Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker
Abstract
:1. Introduction
1.1. Hepatocellular Carcinoma
1.2. Current Biomarkers Used for HCC Diagnosis and Progression
1.3. MDK-Mediated Signaling and Cellular Function
1.4. MDK Localization, Expression, and Detection
1.5. MDK’s Potential as a Biomarker for HCC Diagnosis and Progression
Reference | Samples | Methodology | Main Findings | Comparison with AFP |
---|---|---|---|---|
[37] |
| ELISA | MDK levels were upregulated in HCC patients compared with liver cirrhosis patients. | N/A |
[38] |
| ELISA | MDK had high sensitivity for HCC diagnosis vs. cirrhosis. | N/A |
[39] |
| ELISA | Increased MDK levels in chronic HCV-induced HCC patients compared with controls. | MDK should be used in combination with AFP. |
[40] |
| ELISA | MDK was higher in tumor sizes exceeding 5 cm compared with those with sizes below 3 cm. | N/A |
[23] |
|
| MDK mRNA levels were higher in HCC cell lines compared with normal liver cells. Serum MDK was associated with CTC counts and post-operative recurrence in HCC patients. MDK serum levels were upregulated in HCC patients compared with controls. In vitro and in vivo experiments showed that MDK promotes anoikis. | N/A |
[42] |
|
| MDK expression was higher in the HCC group. | No correlation with AFP levels. |
[15] |
| ELISA | MDK was overexpressed in HCC patients. | MDK was better than AFP in HCC diagnosis, especially in the early stages. No correlation with AFP levels. |
[43] |
| ELISA | MDK was higher in the HCC group compared with other groups and could distinguish between HCC and non-HCC cases, despite the presence of cirrhosis. | MDK’s sensitivity was superior to AFP’s, although AFP’s specificity was higher. MDK should be used in combination with AFP. |
[44] |
|
| MDK was overexpressed in HCC cell lines compared with normal liver cells. | MDK was better than AFP as it could detect HCC (small-size or early-stage tumors) even in AFP-negative tumors. |
[45] |
|
| MDK was higher in the HCC group compared with other groups. MDK was higher in patients with multiple focal lesions, lesions >5 cm, and portal vein thrombosis. MDK predicted HCC development in HCV-related cirrhotic patients. | MDK was better than AFP in differentiating HCC patients from individuals with liver cirrhosis. |
[46] |
|
| MDK was detected in 95% of patients before treatment and decreased after treatment to 67%. MDK was associated with tumor number and size, vascular invasion, and clinical stage. Patients with positive MDK before intervention were more likely to relapse compared with those without MDK expression. MDK expression was detected in 83% of patients with early-stage AFP-negative HCC. | 95% of AFP-negative patients exhibited positive MDK expression. |
[47] |
|
| MDK serum levels were elevated in HCC patients. | No correlation with AFP levels. MDK should be used in combination with AFP. |
[48] |
|
| Increased MDK levels in HCC patients compared with cirrhotic patients and controls. No correlation was found between MDK and AFP. | No correlation with AFP levels. 80% of AFP-negative patients were MDK-positive. MDK should be used in combination with AFP. |
[49] |
|
| MDK was elevated in HCC patients compared with high-risk individuals and increased in HCC tissues compared with normal adjacent tissues. | MDK should be used in combination with AFP. |
[50] |
|
| Increased MDK levels in HCC patients compared with cirrhotic patients and healthy controls. | MDK had better diagnostic performance in diagnosing very early and early HCC compared with AFP. MDK mean value differed in HCC patients negative for AFP compared with HCC patients positive for AFP. |
