From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications
Abstract
:1. Introduction
2. Mitochondrial Rejuvenation
3. Challenges in Translating Cellular Rejuvenation to Clinical Applications
Delivery Method | Description | Advantages | Limitations | Ref. |
---|---|---|---|---|
Viral Vectors | Use modified viruses to deliver genetic material directly to targeted cells, commonly used in gene-editing therapies for rejuvenation. | High delivery efficiency; strong gene-editing capabilities. | Risk of immune response; potential off-target effects; concerns over long-term safety and integration stability. | [70,71] |
Nanoparticles | Synthetic particles designed to carry therapeutic agents, including drugs or genetic material, to specific cells and tissues. | Low immunogenicity; customizable surface properties. | Limited targeting precision; challenges in crossing biological barriers, like the blood–brain barrier. | [72,73] |
Liposomes | Lipid-based vesicles encapsulating therapeutic agents, protecting them from degradation until reaching targeted cells, commonly used for drug and gene delivery. | Low immunogenicity; protects cargo until delivery. | Limited targeting specificity; potential difficulty penetrating certain biological barriers. | [74] |
CRISPR-Cas9 with Tissue-Specific Promoters | Modified CRISPR-Cas9 gene-editing system with tissue-specific promoters for increased precision, activating only in selected tissues for rejuvenation purposes. | High targeting precision; minimizes off-target risks. | Complex delivery requirements; limited by current research; risk of immune response with repeat dosing. | [45] |
Biodegradable Nanoparticles | Advanced nanoparticles designed to degrade after delivery, minimizing toxicity and long-term side effects. | High biocompatibility; reduced long-term risk. | Developing precise targeting mechanisms remains a challenge; including stability issues in complex environments. | [75,76] |
Engineered Extracellular Vesicles | Naturally derived vesicles engineered to carry therapeutic agents directly to aging cells or mitochondria, offering targeted rejuvenation effects. | High cellular compatibility; can naturally target cells. | Production scalability; limited payload capacity; precise targeting strategies are still in early stages of research. | [77,78] |
4. CRISPR Technology for Rejuvenation
5. Personalized Stem Cell Treatments for Rejuvenation Therapies
6. Future Directions and the Path to Clinical Success
7. Artificial Intelligence and Machine Learning for Cellular Rejuvenation
8. Inflammation Determinants as Major Targets for Therapy of Senescence-Associated Disorders
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boccardi, V.; Marano, L. Aging, Cancer, and Inflammation: The Telomerase Connection. Int. J. Mol. Sci. 2024, 25, 8542. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Orr, M.E.; Polidori, M.C.; Ruggiero, C.; Mecocci, P. Focus on senescence: Clinical significance and practical applications. J. Intern. Med. 2024, 295, 599–619. [Google Scholar] [CrossRef] [PubMed]
- Gold, N.M.; Okeke, M.N.; He, Y.H. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis. 2024, 15, 2470–2490. [Google Scholar] [CrossRef] [PubMed]
- Chervova, O.; Panteleeva, K.; Chernysheva, E.; Widayati, T.A.; Baronik, Z.F.; Hrbková, N.; Schneider, J.L.; Bobak, M.; Beck, S.; Voloshin, V. Breaking new ground on human health and well-being with epigenetic clocks: A systematic review and meta-analysis of epigenetic age acceleration associations. Ageing Res. Rev. 2024, 102, 102552. [Google Scholar] [CrossRef]
- Desiderio, A.; Pastorino, M.; Campitelli, M.; Longo, M.; Miele, C.; Napoli, R.; Beguinot, F.; Raciti, G.A. DNA methylation in cardiovascular disease and heart failure: Novel prediction models? Clin. Epigenetics 2024, 16, 115. [Google Scholar] [CrossRef]
- Kastelan, S.; Nikuseva-Martic, T.; Pasalic, D.; Antunica, A.G.; Zimak, D.M. Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration. Int. J. Mol. Sci. 2024, 25, 7271. [Google Scholar] [CrossRef]
- Muthamil, S.; Kim, H.Y.; Jang, H.J.; Lyu, J.H.; Shin, U.C.; Go, Y.; Park, S.H.; Lee, H.G.; Park, J.H. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv. Biol. 2024, 8, 2400079. [Google Scholar] [CrossRef]
- Martini, H.; Passos, J.F. Cellular senescence: All roads lead to mitochondria. FEBS J. 2023, 290, 1186–1202. [Google Scholar] [CrossRef]
- Wang, Y.M.; Huang, X.W.; Luo, G.F.; Xu, Y.Y.; Deng, X.Q.; Lin, Y.M.; Wang, Z.Z.; Zhou, S.W.; Wang, S.Y.; Chen, H.R.; et al. The aging lung: Microenvironment, mechanisms, and diseases. Front. Immunol. 2024, 15, 1383503. [Google Scholar] [CrossRef]
- Camacho-Encina, M.; Booth, L.K.; Redgrave, R.E.; Folaranmi, O.; Spyridopoulos, I.; Richardson, G.D. Cellular Senescence, Mitochondrial Dysfunction, and Their Link to Cardiovascular Disease. Cells 2024, 13, 353. [Google Scholar] [CrossRef]
- Diekman, B.O.; Loeser, R.F. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthr. Cartil. 2024, 32, 365–371. [Google Scholar] [CrossRef]
- Zhao, J.L.; Han, Z.J.; Ding, L.; Wang, P.; He, X.T.; Lin, L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon 2024, 10, e24751. [Google Scholar] [CrossRef]
- Ahmad, A.; Braden, A.; Khan, S.; Xiao, J.F.; Khan, M.M. Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin. Immunopathol. 2024, 46, 10. [Google Scholar] [CrossRef] [PubMed]
- Corveleyn, L.; Sen, P.; Adams, P.; Sidoli, S. Linking Aging to Cancer: The Role of Chromatin Biology. J. Gerontol. 2024, 79, glae133. [Google Scholar] [CrossRef]
- Cordero, A.I.H.; Peters, C.; Li, X.; Yang, C.X.; Ambalavanan, A.; Macisaac, J.L.; Kobor, M.S.; Fonseca, G.J.; Doiron, D.; Tan, W.; et al. Younger epigenetic age is associated with higher cardiorespiratory fitness in individuals with airflow limitation. iScience 2024, 27, 110934. [Google Scholar] [CrossRef]
