2, SLPI | ||
Mesenchymal Fibroblasts | Glypican-3 | TNN, POSTN, SFRP1, ASPN, APOE | ||
Pro-inflammatory fibroblasts | - | CCL19, CXCL2, CXCL3, EFEMP1 | ||
[27] | Allografted RDBE skin (Flank, Upper Thigh, Forearm) | Papillary-secretory fibroblasts | Protein APCDD1 | ID1, WIF1, COL18A1, PTGDS |
Reticular-secretory fibroblasts | Tspan-8 | CTHRC1, MFAP5, WISP2, SLPI | ||
Mesenchymal fibroblasts | Glypican-3 | TNN, POSTN, SFRP1, ASPN, APOE | ||
Pro-inflammatory fibroblasts | - | CCL19, CXCL2, CXCL3, EFEMP1 | ||
[16] | Normal skin vs. Keloid (Inguinoiliac Region, Back, Ear) | Papillary-secretory fibroblasts | Protein APCDD1 | WIF1 |
Reticular-secretory fibroblasts | - | WISP2, SLPI | ||
Mesenchymal fibroblasts | - | POSTN, ASPN | ||
Pro-inflammatory fibroblasts | - | CCL19, APOE | ||
[19] | Normal skin vs. Keloid (Chest, Back) | Papillary-secretory fibroblasts | CD90 | COL13A1, COL18A1, COL23A1 |
Reticular-secretory fibroblasts | CD90 | MDK, COL1A1, SPARC, COL5A2, APOE | ||
Mesenchymal fibroblasts | CD90, CD266, ADAM 12, CD138 | NREP, COL11A1, COMP, POSTN | ||
Pro-inflammatory fibroblasts | CD90 | COL1A1, COL1A2, COL3A1, SFRP4, SPARC | ||
[28] | Keloid–(Chest) | Fibroblasts | CD140a | RGS2, REL, DCN, POSTN, ABCA8, WISP |
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|
[29] | Atopic dermatitis–(Trunk, Arm, Leg) | Inflammatory fibroblasts | CD74 | EFEMP1, APOE, CCL19, CCL2 |
[20] | Normal skin and atopic dermatitis (Extremities) | Fibroblasts | Endothelin-1 receptor, ABCA6 | COL1A1, DCN, APOE, APOD, C3 |
Fibroblasts | ABCA6 | COL1A1, FBN1, MFAP5, DCN | ||
Fibroblasts | - | COL1A1, POSTN, COL11A1, LAMC3, DCN | ||
Inflammatory fibroblasts | VCAM-1 | COL6A5, COL18A1, POSTN, CCL2, CCL19, IL32, TNC | ||
[30] | Atopic dermatitis–(Arm, Leg, Back) | Fibroblasts | IFITM-2/IFITM-3 | MT1X, LGALS3, POSTN, COL6A5, COL6A6, IGFBP6, TNC |
Psoriasis–(Leg, Arm) | Fibroblasts | - | LGALS3, HSPA1B | |
[22] | Psoriasis (Lower back, Buttocks) | Fibroblasts | - | PI16, CCN5 |
Fibroblasts | - | COMP | ||
Fibroblasts | - | APOE, CXCL3 | ||
Fibroblasts | - | APOE, CCL19 | ||
Fibroblasts | - | APOE, C7 | ||
Fibroblasts | Dipeptidase 1 | COL11A1 | ||
Fibroblasts | - | COCH, ASPN | ||
Fibroblasts | - | ANGPTL7 | ||
Inflammatory fibroblasts | CD120a, CD120b, IL17-RA/IL17-RC | WNT5A, IL24 |
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|
[31] | Prurigo nodularis (Not specified) | Fibroblasts | CD90 | NKD2, POSTN, WNT5A, DIO2 |
Fibroblasts | CD74 | PTGDS, CCL19, C3 | ||
Fibroblasts | - | SFRP2, FBN1, TNXB | ||
Fibroblasts | Integral membrane protein 2A | PI16, CXCL12 | ||
Fibroblasts | - | SFRP1, TIMP3, ASPN | ||
Fibroblasts | Protein APCDD1 | - | ||
Fibroblasts | - | TAGLN, FOXS1, APOD | ||
[29] | Prurigo nodularis (Trunk, Arm, Leg) | Papillary-secretory fibroblasts | Protein APCDD1 | COL18A1, COL13A1, COL23A1 |
Reticular-secretory fibroblasts | CD26 | MFAP5, MMP2, FBN1, ELN, CCN5, SLPI | ||
Inflammatory fibroblasts | Integral membrane protein 2A | SPSB1, EFEMP1, APOE, CXCL2, CXCL3 | ||
Proliferating fibroblasts | - | MKI67 | ||
[32] | Lupus erythematosus (Face, Neck, Forehead, Arm) | Fibroblasts | - | PI16, DCN, COL1A1, COL1A2, SFRP2, FBLN1 |
Fibroblasts | Gap junction alpha-4 protein | RGS5, RGS16, ID4, NR2F2, COL1A1, DCN, CCL2 | ||
