An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Biopsy of Skeletal Muscles
2.2. RNA Isolation, cDNA Synthesis, and RT-qPCR
2.3. Sample Preparation and MS Based-Selected Reaction Monitoring (SRM)
2.4. RNAscope Fluorescent In Situ Hybridization (FISH)
2.5. INSU Antibody Development, Immunohistochemistry, and Amyloid Staining
2.6. Statistical Data Analysis
3. Results
3.1. INSU Promoter cis-Elements
3.2. Positive Correlation of INSR, INSU, and PAX7 in Skeletal Muscle Biopsies with Age
3.3. Localization of INSR and INSU mRNA in Myogenic Satellite Cells and Inflammasome
3.4. Identification of INSU Protein in SKM Myogenic Satellite Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
INSU | insulin upstream open reading frame |
SKM | skeletal muscle |
MuSCs | skeletal muscle satellite cells |
Uorf | upstream open reading frame |
pORF | primary open reading frame |
TSS | transcription start site |
SRM | MS based selected reaction monitoring assay |
IF | immunofluorescence |
VNTRs | variable number tandem repeats |
Yrs | years |
S-IBM | sporadic inclusion-body |
MYA | million years ago |
References
- Yamakawa, H.; Kusumoto, D.; Hashimoto, H.; Yuasa, S. Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int. J. Mol. Sci. 2020, 21, 1830. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Victor, P.; Garcia-Prat, L.; Munoz-Canoves, P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 2022, 23, 204–226. [Google Scholar] [CrossRef] [PubMed]
- Jejurikar, S.S.; Henkelman, E.A.; Cederna, P.S.; Marcelo, C.L.; Urbanchek, M.G.; Kuzon, W.M., Jr. Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp. Gerontol. 2006, 41, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [PubMed]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef]
- Renna, L.V.; Bose, F.; Brigonzi, E.; Fossati, B.; Meola, G.; Cardani, R. Aberrant insulin receptor expression is associated with insulin resistance and skeletal muscle atrophy in myotonic dystrophies. PLoS ONE 2019, 14, e0214254. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, Y.E.; Chen, J.Y.; Liu, C.J.; Zhou, W.Z.; Li, Y.; Zhang, M.; Zhang, R.; Wei, L.; Li, C.Y. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet. 2012, 8, e1002942. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Landback, P.; Vibranovski, M.D.; Long, M. Accelerated recruitment of new brain development genes into the human genome. PLoS Biol. 2011, 9, e1001179. [Google Scholar] [CrossRef]
- Brunet, M.A.; Levesque, S.A.; Hunting, D.J.; Cohen, A.A.; Roucou, X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res. 2018, 28, 609–624. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wu, X.; Tang, X.; Wu, C.; Lu, J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat. Commun. 2021, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Huang, W.; Dong, F.; Liu, Y.; Zhang, B.; Jing, L.; Wang, M.; Yang, G.; Jing, C. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: A meta-analysis. Acta Diabetol. 2015, 52, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.R.; Zhu, M.; Zhang, P.; Mazucanti, C.H.; Huang, N.S.; Lang, D.L.; Chen, Q.; Auluck, P.; Marenco, S.; O’Connell, J.F.; et al. Novel Human Insulin Isoforms and Calpha-Peptide Product in Islets of Langerhans and Choroid Plexus. Diabetes 2021, 70, 2947–2956. [Google Scholar] [CrossRef] [PubMed]
- Hay, C.W.; Docherty, K. Comparative analysis of insulin gene promoters: Implications for diabetes research. Diabetes 2006, 55, 3201–3213. [Google Scholar] [CrossRef] [PubMed]