[51] |
|
| Increased MDK levels in HCV and HCC groups compared with controls. | |
[52] |
|
| MDK was higher in the HCC group. MDK was not associated with HCC etiology, but was associated with BCLC staging and high tumor number. MDK could diagnose NASH-related HCC. |
|
1.6. MDK in Comparison with AFP
2. Conclusions
3. Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Dehghani, S.H.H.a.M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- Calderon-Martinez, E.; Landazuri-Navas, S.; Vilchez, E.; Cantu-Hernandez, R.; Mosquera-Moscoso, J.; Encalada, S.; Al Lami, Z.; Zevallos-Delgado, C.; Cinicola, J. Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J. Clin. Med. Res. 2023, 15, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Baecker, A.; Liu, X.; La Vecchia, C.; Zhang, Z.F. Worldwide incidence of hepatocellular carcinoma cases attributable to major risk factors. Eur. J. Cancer Prev. 2018, 27, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 10573–10583. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L. Tumor microenviroment and hepatocellular carcinoma metastasis. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. S1), 43–48. [Google Scholar] [CrossRef]
- Parikh, N.D.; Mehta, A.S.; Singal, A.G.; Block, T.; Marrero, J.A.; Lok, A.S. Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2495–2503. [Google Scholar] [CrossRef]
- Omar, M.A.; Omran, M.M.; Farid, K.; Tabll, A.A.; Shahein, Y.E.; Emran, T.M.; Petrovic, A.; Lucic, N.R.; Smolic, R.; Kovac, T.; et al. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023, 11, 1852. [Google Scholar] [CrossRef]
- Pinero, F.; Dirchwolf, M.; Pessoa, M.G. Biomarkers in Hepatocellular Carcinoma: Diagnosis, Prognosis and Treatment Response Assessment. Cells 2020, 9, 1370. [Google Scholar] [CrossRef]
- Lapitan, L., Jr.; Pietrzak, M.; Krawczyk, M.; Malinowska, E. Serum biomarkers and ultrasensitive biosensors for diagnosis of early-stage hepatocellular carcinoma. Sens. Actuators B. Chem. 2023, 393, 134209. [Google Scholar] [CrossRef]
- Falahi, S.; Rafiee-Pour, H.A.; Zarejousheghani, M.; Rahimi, P.; Joseph, Y. Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021, 9, 964. [Google Scholar] [CrossRef]
- Saikia, M.; Cheung, N.; Singh, A.K.; Kapoor, V. Role of Midkine in Cancer Drug Resistance: Regulators of Its Expression and Its Molecular Targeting. Int. J. Mol. Sci. 2023, 24, 8739. [Google Scholar] [CrossRef]
- Shaheen, K.Y.; Abdel-Mageed, A.I.; Safwat, E.; AlBreedy, A.M. The value of serum midkine level in diagnosis of hepatocellular carcinoma. Int. J. Hepatol. 2015, 2015, 146389. [Google Scholar] [CrossRef] [PubMed]
- Filippou, P.S.; Karagiannis, G.S.; Constantinidou, A. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene 2020, 39, 2040–2054. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T. Structure and function of midkine as the basis of its pharmacological effects. Br. J. Pharmacol. 2014, 171, 814–826. [Google Scholar] [CrossRef]
- Muramatsu, T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 410–425. [Google Scholar] [CrossRef]
- Majaj, M.; Weckbach, L.T. Midkine-A novel player in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 1003104. [Google Scholar] [CrossRef]
- Gowhari Shabgah, A.; Ezzatifar, F.; Aravindhan, S.; Olegovna Zekiy, A.; Ahmadi, M.; Gheibihayat, S.M.; Gholizadeh Navashenaq, J. Shedding more light on the role of Midkine in hepatocellular carcinoma: New perspectives on diagnosis and therapy. IUBMB Life 2021, 73, 659–669. [Google Scholar] [CrossRef]