- Dasgupta, N.; Arnold, R.; Equey, A.; Gandhi, A.; Adams, P.D. The role of the dynamic epigenetic landscape in senescence: Orchestrating SASP expression. npj Aging 2024, 10, 48. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Shin, B.; Schöler, H.R.; Kim, J.; Kim, K.P. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances. Int. J. Stem Cells 2024, 17, 363–373. [Google Scholar] [CrossRef]
- Iordache, F.; Petcu, A.C.I.; Alexandru, D.M. Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells. Int. J. Mol. Sci. 2024, 25, 9708. [Google Scholar] [CrossRef]
- Paine, P.T.; Nguyen, A.; Ocampo, A. Partial cellular reprogramming: A deep dive into an emerging rejuvenation technology. Aging Cell 2024, 23, e14039. [Google Scholar] [CrossRef]
- Singh, P.B.; Zhakupova, A. Age reprogramming: Cell rejuvenation by partial reprogramming. Development 2022, 149, dev200755. [Google Scholar] [CrossRef]
- Mendelsohn, A.R.; Larrick, J.W. Epigenetic Age Reversal by Cell-Extrinsic and Cell-Intrinsic Means. Rejuvenation Res. 2019, 22, 439–446. [Google Scholar] [CrossRef]
- Di Micco, R.; Krizhanovsky, V.; Baker, D.; di Fagagna, F.D. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 2021, 22, 75–95. [Google Scholar] [CrossRef]
- Kuehnemann, C.; Wiley, C.D. Senescent cells at the crossroads of aging, disease, and tissue homeostasis. Aging Cell 2024, 23, e13988. [Google Scholar] [CrossRef]
- Tufail, M.; Huang, Y.Q.; Hu, J.J.; Liang, J.; He, C.Y.; Wan, W.D.; Jiang, C.H.; Wu, H.; Li, N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis. 2024, 16, 2. [Google Scholar] [CrossRef]
- Zhang, F.S.; Guo, J.C.; Yu, S.M.; Zheng, Y.W.; Duan, M.Q.; Zhao, L.; Wang, Y.H.; Yang, Z.; Jiang, X.F. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun. 2024, 44, 929–966. [Google Scholar] [CrossRef]
- Zhu, X.W.; Zhang, C.X.; Liu, L.L.; Xu, L.; Yao, L. Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway. Int. J. Mol. Med. 2024, 53, 26. [Google Scholar] [CrossRef]
- Takaya, K.; Kishi, K. Combined dasatinib and quercetin treatment contributes to skin rejuvenation through selective elimination of senescent cells in vitro and in vivo. Biogerontology 2024, 25, 691–704. [Google Scholar] [CrossRef]
- Zhang, H.R.; Xu, X.L.; Shou, X.; Liao, W.C.; Jin, C.K.; Chen, C.J.; Zhang, C.; Gao, W.H.; Zhang, J.F.; Ge, W.H.; et al. Senolytic Therapy Enabled by Senescent Cell-Sensitive Biomimetic Melanin Nano-Senolytics. Adv. Healthc. Mater. 2024, 13, e2401085. [Google Scholar] [CrossRef]
- Riessland, M.; Ximerakis, M.; Jarjour, A.A.; Zhang, B.; Orr, M.E. Therapeutic targeting of senescent cells in the CNS. Nat. Rev. Drug Discov. 2024, 23, 817–837. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Naud, P.; Abu-Taha, I.H.; Hiram, R.; Xiong, F.; Xiao, J.N.; Saljic, A.; Kamler, M.; Vuong-Robillard, N.; Thorin, E.; et al. The role of cellular senescence in profibrillatory atrial remodelling associated with cardiac pathology. Cardiovasc. Res. 2024, 120, 506–518. [Google Scholar] [CrossRef]
- Lavarti, R.; Cai, L.; Diaz, T.A.; Rodriguez, T.M.; Bombin, S.; Raju, R.P. Senescence landscape in the liver following sepsis and senolytics as potential therapeutics. Aging Cell 2024, e14354. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.L.; Wu, J.P.; Feng, J.H.; Cheng, H.B. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin. Cosmet. Inv Derm. 2024, 17, 2243–2259. [Google Scholar] [CrossRef] [PubMed]
- Matteini, F.; Montserrat-Vazquez, S.; Florian, M.C. Rejuvenating aged stem cells: Therapeutic strategies to extend health and lifespan. FEBS Lett. 2024, 598, 2776–2787. [Google Scholar] [CrossRef]
- Rodríguez-Varela, C.; Herraiz, S.; Labarta, E. Mitochondrial enrichment in infertile patients: A review of different mitochondrial replacement therapies. Ther. Adv. Reprod. Health 2021, 15, 26334941211023544. [Google Scholar] [CrossRef]
- Rosen, R.S.; Yarmush, M.L. Current Trends in Anti-Aging Strategies. Annu. Rev. Biomed. Eng. 2023, 25, 363–385. [Google Scholar] [CrossRef]
- Inoue, A.; Piao, L.M.; Yue, X.L.; Huang, Z.; Hu, L.N.; Wu, H.X.; Meng, X.K.; Xu, W.H.; Yu, C.L.; Sasaki, T.; et al. Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model. J. Cachex-Sarcopenia Muscle 2022, 13, 3078–3090. [Google Scholar] [CrossRef]
- Zhang, C.S.; Meng, Y.; Han, J.H. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol. Life Sci. 2024, 81, 26. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Ellison-Hughes, G.M. Editorial: Stem cell exhaustion in aging. Front. Aging 2024, 5, 1433702. [Google Scholar] [CrossRef]
- Wu, S.; Sun, S.B.; Fu, W.T.; Yang, Z.Y.; Yao, H.W.; Zhang, Z.T. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024, 12, 743. [Google Scholar] [CrossRef]
- Wong, P.F.; Dharmani, M.; Ramasamy, T.S. Senotherapeutics for mesenchymal stem cell senescence and rejuvenation. Drug Discov. Today 2023, 28, 103424. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhao, H.M.; Ji, S.F. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev. Rep. 2024, 20, 1420–1440. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, A.; Karimi, Z.; Zadeh, M.G.; Afshar, M.; Kameli, A.; Mooseli, F.; Zare, M.; Afshar, A. Therapeutic potential of mesenchymal stem cell-derived exosomes and miRNAs in neuronal regeneration and rejuvenation in neurological disorders: A mini review. Front. Cell Neurosci. 2024, 18, 1427525. [Google Scholar] [CrossRef]
- Ghosh, K.; Patel, R.A.; Hanson, S.E. Cell-supplemented autologous fat grafting: A review from bench to bedside. Plast. Aesthet. Res. 2024, 11, 50. [Google Scholar] [CrossRef]
- Jing, Y.B.; Jiang, X.Y.; Ji, Q.Z.; Wu, Z.M.; Wang, W.; Liu, Z.P.; Guillen-Garcia, P.; Esteban, C.R.; Reddy, P.; Horvath, S.; et al. Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem Cell 2023, 30, 1452–1471.e10. [Google Scholar] [CrossRef]