Fibroblasts | Scn7a, CD49f, Claudin-1 | DCN, SFRP4, CYP1B1, PTGDS, APOD | ||
Fibroblasts | - | COL1A1, DCN, STMN1, CENPF, PTTG1 | ||
Inflammatory fibroblasts | - | PLIN2, COL1A1, DCN, CXCL1, CXCL2, CXCL3 | ||
Antigen- presenting fibroblasts | CD74, HLA-DRA1/DRB1; HLA-DQB1 | SRGN, TYROBP, COL1A1, DCN, C1QA, CXCL12 | ||
Antigen- presenting fibroblasts | CD74, HLA-DRA1/DRB1, TM4SF1 Protein | RGS5, CITED4, ACKR1, COL1A1, DCN, STC1 | ||
[33] | Hidradenitis suppurativa–(Trunk) | Inflammatory fibroblasts | - | POSTN, IL1B, IL6, IL11, IL24 |
[23] | Vitiligo–(Extremities, Head, Back) | Inflammatory fibroblasts | - | TWIST2, DCN, SFRP2, CCL19 |
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|
[34] | Normal skin and Actinic keratosis (Face) | Papillary-secretory fibroblasts | Protein APCDD1 | COL18A1, PTGDS |
Reticular-secretory fibroblasts | Tspan-8 | CTHRC1, MFAP5, WISP2, SLPI | ||
Mesenchymal fibroblasts | Glypican-3 | POSTN, SFRP1, ASPN | ||
Pro-inflammatory fibroblasts | - | CCL19, APOE, EFEMP1 | ||
[35] | Basal Cell Carcinoma (Leg, Elbow, Head) | CAFs 1 | SLIT and NTRK-like protein 6 | COCH, OGN, ENPP2, CYP1B1 |
CAFs 2 | HLA-DRA, CXCR-4 | SRGN, CREM, BTG1 | ||
CAFs 3 | - | APOD, C3, CFD, CXCL14, CCL19 | ||
CAFs 4 | - | IGFB3, IER3, MMP1, MMP3, SAT1 | ||
CAFs 5 | FAP | TAGLN, POSTN, COMP, ACTA2, MMP11 | ||
[36] | Basal Cell Carcinoma (Leg, Head) | CAFs | CD34, RGMA, SCARA5 | FBLN1, CXCL12, GPX3 |
CAFs | CD74 | CCL5 | ||
Quiescent CAFs | Notch3 | SOX9, SOX10, EPAS1, IL6, PDGFA | ||
ECM-remodelling CAFs | FAP, Lrrc15 protein | TAGLM, POSTN, COL1A1, MMP2, ACTA2 | ||
[37] | Normal skin vs Basal Cell Carcinoma (Face) | Papillary Fibroblasts | - | PTGDS |
Reticular Fibroblasts | - | SFRP2, WISP2 | ||
Fibroblasts proximal to blood vessels | - | APOE, APOD | ||
POSTN+ Fibroblasts | - | POSTN | ||
[38] | Normal skin vs Squaomus cell carcinoma Healthy–(Inguinal region, Head) Squamous Cell Carcinoma (Head) | Papillary-secretory fibroblasts | Protein APCDD1 | COL18A1, DIO2, PTGDS, FMOD, LTBP1 |
Reticular-secretory fibroblasts | - | PI16, FBLN1, MFAP5, SLPI, WISP2, IGFBP6 | ||
Mesenchymal Fibroblasts | - | TAGLN, POSTN, TPM2, MMP11, FN1 | ||
Pro-Inflammatory fibroblasts | - | CCL19, CXCL3, APOE, CXCL1, APOD | ||
Inflammatory CAFs | - | MGP, JUND, JUN, HSP90AA1, XBP1, IGF1 | ||
Myofibroblast CAFs | - | TAGLN, COL11A1, SULF1, TDO2, MMP11, WNT5A | ||
[39] | Normal skin vs. Squamous cell carcinoma (Head, Foot) | Myofibroblast CAFs | - | RGS5, COL6A2, COL1A1, COL1A2, DCN |
Inflammatory CAFs | IL7-R | RGS5, COL6A2, COL1A1, COL1A2, DCN | ||
CAFs | IL7-R | COL6A2, COL1A1, COL1A2, DCN, IL1B, CXCL1, IL6, CXCL3, CXCL5, CXCL6, CXCL8, CXCL13, CXCL14 |
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|
[40] | Skin aging (Upper Eyelid) | Reticular Fibroblasts | - | MFAP5, MGP |
Reticular Fibroblasts | - | MFAP5, MGP | ||
Papillary Fibroblasts | Podoplanin | PTGDS | ||
[26] | Skin aging (Inguinoiliac region) | Secretory-Reticular Fibroblasts | Tetraspanin-8 | CTHRC1, MFAP5, WISP2, SLPI |
Pro-Inflammatory Fibroblasts | - | APOE, CXCL1, CXCL2, CXCL3, EFEMP1, CCL19 | ||
Secretory-Papillary Fibroblasts | Protein APCDD1 | ID1, WIF1, COL18A1, PTGDS | ||
Mesenchymal Fibroblasts | Glypican-3 | TNN, POSTN, SFRP1, ASPN | ||
Dermal-Papilla associated Fibroblasts | - | TNN, CRABP1 | ||