- Polykratis, A.; Katsoris, P.; Courty, J.; Papadimitriou, E. Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J. Biol. Chem. 2005, 280, 22454–22461. [Google Scholar] [CrossRef]
- Bie, C.; Chen, Y.; Tang, H.; Li, Q.; Zhong, L.; Peng, X.; Shi, Y.; Lin, J.; Lai, J.; Wu, S.; et al. Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop. Dig. Dis. Sci. 2022, 67, 569–584. [Google Scholar] [CrossRef]
- Sun, B.; Hu, C.; Yang, Z.; Zhang, X.; Zhao, L.; Xiong, J.; Ma, J.; Chen, L.; Qian, H.; Luo, X.; et al. Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget 2017, 8, 32523–32535. [Google Scholar] [CrossRef]
- Muramatsu, T. Midkine: A promising molecule for drug development to treat diseases of the central nervous system. Curr. Pharm. Des. 2011, 17, 410–423. [Google Scholar] [CrossRef]
- Dai, L.C.; Shao, J.Z.; Min, L.S.; Xiao, Y.T.; Xiang, L.X.; Ma, Z.H. Midkine accumulated in nucleolus of HepG2 cells involved in rRNA transcription. World J. Gastroenterol. 2008, 14, 6249–6253. [Google Scholar] [CrossRef]
- Wu, L.; Chen, H.; Fu, C.; Xing, M.; Fang, H.; Yang, F.; Yang, Q.; Zhang, Y.; Li, W.; Chen, Z. Midkine mediates dysfunction of liver sinusoidal endothelial cells through integrin alpha4 and alpha6. Vasc. Pharmacol. 2022, 147, 107113. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Hao, H.; Lu, F.; Wang, J.; Ma, M.; Jia, B.; Zhuo, M.; Wang, J.; Chi, Y.; et al. Secreted proteins MDK, WFDC2, and CXCL14 as candidate biomarkers for early diagnosis of lung adenocarcinoma. BMC Cancer 2023, 23, 110. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Chen, Z.; Li, W.; Gao, C.E.; Li, G.; Guo, G.; Yang, Y.; Ai, Y.; Wu, L.; Zhang, M. MDK Protein Overexpression Correlates with the Malignant Status and Prognosis of Non-small Cell Lung Cancer. Arch. Med. Res. 2015, 46, 635–641. [Google Scholar] [CrossRef]
- Hu, B.; Qin, C.; Li, L.; Wei, L.; Mo, X.; Fan, H.; Lei, Y.; Wei, F.; Zou, D. Midkine promotes glioblastoma progression via PI3K-Akt signaling. Cancer Cell Int. 2021, 21, 509. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, H.Z.; Cheng, Y.P.; Luo, Z.B.; Zhang, J.Y.; Li, S.S.; Xu, X.J.; Tang, Y.M. High expression of Midkine (MK) indicates poor prognosis in childhood acute lymphoblastic leukemia. Hematology 2016, 21, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Yao, J.; Gao, S.G.; Yang, Y.T.; Peng, X.Q.; Feng, X.S. Midkine and syndecan-1 levels correlate with the progression of malignant gastric cardiac adenocarcinoma. Mol. Med. Rep. 2014, 10, 1409–1415. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, C.; Mou, Z.; Wu, S.; Dai, X.; Chen, X.; Ou, Y.; Zhang, L.; Sha, J.; Jiang, H. Identification and validation of a poor clinical outcome subtype of primary prostate cancer with Midkine abundance. Cancer Sci. 2022, 113, 3698–3709. [Google Scholar] [CrossRef]
- Chiu, T.J.; Chen, C.H.; Chen, Y.J.; Wee, Y.; Wang, C.S.; Luo, S.D. Prognosis of Midkine and AT1R expression in resectable head and neck squamous cell carcinoma. Cancer Cell Int. 2023, 23, 212. [Google Scholar] [CrossRef]
- Yao, J.; Li, W.Y.; Li, S.G.; Feng, X.S.; Gao, S.G. Midkine promotes perineural invasion in human pancreatic cancer. World J. Gastroenterol. 2014, 20, 3018–3024. [Google Scholar] [CrossRef]
- Tanabe, K.; Matsumoto, M.; Ikematsu, S.; Nagase, S.; Hatakeyama, A.; Takano, T.; Niikura, H.; Ito, K.; Kadomatsu, K.; Hayashi, S.; et al. Midkine and its clinical significance in endometrial carcinoma. Cancer Sci. 2008, 99, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhou, Q.; Wu, W.; Ma, Y. Midkine Is a Potential Urinary Biomarker for Non-Invasive Detection of Bladder Cancer with Microscopic Hematuria. Onco. Targets Ther. 2019, 12, 11765–11775. [Google Scholar] [CrossRef] [PubMed]