- Khetpal, S.; Ghosh, D.; Roostaeian, J. Innovations in Skin and Soft Tissue Aging-A Systematic Literature Review and Market Analysis of Therapeutics and Associated Outcomes. Aesthet. Plast. Surg. 2023, 47, 1609–1622. [Google Scholar] [CrossRef]
- Saad, F.A. Gene Therapy for Skin Aging. Curr. Gene Ther. 2024, 25, 2–9. [Google Scholar] [CrossRef]
- Madonna, R. Cellular aging and rejuvenation in ischemic heart disease: A translation from basic science to clinical therapy. J. Cardiovasc. Aging 2022, 2, 12. [Google Scholar] [CrossRef]
- Rostamzadeh, F.; Moosavi-Saeed, Y.; Yeganeh-Hajahmadi, M. Interaction of Klotho and sirtuins. Exp. Gerontol. 2023, 182, 112306. [Google Scholar] [CrossRef]
- Yu, N.; Pasha, M.; Chua, J.J.E. Redox changes and cellular senescence in Alzheimer’s disease. Redox Biol. 2024, 70, 103048. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Liu, S.T.; Pan, X.Y. Research progress on mitochondrial damage and repairing in oocytes: A review. Mitochondrion 2024, 75, 101845. [Google Scholar] [CrossRef]
- Zhang, K.H.; Li, Q.L.; Zhang, Y.X.; Nuerlan, G.; Li, Y.Y.; Mao, J.; Gong, S.Q. Targeting Mitophagy as a Potential Therapeutic Approach for Age-Related Bone Diseases. Adv. Ther. 2024, 7, 2400078. [Google Scholar] [CrossRef]
- Qi, X.M.; Qiao, Y.B.; Zhang, Y.L.; Wang, A.C.; Ren, J.H.; Wei, H.Z.; Li, Q.S. PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis: A druggable pathway of calycosin against triptolide cardiotoxicity. Food Chem. Toxicol. 2023, 171, 113513. [Google Scholar] [CrossRef]
- Nandan, P.K.; Job, A.T.; Ramasamy, T. DRP1 Association in Inflammation and Metastasis: A Review. Curr. Drug Targets 2024, 25, 909–918. [Google Scholar] [CrossRef]
- Alghamdi, A. A detailed review of pharmacology of MFN1 (mitofusion-1)-mediated mitochondrial dynamics: Implications for cellular health and diseases. Saudi Pharm. J. 2024, 32, 102012. [Google Scholar] [CrossRef]
- Goldman, A.; Mullokandov, M.; Zaltsman, Y.; Regev, L.; Levin-Zaidman, S.; Gross, A. MTCH2 cooperates with MFN2 and lysophosphatidic acid synthesis to sustain mitochondrial fusion. EMBO Rep. 2024, 25, 45–67. [Google Scholar] [CrossRef]
- Ribaudo, G.; Gianoncelli, A. An Updated Overview on the Role of Small Molecules and Natural Compounds in the “Young Science” of Rejuvenation. Antioxidants 2023, 12, 288. [Google Scholar] [CrossRef]
- Palomera-Avalos, V.; Griñán-Ferré, C.; Izquierdo, V.; Camins, A.; Sanfeliu, C.; Pallàs, M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res. 2017, 20, 202–217. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.R.; Byeon, E.; Kim, D.H.; Kim, H.S.; Lee, J.S. Molecular Events in Response to Triclosan-Induced Oxidative Stress in CRISPR/Cas9-Mediated-Targeted Mutants in Daphnia magna. Environ. Sci. Technol. 2024, 58, 16738–16749. [Google Scholar] [CrossRef]
- Liu, M.; Fu, X.Y.; Yi, Q.H.; Xu, E.H.; Dong, L.B. Impaired mitochondrial oxidative phosphorylation induces CD8+T cell exhaustion. Biochem. Biophys. Res. Commun. 2024, 734, 150738. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ji, Y.J.; Li, J.J.; Sun, L. The study on the role of O-GlcNAcylation of SIRT3 in regulating mitochondrial oxidative stress during simulate myocardial ischemia-reperfusion. Sci. Rep. 2024, 14, 21201. [Google Scholar] [CrossRef] [PubMed]
- Dhavarasa, P.; Sack, T.; Cerrato, C.P.; Cheng, A.P.; Zhang, Y.Y.; Chen, K.F.; Kelley, S.O. Mitochondrial Probe for Glutathione Depletion Reveals NME3 Essentiality for Mitochondrial Redox Response. ACS Chem. Biol. 2024, 19, 2012–2022. [Google Scholar] [CrossRef]
- Gardeshi, T.M.; Shahandeh, E.; Saleh, N.T.; Karami, S.; Azandaryani, Z.M.; Mazaheri, F.; Mohammadi, H. Evaluation of the effect of mitoquinone on functional parameters, DNA structure, and genes expression related to the apoptotic and antioxidants of human sperm after freezing-thawing. Mol. Biol. Rep. 2024, 51, 183. [Google Scholar] [CrossRef]
- Mishra, S.; Kapoor, R.; Sushma; Kanchan, S.; Jha, G.; Sharma, D.; Tomar, B.; Rath, S.K. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem. Res. Toxicol. 2024, 37, 1139–1154. [Google Scholar] [CrossRef]
- Hosseinkhani, H.; Domb, A.J.; Sharifzadeh, G.; Nahum, V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023, 15, 856. [Google Scholar] [CrossRef]
- Yücel, A.D.; Gladyshev, V.N. The long and winding road of reprogramming-induced rejuvenation. Nat. Commun. 2024, 15, 1941. [Google Scholar] [CrossRef]
- Ash, M.; Zibitt, M.; Shauly, O.; Menon, A.; Losken, A.; Gould, D. The Innovative and Evolving Landscape of Topical Exosome and Peptide Therapies: A Systematic Review of the Available Literature. Aesthet. Surg. J. Open 2024, 6, ojae017. [Google Scholar] [CrossRef]
- Garay, R.P. Recent clinical trials with stem cells to slow or reverse normal aging processes. Front. Aging 2023, 4, 1148926. [Google Scholar] [CrossRef]
- Redondo, J.; Bailey, S.; Kemp, K.C.; Scolding, N.J.; Rice, C.M. The Bone Marrow Microenvironment in Immune-Mediated Inflammatory Diseases: Implications for Mesenchymal Stromal Cell-Based Therapies. Stem Cell Transl. Med. 2024, 13, 219–229. [Google Scholar] [CrossRef]
- Rasouli, M.; Naeimzadeh, Y.; Hashemi, N.; Hosseinzadeh, S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr. Stem Cell Res. Ther. 2024, 19, 15–32. [Google Scholar] [CrossRef]
- Horvath, S.; Lacunza, E.; Mallat, M.C.; Portiansky, E.L.; Gallardo, M.D.; Brooke, R.T.; Chiavellini, P.; Pasquini, D.C.; Girard, M.; Lehmann, M.; et al. Cognitive rejuvenation in old rats by hippocampal OSKM gene therapy. Geroscience 2024, 1–15. [Google Scholar] [CrossRef]
- Björklund, T.; Davidsson, M. Next-Generation Gene Therapy for Parkinson’s Disease Using Engineered Viral Vectors. J. Parkinson Dis. 2021, 11, S209–S217. [Google Scholar] [CrossRef]
- Tekinay, S.H. Nanomaterials for skin anti-aging. Eur. Polym. J. 2024, 217, 113311. [Google Scholar] [CrossRef]