- Mazucanti, C.H.; Liu, Q.R.; Lang, D.; Huang, N.; O’Connell, J.F.; Camandola, S.; Egan, J.M. Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight 2019, 4, e131682. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, M.; Geng-Spyropoulos, M.; Shardell, M.; Gonzalez-Freire, M.; Gudnason, V.; Eiriksdottir, G.; Schaumberg, D.; Van Eyk, J.E.; Ferrucci, L.; et al. A novel, multiplexed targeted mass spectrometry assay for quantification of complement factor H (CFH) variants and CFH-related proteins 1–5 in human plasma. Proteomics 2017, 17, 1600237. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, P.; Geng-Spyropoulos, M.; Moaddel, R.; Semba, R.D.; Ferrucci, L. A robotic protocol for high-throughput processing of samples for selected reaction monitoring assays. Proteomics 2017, 17, 1600339. [Google Scholar] [CrossRef]
- German, M.; Ashcroft, S.; Docherty, K.; Edlund, H.; Edlund, T.; Goodison, S.; Imura, H.; Kennedy, G.; Madsen, O.; Melloul, D.; et al. The insulin gene promoter. A simplified nomenclature. Diabetes 1995, 44, 1002–1004. [Google Scholar] [CrossRef]
- Kaneto, H.; Miyatsuka, T.; Kawamori, D.; Yamamoto, K.; Kato, K.; Shiraiwa, T.; Katakami, N.; Yamasaki, Y.; Matsuhisa, M.; Matsuoka, T.A. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr. J. 2008, 55, 235–252. [Google Scholar] [CrossRef]
- Reuter, K.; Biehl, A.; Koch, L.; Helms, V. PreTIS: A Tool to Predict Non-canonical 5′ UTR Translational Initiation Sites in Human and Mouse. PLoS Comput. Biol. 2016, 12, e1005170. [Google Scholar] [CrossRef]
- LIU, Q.-R.; ZHU, M.; GHOSH, P.; CHIA, C.W.; EGAN, J.M. 1304-P: Quantification of Preproinsulin and Insulin Isoforms Derived from Upstream Open Reading Frames in Human Clinical Samples by Selected Reaction Monitoring Assay. Diabetes 2022, 71 (Suppl. 1), 1304-P. [Google Scholar] [CrossRef]
- Liu, Q.R.; Zhu, M.; Chen, Q.; Mustapic, M.; Kapogiannis, D.; Egan, J.M. Novel Hominid-Specific IAPP Isoforms: Potential Biomarkers of Early Alzheimer’s Disease and Inhibitors of Amyloid Formation. Biomolecules 2023, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, A.; Rauch, T.A.; Todorov, I.; Ku, H.T.; Al-Abdullah, I.H.; Kandeel, F.; Mullen, Y.; Pfeifer, G.P.; Ferreri, K. Insulin gene expression is regulated by DNA methylation. PLoS ONE 2009, 4, e6953. [Google Scholar] [CrossRef]
- Cornelison, D.D.; Filla, M.S.; Stanley, H.M.; Rapraeger, A.C.; Olwin, B.B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol. 2001, 239, 79–94. [Google Scholar] [CrossRef]
- Askanas, V.; Engel, W.K. Inclusion-body myositis: Newest concepts of pathogenesis and relation to aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 2001, 60, 1–14. [Google Scholar] [CrossRef]
- Askanas, V.; Engel, W.K.; Nogalska, A. Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J. Neuropathol. Exp. Neurol. 2012, 71, 680–693. [Google Scholar] [CrossRef]
- Askanas, V.; Engel, W.K. Unfolding story of inclusion-body myositis and myopathies: Role of misfolded proteins, amyloid-beta, cholesterol, and aging. J. Child. Neurol. 2003, 18, 185–190. [Google Scholar] [CrossRef]
- Hatos, A.; Teixeira, J.M.C.; Barrera-Vilarmau, S.; Horvath, A.; Tosatto, S.C.E.; Vendruscolo, M.; Fuxreiter, M. FuzPred: A web server for the sequence-based prediction of the context-dependent binding modes of proteins. Nucleic Acids Res. 2023, 51, W198–W206. [Google Scholar] [CrossRef]
- Hatos, A.; Tosatto, S.C.E.; Vendruscolo, M.; Fuxreiter, M. FuzDrop on AlphaFold: Visualizing the sequence-dependent propensity of liquid-liquid phase separation and aggregation of proteins. Nucleic Acids Res. 2022, 50, W337–W344. [Google Scholar] [CrossRef]