- Omran, M.M.; Farid, K.; Omar, M.A.; Emran, T.M.; El-Taweel, F.M.; Tabll, A.A. A combination of alpha-fetoprotein, midkine, thioredoxin and a metabolite for predicting hepatocellular carcinoma. Ann. Hepatol. 2020, 19, 179–185. [Google Scholar] [CrossRef]
- Malov, S.I.; Malov, I.V.; Kuvshinov, A.G.; Marche, P.N.; Decaens, T.; Macek-Jilkova, Z.; Yushchuk, N.D. Search for Effective Serum Tumor Markers for Early Diagnosis of Hepatocellular Carcinoma Associated with Hepatitis C. Sovrem. Tekhnologii Med. 2021, 13, 27–33. [Google Scholar] [CrossRef]
- Haque, S.; Tanweeruddin, M.; Kumari, B.; Kumar, A.; Kumar, S.; Kumar, A.; Kumar, A.; Kumar, A.; Jha, S.; Muzaffar, A. Status of serum alpha feto-protein (AFP) and midkine (MDK) levels in patients with hepatocellular carcinoma. J. Basic Res. Med. Sci. 2015, 2, 15–19. [Google Scholar]
- Darmadi, D.; Ruslie, R.H.; Pakpahan, C. Association between serum midkine levels and tumor size in Indonesian hepatocellular carcinoma patients: A cross-sectional study. Rom. J. Intern. Med. 2022, 60, 229–234. [Google Scholar] [CrossRef]
- Shang, B.; Wang, R.; Qiao, H.; Zhao, X.; Wang, L.; Sui, S. Multi-omics analysis of pyroptosis regulation patterns and characterization of tumor microenvironment in patients with hepatocellular carcinoma. PeerJ 2023, 11, e15340. [Google Scholar] [CrossRef] [PubMed]
- Saad, Y.; El-Serafy, M.; Eldin, M.S.; Abdellatif, Z.; Khatab, H.; Elbaz, T.; Elgarem, H. New genetic markers for diagnosis of hepatitis C related hepatocellular carcinoma in Egyptian patients. J. Gastrointest. Liver Dis. 2013, 22, 419–425. [Google Scholar]
- Zekri, A.-R.N.; El Kassas, M.; Salam, E.S.E.; Hassan, R.M.; Mohanad, M.; Gabr, R.M.; Lotfy, M.M.; Abdel-Zaher, R.A.T.; Bahnassy, A.A.; Ahmed, O.S. The possible role of Dickkopf-1, Golgi protein- 73 and Midkine as predictors of hepatocarcinogenesis: A review and an Egyptian study. Sci. Rep. 2020, 10, 5156. [Google Scholar] [CrossRef]
- Zhu, W.W.; Guo, J.J.; Guo, L.; Jia, H.L.; Zhu, M.; Zhang, J.B.; Loffredo, C.A.; Forgues, M.; Huang, H.; Xing, X.J.; et al. Evaluation of midkine as a diagnostic serum biomarker in hepatocellular carcinoma. Clin. Cancer Res. 2013, 19, 3944–3954. [Google Scholar] [CrossRef]
- El-Shayeb, A.F.; El-Habachi, N.M.; Mansour, A.R.; Zaghloul, M.S. Serum midkine is a more sensitive predictor for hepatocellular carcinoma than Dickkopf-1 and alpha-L-fucosidase in cirrhotic HCV patients. Medicine 2021, 100, e25112. [Google Scholar] [CrossRef]
- Zheng, L.; Li, H.; Huang, J.; Shin, J.; Luo, S.; Guo, C.; Zhao, Y.; Li, F. Serum midkine levels for the diagnosis and assessment of response to interventional therapy in patients with hepatocellular carcinoma. J. Interv. Med. 2021, 4, 39–45. [Google Scholar] [CrossRef]
- Hodeib, H.; ELshora, O.; Selim, A.; Sabry, N.M.; El-Ashry, H.M. Serum Midkine and Osteopontin Levels as Diagnostic Biomarkers of Hepatocellular Carcinoma. Electron. Physician 2017, 9, 3492–3498. [Google Scholar] [CrossRef]
- Mashaly, A.H.; Anwar, R.; Ebrahim, M.A.; Eissa, L.A.; El Shishtawy, M.M. Diagnostic and Prognostic Value of Talin-1 and Midkine as Tumor Markers in Hepatocellular Carcinoma in Egyptian Patients. Asian Pac. J. Cancer Prev. 2018, 19, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.J.; Lin, Z.H.; Cheng, T.I.; Liang, C.T.; Kuo, T.M.; Kao, K.J. Serum midkine as a prognostic biomarker for patients with hepatocellular carcinoma. Am. J. Clin. Pathol. 2011, 136, 594–603. [Google Scholar] [CrossRef]