- Pozos-Nonato, S.; Domínguez-Delgado, C.L.; Campos-Santander, K.A.; Benavides, A.A.; Pacheco-Ortin, S.M.; Higuera-Piedrahita, R.I.; Resendiz-González, G.; Molina-Trinidad, E.M. Novel Nanotechnological Strategies for Skin Anti-aging. Curr. Pharm. Biotechnol. 2023, 24, 1397–1419. [Google Scholar] [CrossRef]
- Mosallaei, N.; Malaekeh-Nikouei, A.; Shirazi, S.S.; Behmadi, J.; Nikouei, B.M. A comprehensive review on alpha-lipoic acid delivery by nanoparticles. Bioimpacts 2024, 14, 30136. [Google Scholar] [CrossRef]
- Lee, K.W.A.; Chan, L.K.W.; Lee, A.W.K.; Lee, C.H.; Wong, S.T.H.; Yi, K.H. Poly-d,l-lactic Acid (PDLLA) Application in Dermatology: A Literature Review. Polymers 2024, 16, 2583. [Google Scholar] [CrossRef]
- Pandian, M.; Reshma, G.; Arthi, C.; Másson, M.; Rangasamy, J. Biodegradable polymeric scaffolds and hydrogels in the treatment of chronic and infectious wound healing. Eur. Polym. J. 2023, 198, 112390. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, R.; Mukherjee, N.; Ghosh, S.; Jash, M.; Jana, A.; Ghosh, S. EphA4 Targeting Peptide-Conjugated Extracellular Vesicles Rejuvenates Adult Neural Stem Cells and Exerts Therapeutic Benefits in Aging Rats. ACS Chem. Neurosci. 2024, 15, 3482–3495. [Google Scholar] [CrossRef]
- Taghdi, M.H.; Muttiah, B.; Chan, A.M.L.; Fauzi, M.B.; Law, J.X.; Lokanathan, Y. Exploring Synergistic Effects of Bioprinted Extracellular Vesicles for Skin Regeneration. Biomedicines 2024, 12, 1605. [Google Scholar] [CrossRef]
- Sahel, D.K.; Vora, L.K.; Saraswat, A.; Sharma, S.; Monpara, J.; D’Souza, A.A.; Mishra, D.; Tryphena, K.P.; Kawakita, S.; Khan, S.; et al. CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective. Adv. Sci. 2023, 10, e2207512. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Xie, L.; Hassanin, A.A.; Zuo, E.; Lu, Y. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Front. Cell Dev. Biol. 2021, 9, 699597. [Google Scholar] [CrossRef]
- Lehmann, M.; Canatelli-Mallat, M.; Chiavellini, P.; Morel, G.R.; Reggiani, P.C.; Hereñú, C.B.; Goya, R.G. Regulatable adenovector harboring the GFP and Yamanaka genes for implementing regenerative medicine in the brain. Gene Ther. 2019, 26, 432–440. [Google Scholar] [CrossRef]
- Jaijyan, D.K.; Selariu, A.; Cruz-Cosme, R.; Tong, M.M.; Yang, S.M.; Stefa, A.; Kekich, D.; Sadoshima, J.; Herbig, U.; Tang, Q.Y.; et al. New intranasal and injectable gene therapy for healthy life extension. Proc. Natl. Acad. Sci. USA 2022, 119, e2121499119, Corrected in Proc. Natl. Acad. Sci. USA 2023, 120, e2311483120. [Google Scholar] [CrossRef]
- Rather, H.A.; Almousa, S.; Craft, S.; Deep, G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer’s disease and other aging-related disorders. Ageing Res. Rev. 2023, 92, 102088. [Google Scholar] [CrossRef]
- Radwan, R.A.; El-Sherif, Y.A.; Salama, M.M. A Novel Biochemical Study of Anti-Ageing Potential of Bark Waste Standardized Extract and Silver Nanoparticles. Colloid. Surface B 2020, 191, 111004. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Polychronis, A.; Schiuma, A.T. A Comparative Analysis of the Advances in Stem Cell Therapy in Plastic Surgery: A Systematic Review of Current Applications and Future Directions. Cureus J. Med. Sci. 2024, 16, e67067. [Google Scholar] [CrossRef]
- Jarrige, M.; Frank, E.; Herardot, E.; Martineau, S.; Darle, A.; Benabides, M.; Domingues, S.; Chose, O.; Habeler, W.; Lorant, J.; et al. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021, 10, 240. [Google Scholar] [CrossRef]
- Beetler, D.J.; Di Florio, D.N.; Law, E.W.; Groen, C.M.; Windebank, A.J.; Peterson, Q.P.; Fairweather, D. The evolving regulatory landscape in regenerative medicine. Mol. Aspects Med. 2023, 91, 101138. [Google Scholar] [CrossRef]
- Ok, S.C. Insights into the Anti-Aging Prevention and Diagnostic Medicine and Healthcare. Diagnostics 2022, 12, 819. [Google Scholar] [CrossRef]
- Bruynseels, K.; de Sio, F.S.; van den Hoven, J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef]
- Li, Z.Y.; Han, Z.M. Advancements of the CRISPR/Cas9 System in the Treatment of Liver Cancer. Curr. Protein Pept. Sci. 2024, 25, 154–162. [Google Scholar] [CrossRef]
- Jia, S.C.; Liang, R.J.; Chen, J.Y.; Liao, S.; Lin, J.J.; Li, W. Emerging technology has a brilliant future: The CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol. Biol. Lett. 2024, 29, 64. [Google Scholar] [CrossRef]
- Konstantinou, E.; Longange, E.; Kaya, G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. Biology 2024, 13, 647. [Google Scholar] [CrossRef]
- Wagner, K.D.; Wagner, N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022, 11, 1966. [Google Scholar] [CrossRef]
- Chen, Z.J.; Hu, J.; Dai, J.L.; Zhou, C.L.; Hua, Y.J.; Hua, X.T.; Zhao, Y. Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms. Microbiol. Res. 2024, 284, 127713. [Google Scholar] [CrossRef]
- Chen, X.W.; Du, J.J.; Yun, S.W.; Xue, C.Y.; Yao, Y.; Rao, S.Q. Recent advances in CRISPR-Cas9-based genome insertion technologies. Mol. Ther. Nucleic Acids 2024, 35, 102138. [Google Scholar] [CrossRef]
- Xue, C.; Greene, E.C. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet. 2021, 37, 639–656. [Google Scholar] [CrossRef]
- Sukhorukov, V.; Kalmykov, V.; Lee, A. Rad51-based editing of mitochondrial DNA via CRISPR approach. FEBS Open Bio 2024, 14, 15. [Google Scholar]
- Lau, C.H.; Liang, Q.L.; Zhu, H.B. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res. 2024, 33, 323–357. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yang, J.; Zhang, J.Y.; Song, Y.N. Gene editing therapy for cardiovascular diseases. MedComm 2024, 5, e639. [Google Scholar] [CrossRef]
- Kantor, A.; McClements, M.; MacLaren, R. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int. J. Mol. Sci. 2020, 21, 6240. [Google Scholar] [CrossRef]