- Schmidt, J.; Barthel, K.; Wrede, A.; Salajegheh, M.; Bahr, M.; Dalakas, M.C. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 2008, 131 Pt 5, 1228–1240. [Google Scholar] [CrossRef]
- Hernandez-Sanchez, C.; Rubio, E.; Serna, J.; de la Rosa, E.J.; de Pablo, F. Unprocessed proinsulin promotes cell survival during neurulation in the chick embryo. Diabetes 2002, 51, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Berwick, R.C.; Beckers, G.J.; Okanoya, K.; Bolhuis, J.J. A Bird’s Eye View of Human Language Evolution. Front. Evol. Neurosci. 2012, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Sanchez, C.; Mansilla, A.; de la Rosa, E.J.; Pollerberg, G.E.; Martinez-Salas, E.; de Pablo, F. Upstream AUGs in embryonic proinsulin mRNA control its low translation level. EMBO J. 2003, 22, 5582–5592. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, L.B.; Snijders, T.; Drost, M.; Delhaas, T.; Kadi, F.; van Loon, L.J. Satellite cells in human skeletal muscle; from birth to old age. Age 2014, 36, 545–547. [Google Scholar] [CrossRef]
- Basch, M.L.; Bronner-Fraser, M.; Garcia-Castro, M.I. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 2006, 441, 218–222. [Google Scholar] [CrossRef]
- Franco, I.; Fernandez-Gonzalo, R.; Vrtacnik, P.; Lundberg, T.R.; Eriksson, M.; Gustafsson, T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. Int. Rev. Cell Mol. Biol. 2019, 346, 157–200. [Google Scholar] [PubMed]
- Olguin, H.C.; Yang, Z.; Tapscott, S.J.; Olwin, B.B. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J. Cell Biol. 2007, 177, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Jennings, R.E.; Berry, A.A.; Strutt, J.P.; Gerrard, D.T.; Hanley, N.A. Human pancreas development. Development 2015, 142, 3126–3137. [Google Scholar] [CrossRef]
- Costamagna, D.; Quattrocelli, M.; Duelen, R.; Sahakyan, V.; Perini, I.; Palazzolo, G.; Sampaolesi, M. Fate choice of post-natal mesoderm progenitors: Skeletal versus cardiac muscle plasticity. Cell Mol. Life Sci. 2014, 71, 615–627. [Google Scholar] [CrossRef]
- Merrick, D.; Ting, T.; Stadler, L.K.; Smith, J. A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre. BMC Dev. Biol. 2007, 7, 65. [Google Scholar] [CrossRef]
Peptide Name | Peptide Sequences | MW (dal) | AA |
---|---|---|---|
pep-INSR_light | H2N-TFEDYLHNVVFVPR-OH | 1735.9 | 14 |
pep-INSR_heavy | H2N-TFEDYLHNVVFV^PR-OH | 1743.9 | 14 |
pep-PAX7_light | H2N-NVSLSTQR-OH | 904.5 | 8 |
pep-PAX7_heavy | H2N-NVSLSTQR^-OH | 914.5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.-R.; Zhu, M.; Salekin, F.; McCoy, B.M.; Kennedy, V., Jr.; Tian, J.; Mazucanti, C.H.; Chia, C.W.; Egan, J.M. An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age. Cells 2024, 13, 1903. https://doi.org/10.3390/cells13221903
Liu Q-R, Zhu M, Salekin F, McCoy BM, Kennedy V Jr., Tian J, Mazucanti CH, Chia CW, Egan JM. An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age. Cells. 2024; 13(22):1903. https://doi.org/10.3390/cells13221903
Chicago/Turabian StyleLiu, Qing-Rong, Min Zhu, Faatin Salekin, Brianah M. McCoy, Vernon Kennedy, Jr., Jane Tian, Caio H. Mazucanti, Chee W. Chia, and Josephine M. Egan. 2024. "An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age" Cells 13, no. 22: 1903. https://doi.org/10.3390/cells13221903
APA StyleLiu, Q. -R., Zhu, M., Salekin, F., McCoy, B. M., Kennedy, V., Jr., Tian, J., Mazucanti, C. H., Chia, C. W., & Egan, J. M. (2024). An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age. Cells, 13(22), 1903. https://doi.org/10.3390/cells13221903