- Saeed, M.; Ibrahim, I.M.; Zidan, A.A. Role of Serum Midkine Level as a Diagnostic Biomarker for Very Early and Early Hepatocellular Carcinoma. Afro-Egypt. J. Infect. Endem. Dis. 2017, 7, 73–79. [Google Scholar] [CrossRef]
- Daif, A.; Al-Azzawi, M.A.; Sakr, M.A.; Ismail, H.A.; Gadallah, M. Noninvasive identifcation of molecular biomarkers of hepatocellular carcinoma in HCV-Egyptian patients. J. Egypt. Nat. Cancer Instit. 2023, 35, 11. [Google Scholar] [CrossRef]
- Vongsuvanh, R.; van der Poorten, D.; Iseli, T.; Strasser, S.I.; McCaughan, G.W.; George, J. Midkine Increases Diagnostic Yield in AFP Negative and NASH-Related Hepatocellular Carcinoma. PLoS ONE 2016, 11, e0155800. [Google Scholar] [CrossRef]
- Piratvisuth, T.; Hou, J.; Tanwandee, T.; Berg, T.; Vogel, A.; Trojan, J.; De Toni, E.N.; Kudo, M.; Eiblmaier, A.; Klein, H.G.; et al. Development and clinical validation of a novel algorithmic score (GAAD) for detecting HCC in prospective cohort studies. Hepatol. Commun. 2023, 7, e0317. [Google Scholar] [CrossRef]
- Eletreby, R.; Elsharkawy, M.; Taha, A.A.; Hassany, M.; Abdelazeem, A.; El-Kassas, M.; Soliman, A. Evaluation of GALAD Score in Diagnosis and Follow-up of Hepatocellular Carcinoma after Local Ablative Therapy. J. Clin. Transl. Hepatol. 2023, 11, 334–340. [Google Scholar] [CrossRef]
- Guan, M.C.; Zhang, S.Y.; Ding, Q.; Li, N.; Fu, T.T.; Zhang, G.X.; He, Q.Q.; Shen, F.; Yang, T.; Zhu, H. The Performance of GALAD Score for Diagnosing Hepatocellular Carcinoma in Patients with Chronic Liver Diseases: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 949. [Google Scholar] [CrossRef]
- Yang, J.D.; Addissie, B.D.; Mara, K.C.; Harmsen, W.S.; Dai, J.; Zhang, N.; Wongjarupong, N.; Ali, H.M.; Ali, H.A.; Hassan, F.A.; et al. GALAD Score for Hepatocellular Carcinoma Detection in Comparison with Liver Ultrasound and Proposal of GALADUS Score. Cancer Epidemiol. Biomark. Prev. 2019, 28, 531–538. [Google Scholar] [CrossRef]
- Al-Shami, A.; Oweis, R.J.; Al-Fandi, M.G. Developing an electrochemical immunosensor for early diagnosis of hepatocellular carcinoma. Sens. Rev. 2021, 41, 125–134. [Google Scholar] [CrossRef]
Reference | MDK Cutoff Value (ng/mL) | MDK | AFP Cutoff Value | AFP | ||
---|---|---|---|---|---|---|
Specificity (%) | Sensitivity (%) | Specificity (%) | Sensitivity (%) | |||
[44] | 0.654 | 86.8 | 86.9 | 20 ng/mL | 86.8 | 51.9 |
[15] | 0.387 | 83.3 | 92.5 | 88.5 ng/mL | 96.7 | 40 |
[52] | 0.440 | 62.2 | 70.9 | 24 ng/mL | 96.5 | 43 |
[47] | 0.650 | 96.2 | 98.4 | 80 ng/mL | 95 | 97 |
[48] | 1.683 | 83.87 | 81.82 | 200 ng/mL | 96.77 | 52.27 |
[37] | 1.000 | 79 | 76 | 400 (U/L) | 100 | 29 |
[38] | 0.800 | 63.6 | 85.5 | 20 ng/mL | 94.5 | 45.5 |
[43] | 0.152 | 80.6 | 88.5 | 10.05 ng/mL | 84.4 | 74.4 |
[45] | 5.100 | 90 | 100 | 10 ng/mL | 45 | 78 |
[51] | 1.930 | 68.2 | 50 | 7.55 ng/mL | 72.7 | 78.6 |
[50] | 34.00 | 90 | 91 | 21.5 ng/mL | 90 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christou, C.; Stylianou, A.; Gkretsi, V. Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells 2024, 13, 136. https://doi.org/10.3390/cells13020136
Christou C, Stylianou A, Gkretsi V. Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells. 2024; 13(2):136. https://doi.org/10.3390/cells13020136
Chicago/Turabian StyleChristou, Christiana, Andreas Stylianou, and Vasiliki Gkretsi. 2024. "Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker" Cells 13, no. 2: 136. https://doi.org/10.3390/cells13020136
APA StyleChristou, C., Stylianou, A., & Gkretsi, V. (2024). Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells, 13(2), 136. https://doi.org/10.3390/cells13020136