- Nogueira, D.E.S.; Cabral, J.M.S.; Rodrigues, C.A.V. Single-Use Bioreactors for Human Pluripotent and Adult Stem Cells: Towards Regenerative Medicine Applications. Bioengineering 2021, 8, 68. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Lim, H.-R.; Kim, Y.S.; Hoang, T.T.T.; Choi, J.; Jeong, G.-J.; Kim, H.; Herbert, R.; Soltis, I.; et al. Large-scale smart bioreactor with fully integrated wireless multivariate sensors and electronics for long-term in situ monitoring of stem cell culture. Sci. Adv. 2024, 10, eadk6714. [Google Scholar] [CrossRef]
- Ambroise, R.; Takasugi, P.; Liu, J.D.; Qian, L. Direct Cardiac Reprogramming in the Age of Computational Biology. J. Cardiovasc. Dev. Dis. 2024, 11, 273. [Google Scholar] [CrossRef]
- Reeser, R.S.; Salazar, A.K.; Prutton, K.M.; Roede, J.R.; VeDepo, M.C.; Jacot, J.G. Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen. Cell Mol. Bioeng. 2024, 17, 25–34. [Google Scholar] [CrossRef]
- Strecanska, M.; Sekelova, T.; Csobonyeiova, M.; Danisovic, L.; Cehakova, M. Therapeutic applications of mesenchymal/medicinal stem/signaling cells preconditioned with external factors: Are there more efficient approaches to utilize their regenerative potential? Life Sci. 2024, 346, 122647. [Google Scholar] [CrossRef]
- Yoon, S.D.; Shim, B.J.; Baek, S.H.; Kim, S.Y. Implantation of Culture-Expanded Bone Marrow Derived Mesenchymal Stromal Cells for Treatment of Osteonecrosis of the Femoral Head. Tissue Eng. Regen. Med. 2024, 21, 929–941. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.Q.; Wang, H. Emerging Landscape of Mesenchymal Stem Cell Senescence Mechanisms and Implications on Therapeutic Strategies. ACS Pharmacol. Transl. Sci. 2024, 7, 2306–2325. [Google Scholar] [CrossRef]
- Vadhan, A.; Gupta, T.; Hsu, W.L. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 9149. [Google Scholar] [CrossRef]
- Jiang, Z.A.; Cheng, H.X.; Qian, X.F.; Tu, J.Y.; Fan, C.X.; Pan, Y.R.; Lin, Z.W.; Chen, J.Y.; Wang, X.S.; Zhang, J.F. The role and mechanism of engineered nanovesicles derived from hair follicle mesenchymal stem cells in the treatment of UVB-induced skin photoaging. J. Cosmet. Dermatol. 2024, 23, 3005–3020. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Lee, Y.H.; Liu, Y.T.; Yu, Y.R.; Han, I.B. Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures. Int. J. Mol. Sci. 2024, 25, 4979. [Google Scholar] [CrossRef]
- Zheng, J.M.; Yang, B.B.; Liu, S.Q.; Xu, Z.F.; Ding, Z.M.; Mo, M.H. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024, 14, 459. [Google Scholar] [CrossRef]
- Olumesi, K.R.; Goldberg, D.J. A review of exosomes and their application in cutaneous medical aesthetics. J. Cosmet. Dermatol. 2023, 22, 2628–2634. [Google Scholar] [CrossRef]
- Ku, Y.C.; Sulaiman, H.O.; Anderson, S.R.; Abtahi, A.R. The Potential Role of Exosomes in Aesthetic Plastic Surgery: A Review of Current Literature. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5051. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Behdarvand Dehkordi, F.; Chehelgerdi, M.; Kabiri, H.; Salehian-Dehkordi, H.; Abdolvand, M.; Salmanizadeh, S.; Rashidi, M.; Niazmand, A.; Ahmadi, S.; et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Cancer 2023, 22, 189. [Google Scholar] [CrossRef]
- Liao, H.J.; Yang, Y.P.; Liu, Y.H.; Tseng, H.C.; Huo, T.I.; Chiou, S.H.; Chang, C.H. Harnessing the potential of mesenchymal stem cells-derived exosomes in diseases. Regen. Ther. 2024, 26, 599–610. [Google Scholar] [CrossRef]
- Papapetropoulos, A.; Topouzis, S.; Alexander, S.P.H.; Cortese-Krott, M.; Kendall, D.A.; Martemyanov, K.A.; Mauro, C.; Nagercoil, N.; Panettieri, R.J.r.; Patel, H.H.; et al. Novel drugs approved by the EMA, the FDA, and the MHRA in 2023: A year in review. Brit. J. Pharmacol. 2024, 181, 1553–1575. [Google Scholar] [CrossRef]
- Olesti, E.; Nuevo, Y.; Bachiller, M.; Guillen, E.; Bascuas, J.; Varea, S.; Saez-Peñataro, J.; Calvo, G. Academic challenges on advanced therapy medicinal products’ development: A regulatory perspective. Cytotherapy 2024, 26, 221–230. [Google Scholar] [CrossRef]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Babalola, A.E.; Yusuf, I.A.; Apampa, O.O.; Ukoaka, B.M.; Aboje, J.E.; Adefusi, T.; Moradeyo, A.; et al. Stem cell therapies in stroke rehabilitation: A narrative review of current strategies and future prospects. Egypt. J. Neurol. Psych. 2024, 60, 79. [Google Scholar] [CrossRef]
- Chow, S.K.H.; Gao, Q.; Pius, A.; Morita, M.; Ergul, Y.; Murayama, M.; Shinohara, I.; Cekuc, M.S.; Ma, C.; Susuki, Y.; et al. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng. Part. C 2024, 30, 415–430. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, C.Y.; Su, J.H.; Ren, S.Q.; Wang, X.; Zhang, Y.P.; Yuan, Z.J.; He, X.Y.; Wu, X.; Li, M.X.; et al. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis. 2024. [Google Scholar] [CrossRef]
- Abdellatif, M.; Schmid, S.T.; Fuerlinger, A.; Kroemer, G. Anti-ageing interventions for the treatment of cardiovascular disease. Cardiovasc. Res. 2024, 2024, cvae177. [Google Scholar] [CrossRef]
- Liang, Y.H.; Su, W.R.; Wang, F.F. Skin Ageing: A Progressive, Multi-Factorial Condition Demanding an Integrated, Multilayer-Targeted Remedy. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1215–1229. [Google Scholar] [CrossRef]
- Lee, S.S.; Vu, T.T.; Weiss, A.S.; Yeo, G.C. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur. J. Cell Biol. 2023, 102, 151331. [Google Scholar] [CrossRef]
- Scharffetter-Kochanek, K.; Wang, Y.F.; Makrantonaki, E.; Crisan, D.; Wlaschek, M.; Geiger, H.; Maity, P. Skin aging-cellular senescence. Dermatologie 2023, 74, 645–656. [Google Scholar] [CrossRef]
- Zhang, B.H.; Trapp, A.; Kerepesi, C.; Gladyshev, V.N. Emerging rejuvenation strategies-Reducing the biological age. Aging Cell 2022, 21, e13538. [Google Scholar] [CrossRef]
- Tung, P.W.; Thaker, V.V.; Gallagher, D.; Kupsco, A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr. Obes. Rep. 2024, 13, 724–738. [Google Scholar] [CrossRef]