[41] | Skin aging (Outer Forearm) | Reticular Fibroblasts | Tetraspanin-8 | CTHRC1, MFAP5, WISP2, SLPI |
Papillary Fibroblasts | Protein APCDD1 | ID1, WIF1, COL18A1, PTGDS | ||
Inflammatory Fibroblasts | - | CCL19, APOE, CXCL2, CXCL3, EFEMP1 | ||
Mesenchymal Fibroblasts | Glypican-3 | TNN, POSTN, SFRP1, ASPN | ||
Dermal Sheath Fibroblasts | Dipeptidase 1, Tenomodulin, Glypican-3 | PMEPA1, TAGLN, MEF2C, MYL4, POSTN, COL11A1, SPARC , WFDC1 |
Ref. | Tissue and Site/Disease | Fibroblasts Population | Main Negative Surface Markers | Main Positive Surface Markers | Main Positive Non-Surface Markers |
---|---|---|---|---|---|
[42] | Normal skin (Not specified) | Papillary fibroblasts | CD26, CD31, CD45, E-cad | CD39, CD90 | LEF1, VIM, COL6A5, WNT5A, RSPO1 |
Reticular fibroblasts | CD31, CD45, E-cad | CD26, CD36, CD90 | MFAP5, PRG4, VIM, DCN, LUM | ||
[7] | Normal skin (Abdomen, Chest) | Papillary fibroblasts | CD31, CD45, E-cad, CD106, CD235, CD90 | CD26, CD39, PDPN, FAP | NTN1 |
Reticular fibroblasts | CD31, CD45, E-cad, CD106, CD235, FAP | CD36, CD90 | αSMA, MGP | ||
[24] | Normal skin (Abdomen, Chest) | Papillary fibroblasts | CD31, CD45, E-cad, CD106, CD235, CD90 | FAP | - |
Reticular fibroblasts | CD31, CD45, E-cad, CD106, CD235, FAP | CD90 | - | ||
[43] | Normal and wounded skin (Buttocks) | CD26-/CD90- | CD26, CD31, CD45, CD235, CD90 | - | - |
CD26+/CD90- | CD31, CD45, CD235, CD90 | CD26 | - | ||
CD26-/CD90+ | CD26, CD31, CD45, CD235 | CD90 | COL1A1 | ||
CD26+/CD90+ | CD31, CD45, CD235 | CD26, CD34, CD90 | COL1A1 | ||
[44] | Keloid Palmoplantar region | Myofibroblasts | - | TGFB1R | αSMA |
Fibroblasts | - | TGFB1R | - | ||
[45] | Normal skin and HTS Normal–(Trunk) HTS–(Hand, Chest) | HTS Fibroblasts | - | - | αSMA, DCN, Versican, TGF-β1 |
[46] | Normal skin and HTS Normal–(Trunk) HTS–(Face, Neck, Chest, Back, Arm) | HTS fibroblasts | CD26, CD31, CD36, CD45, E-cad, CD49f, FAP | CD39, CD90 | NLRP3, IL11, CXCL1 |
Fibroblasts | CD45, E-cad, CD49f | CD90, FAP | - | ||
Fibroblasts | CD45, E-cad, CD49f | CD26, CD90 | - | ||
Fibroblasts | CD31, CD45, E-cad, CD49f, CD39 | CD36, CD90, CRHR1, SYNGR2 | CBLN4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuszczyński, K.; Soszyńska, M.; Komorowski, M.; Lewandowska, P.; Zdanowski, R.; Sobiepanek, A.; Brytan, M.; Malejczyk, J.; Lutyńska, A.; Ścieżyńska, A. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells 2024, 13, 1206. https://doi.org/10.3390/cells13141206
Łuszczyński K, Soszyńska M, Komorowski M, Lewandowska P, Zdanowski R, Sobiepanek A, Brytan M, Malejczyk J, Lutyńska A, Ścieżyńska A. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells. 2024; 13(14):1206. https://doi.org/10.3390/cells13141206
Chicago/Turabian StyleŁuszczyński, Krzysztof, Marta Soszyńska, Michał Komorowski, Paulina Lewandowska, Robert Zdanowski, Anna Sobiepanek, Marek Brytan, Jacek Malejczyk, Anna Lutyńska, and Aneta Ścieżyńska. 2024. "Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review" Cells 13, no. 14: 1206. https://doi.org/10.3390/cells13141206
APA StyleŁuszczyński, K., Soszyńska, M., Komorowski, M., Lewandowska, P., Zdanowski, R., Sobiepanek, A., Brytan, M., Malejczyk, J., Lutyńska, A., & Ścieżyńska, A. (2024). Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells, 13(14), 1206. https://doi.org/10.3390/cells13141206