- Lu, W.Y.; Li, H.J.; Wu, Y.C. Assessment of environmental and biological stress using mitochondria-targeted red-emitting and near-infrared fluorescent probes for biothiol analysis: A review. Environ. Chem. Lett. 2024, 22, 3135–3169. [Google Scholar] [CrossRef]
- Vilhekar, R.S.; Rawekar, A. Artificial Intelligence in Genetics. Cureus 2024, 16, e52035. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Tzelves, L.; Paxinou, E.; Hitas, C.; Vamvakou, G.; Verykios, V.S.; Nikolaou, M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J. Pers. Med. 2024, 14, 931. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef]
- Almeman, A.A. Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1661–1685. [Google Scholar] [CrossRef]
- Zhang, B.H.; Chen, K.; Lu, S.M.; Nakfoor, B.; Cheng, R.; Gibstein, A.; Tanna, N.; Thorne, C.H.; Bradley, J.P. Turning Back the Clock: Artificial Intelligence Recognition of Age Reduction after Face-Lift Surgery Correlates with Patient Satisfaction. Plast. Reconstr. Surg. 2021, 148, 45–54. [Google Scholar] [CrossRef]
- Theodore Armand, T.P.; Kim, H.C.; Kim, J.I. Digital Anti-Aging Healthcare: An Overview of the Applications of Digital Technologies in Diet Management. J. Pers. Med. 2024, 14, 254. [Google Scholar] [CrossRef]
- Goodyear, K.; Saffari, P.S.; Esfandiari, M.; Baugh, S.; Rootman, D.B.; Karlin, J.N. Estimating apparent age using artificial intelligence: Quantifying the effect of blepharoplasty. J. Plast. Reconstr. Aesthet. Surg. 2023, 85, 336–343. [Google Scholar] [CrossRef]
- Cunningham, J.W.; Abraham, W.T.; Bhatt, A.S.; Dunn, J.; Felker, G.M.; Jain, S.S.; Lindsell, C.J.; Mace, M.; Martyn, T.; Shah, R.U.; et al. Artificial Intelligence in Cardiovascular Clinical Trials. J. Am. Coll. Cardiol. 2024, 84, 2051–2062. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Lee, S.S.; Wen, Z.H.; Lo, Y.H. The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges. Mol. Ther. Nucleic Acids 2024, 35, 102295. [Google Scholar] [CrossRef]
- Lyu, Y.X.; Fu, Q.; Wilczok, D.; Ying, K.; King, A.; Antebi, A.; Vojta, A.; Stolzing, A.; Moskalev, A.; Georgievskaya, A.; et al. Longevity biotechnology: Bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging 2024, 16, 12955–12976. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Tang, D.L.; Zhou, S.Q.; Franceschi, C.; Ren, J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res. Rev. 2024, 101, 102540. [Google Scholar] [CrossRef]
- Ana, B. Aged-Related Changes in Microglia and Neurodegenerative Diseases: Exploring the Connection. Biomedicines 2024, 12, 1737. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, L.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1β and age-related diseases: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef]
- Sheng, J.E.; Yi, Z.M.; He, S.S.; Wu, Q.C.; Huang, X.; Yan, G.Q.; Dai, Y.F.; Su, L.C. Cholic acid mitigates osteoarthritis by inhibiting the NF-KB/PERK/ SIRT1 signaling pathway. Biocell 2024, 48, 1095–1104. [Google Scholar] [CrossRef]
- Yan, B.X.; Yu, X.X.; Cai, X.Z.; Huang, X.J.; Xie, B.; Lian, D.C.; Chen, J.H.; Li, W.W.; Lin, Y.; Ye, J.J.; et al. A Review: The Significance of Toll-Like Receptors 2 and 4, and NF-KB Signaling in Endothelial Cells during Atherosclerosis. Front. Biosci. 2024, 29, 161. [Google Scholar] [CrossRef]
- Alanazi, A.Z.; Alqinyah, M.; Alhamed, A.S.; Mohammed, H.; Raish, M.; Aljerian, K.; Alsabhan, J.F.; Alhazzani, K. Cardioprotective effects of liposomal resveratrol in diabetic rats: Unveiling antioxidant and anti-inflammatory benefits. Redox Rep. 2024, 29, 2416835. [Google Scholar] [CrossRef]
- Yadav, V.; Pandey, V.; Gaglani, P.; Srivastava, A.; Subhashini. Inhibiting SIRT-2 by AK-7 restrains airway inflammation and oxidative damage promoting lung resurgence through NF-kB and MAP kinase signaling pathway. Front. Immunol. 2024, 15, 1404122. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, C. The protective effects of Arctiin in asthma by attenuating airway inflammation and inhibiting p38/NF-KB signaling. Aging 2024, 16, 5038–5049. [Google Scholar] [CrossRef]
- Fang, Y.P.; Yang, X.; Zhang, Y.; Zhu, X.D.; Wang, X.X.; Liu, Y.; Shi, W.; Huang, J.Y.; Zhao, Y.; Zhang, X.L. LPS-induced senescence of macrophages aggravates calcification and senescence of vascular smooth muscle cells via IFITM3. Ren. Fail. 2024, 46, 2367708. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.H.; Xiao, M.L.; Lu, Y.; Gao, L. Brain macrophage senescence in glioma. Semin. Cancer Biol. 2024, 104–105, 46–60. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 1–37. [Google Scholar] [CrossRef]
- Li, C.F.; Tang, X.M.; Zhou, Z.X.; Sun, L.; Lu, M.P.; Zhou, W.; Yang, S.R.; Zheng, W.J.; Yu, H.G.; Tan, W.P.; et al. Efficacy and safety of tocilizumab in Chinese patients with systemic juvenile idiopathic arthritis: A multicentre phase IV trial. Clin. Rheumatol. 2024, 43, 3457–3467. [Google Scholar] [CrossRef]
- Baghdadi, L.R. Tocilizumab Reduces Depression Risk in Rheumatoid Arthritis Patients: A Systematic Review and Meta-Analysis. Psychol. Res. Behav. Manag. 2024, 17, 3419–3441. [Google Scholar] [CrossRef]
Concerns | Proposed Solutions | Details/Actions |
---|---|---|
Ethical Guidelines for Germline Modifications | Develop and enforce internationally agreed-upon ethical standards. | Restrict germline editing to severe hereditary conditions; prohibit non-health-related enhancements; involve global bodies like WHO and UNESCO for oversight. |
Equitable Access | Establish policies ensuring therapies are accessible to all populations, regardless of income or geography. | Implement tiered pricing models, public–private partnerships, and global funding mechanisms to subsidize costs for low- and middle-income countries. |
Long-Term Safety and Efficacy | Require rigorous research and monitoring for rejuvenation therapies before and after clinical approval. | Conduct extensive preclinical and clinical trials; establish long-term follow-ups to monitor safety; regulatory agencies to mandate robust safety and efficacy data. |
Public Engagement and Education | Build public trust through transparent information and inclusive discussions on the risks, benefits, and implications of rejuvenation therapies. | Use public forums, educational campaigns, and stakeholder consultations; ensure diverse representation in policymaking to reflect societal values. |
Policy and Legal Safeguards | Create comprehensive legal frameworks to regulate the development and application of therapies. | Define clear boundaries between therapeutic and enhancement uses; enforce consent and privacy protections; regulate against misuse of gene-editing technologies. |
Global Collaboration | Foster international cooperation to ensure equitable global access to rejuvenation innovations. | Adapt models like COVAX for medical innovations; encourage technology transfer and shared research resources among nations; develop a global distribution plan for rejuvenation therapies. |
Aspect | Description | Examples | Risks and Concerns |
---|---|---|---|
Mechanism of Action | Utilizes the Cas9 protein guided by RNA sequences to make precise cuts in DNA, enabling targeted gene editing. | Targeting genes regulating aging processes, such as FOXO3A or Klotho, to enhance longevity. | Risk of off-target effects, where unintended genetic regions are altered, potentially leading to harmful mutations. |
Applications | Gene therapy that repairs age-related DNA damage, regulates senescence, or enhances mitochondrial function. | Editing mitochondrial-related genes like POLG to improve mtDNA stability. | Delivery challenges, requiring precise targeting to avoid effects on healthy tissues. |
Advantages | High precision, versatility, and efficiency in targeting specific genes for age-related conditions. | Correction of progeria-related mutations to slow aging; regulation of inflammation-related genes. | Risk of immune responses to CRISPR components, which can reduce effectiveness or cause side effects. |
Mitochondrial Targeting | Emerging strategies for editing mtDNA to correct mutations affecting energy metabolism and aging processes. | Techniques like mitoCRISPR to bypass limitations of nuclear DNA targeting. | Technical barriers to efficient mitochondrial editing due to unique structural features of mtDNA. |
Ethical Concerns | Potential use in heritable (germline) modifications that could be passed to future generations. | Preventing the inheritance of age-related disorders like Huntington’s disease. | Raises concerns about eugenics, long-term unforeseen consequences, and lack of consent from future generations. |
Safety Challenges | Ensuring the edited gene functions as intended without unintended secondary effects. | Testing CRISPR on genes regulating senescence without disrupting beneficial cellular processes. | Functional uncertainty, as gene modifications may have unpredictable or pleiotropic effects. |
Regulatory Challenges | Strict approval processes and global variability in regulatory frameworks for gene editing. | Differences in laws governing somatic vs. germline editing across countries. | Slower clinical adoption due to the need for comprehensive trials and societal debates on ethics and safety. |
Therapeutic Delivery | Developing systems to deliver CRISPR components to specific tissues or cells affected by aging. | Use of nanoparticles or viral vectors to deliver CRISPR tools to senescent cells or stem cells. | Risks of systemic exposure causing off-target effects or immune system activation. |
Future Innovations | Advancements in base editing and prime editing for more precise and less invasive modifications. | Correcting single base mutations in age-related diseases like Alzheimer’s or Parkinson’s. | Ethical dilemmas in distinguishing therapeutic from enhancement applications. |
Aspect | Details | Problems | Possible Solutions |
---|---|---|---|
Stem Cell Potential in Rejuvenation | Stem cells can differentiate into various cell types, self-renew, and regenerate damaged tissues, offering a cellular approach to rejuvenation that enhances the body’s natural regenerative abilities. | High variability in cell behavior and potency, impacting therapeutic consistency. | Establish strict quality control and validation protocols to ensure consistent results. |
Personalized Stem Cell Treatments | Involves isolating and expanding patient’s stem cells in a lab, then reintroducing them to target specific tissues. This autologous approach reduces immune rejection risks, using iPSCs and MSCs for targeted rejuvenation. | Expensive, time-consuming, and complex process requiring individualized cell preparation. | Develop automated and standardized processing techniques to reduce costs and time. |
Induced Pluripotent Stem Cells (iPSCs) | iPSCs are created by reprogramming a patient’s somatic cells to a pluripotent state, allowing differentiation into any cell type. iPSCs are versatile, suitable for heart, neural, and other tissue repairs but require careful screening to avoid undifferentiated cells that could form tumors. | Risk of tumor formation from undifferentiated cells and complex screening processes. | Improve screening technologies and establish protocols to ensure complete differentiation before reintroduction. |
Mesenchymal Stem Cells (MSCs) | MSCs are multipotent cells capable of differentiating into bone, cartilage, and fat cells, with strong anti-inflammatory and immunomodulatory properties. MSCs are used in treatments for aging conditions like osteoarthritis and sarcopenia. | Potential immune response or rejection if autologous sourcing is unavailable; limited differentiation range. | Increase research on MSCs’ differentiation abilities and explore allogeneic MSCs with minimized rejection risk. |
Exosome Therapy | Exosomes are bioactive vesicles from stem cells that deliver rejuvenating signals to cells without stem cell transplantation. Exosome therapy is simpler and potentially safer than full-cell transplantation and shows promise in rejuvenation. | Less understood than full-cell therapies; requires extensive validation to ensure efficacy and safety. | Conduct rigorous research to establish reliable therapeutic protocols and efficacy data for clinical use. |
Gene-Editing in Stem Cell Therapies | Gene-editing tools like CRISPR-Cas9 enhance stem cell rejuvenation potential by modifying genes in iPSCs or MSCs to upregulate anti-aging genes or increase resilience. This combination of gene editing and stem cell therapy targets aging at cellular and genetic levels. | Potential unintended genetic modifications and ethical concerns with gene editing. | Develop targeted gene-editing protocols with precise controls and maintain ethical transparency. |
Challenges in Production and Distribution | High costs, specialized facilities, skilled personnel, and quality controls make large-scale stem cell therapy production complex. Scalable manufacturing solutions like bioreactors are needed to expand accessibility. | Expensive and resource-intensive process limits access and scalability. | Invest in automated bioreactor technology to scale up production and reduce costs for larger populations. |
Stem Cell Variability and Standardization | Stem cells vary in behavior based on source and processing, complicating standardization across patients. Quality control and validation protocols are critical to ensure consistent safety and potency. | Difficulty achieving consistent quality and outcomes across patients due to variability. | Establish standardized processing protocols and conduct thorough testing of each batch to ensure reliability and safety. |
Regulatory Challenges | Stem cell therapies require stringent oversight (e.g., by FDA and EMA) to manage risks like immune reactions and tumor formation. Compliance with ATMP guidelines, including traceability and safety testing, is mandatory. | Complex regulatory requirements add time and cost, potentially delaying therapy access for patients. | Work closely with regulatory agencies to streamline approval processes and develop standardized documentation and testing to meet compliance standards efficiently. |
Distribution Logistics | Autologous therapies need rapid processing and specialized cold-chain logistics for maintaining cell viability. Centralized hubs and streamlined supply chains are essential for broader access. | Cold-chain logistics and rapid processing requirements increase costs and complexity. | Develop centralized production and processing hubs to streamline logistics and ensure rapid delivery, while investing in optimized cold-chain solutions. |
Cost and Accessibility | Currently, high costs limit accessibility. Public–private partnerships, subsidies, and funding are needed to make these therapies affordable. Innovations in automated manufacturing and delivery could reduce costs for wider use. | High costs make therapies inaccessible to many, and insurance coverage is limited. | Secure government and private partnerships for subsidies and advance automation technologies to reduce manufacturing costs and improve accessibility. |
Approach | Advantages | Limitations | Current Clinical Applications | Unique Challenges |
---|---|---|---|---|
Induced Pluripotent Stem Cells (iPSCs) | Potential to differentiate into any cell type; autologous use reduces rejection risk | Risk of tumor formation if undifferentiated cells remain; complex and costly production process | Research on heart disease and neurodegenerative diseases (e.g., Parkinson’s) | Requires stringent screening to prevent undifferentiated cells that could lead to tumorigenesis |
Mesenchymal Stem Cells (MSCs) | Anti-inflammatory; immunomodulatory; multipotent; can be sourced from autologous tissues | Limited differentiation capacity; potential for immune response if not autologous | Osteoarthritis, degenerative diseases, age-related tissue repair | Variable potency and therapeutic outcomes based on source and culture conditions |
Exosomes | Lower immune risk; cell-free therapy; simpler storage and administration | Limited therapeutic cargo size; less understood than full-cell therapies | Skin rejuvenation, joint repair, neurodegenerative disease applications | Limited targeting and delivery precision; requires rigorous validation for efficacy and safety |
CRISPR Gene Editing | High precision in gene targeting; potential to edit genes associated with aging | Risk of off-target effects and unintended genetic changes; ethical concerns around germline editing | Research on anti-aging applications, disease prevention by modifying senescence-related genes | Delivery to specific cells is complex; regulatory and ethical challenges due to heritable genetic modifications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliev, T.; Singh, P.B. From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications. Cells 2024, 13, 2052. https://doi.org/10.3390/cells13242052
Saliev T, Singh PB. From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications. Cells. 2024; 13(24):2052. https://doi.org/10.3390/cells13242052
Chicago/Turabian StyleSaliev, Timur, and Prim B. Singh. 2024. "From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications" Cells 13, no. 24: 2052. https://doi.org/10.3390/cells13242052
APA StyleSaliev, T., & Singh, P. B. (2024). From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications. Cells, 13(24), 2052. https://doi.org/10.3390/cells13242052