Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Gene Editing and Germline Breeding
2.3. DNA Extraction and PCR Amplification
2.4. Genotyping through Competitive PCR with Dual Fluorescent Primers
2.5. Genotyping through Quantitative PCR
2.6. Gel Electrophoresis and DNA Detection
2.7. Statistical Analysis
3. Results
3.1. qPCR-Based iGenotype Indexes Are Distinctive for Different Genotypes
3.2. Genotype-Associated iGenotype Indexes Are Constant across Wide Ranges of Template Concentrations and PCR Primers, or Different Target Genes
3.3. Using Genotype-Associated iGenotype Indexes in Genotyping Animals
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, J.C.; Holmes, M.C.; Wang, J.; Guschin, D.Y.; Lee, Y.L.; Rupniewski, I.; Beausejour, C.M.; Waite, A.J.; Wang, N.S.; Kim, K.A.; et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007, 25, 778–785. [Google Scholar] [CrossRef]
- Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; Leung, E.; Hinkley, S.J.; et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, 143–148. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Blitz, I.L.; Biesinger, J.; Xie, X.; Cho, K.W. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 2013, 51, 827–834. [Google Scholar] [CrossRef]
- Lei, Y.; Guo, X.; Liu, Y.; Cao, Y.; Deng, Y.; Chen, X.; Cheng, C.H.; Dawid, I.B.; Chen, Y.; Zhao, H. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc. Natl. Acad. Sci. USA 2012, 109, 17484–17489. [Google Scholar] [CrossRef]
- Dahlem, T.J.; Hoshijima, K.; Jurynec, M.J.; Gunther, D.; Starker, C.G.; Locke, A.S.; Weis, A.M.; Voytas, D.F.; Grunwald, D.J. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012, 8, e1002861. [Google Scholar] [CrossRef]
- Cermak, T.; Doyle, E.L.; Christian, M.; Wang, L.; Zhang, Y.; Schmidt, C.; Baller, J.A.; Somia, N.V.; Bogdanove, A.J.; Voytas, D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011, 39, e82. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, T.; Hu, Z.; Zhang, Y.; Shi, Z.; Wang, Q.; Cui, Y.; Wang, F.; Zhao, H.; Chen, Y. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 2014, 141, 707–714. [Google Scholar] [CrossRef]
- Bell, C.C.; Magor, G.W.; Gillinder, K.R.; Perkins, A.C. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genom. 2014, 15, 1002. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Nakayama, T.; Fish, M.B.; Fisher, M.; Oomen-Hajagos, J.; Thomsen, G.H.; Grainger, R.M. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 2013, 51, 835–843. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef]
- Cho, S.W.; Kim, S.; Kim, J.M.; Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 230–232. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Haurwitz, R.E.; Jinek, M.; Wiedenheft, B.; Zhou, K.; Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010, 329, 1355–1358. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, F.; Cui, Y.; Liu, Z.; Guo, X.; Zhang, Y.; Deng, Y.; Zhao, H.; Chen, Y. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J. 2015, 29, 4914–4923. [Google Scholar] [CrossRef]
- Shibata, Y.; Bao, L.; Fu, L.; Shi, B.; Shi, Y.B. Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods Mol. Biol. 2019, 1874, 507–524. [Google Scholar] [CrossRef]
- Shi, Z.; Xin, H.; Tian, D.; Lian, J.; Wang, J.; Liu, G.; Ran, R.; Shi, S.; Zhang, Z.; Shi, Y.; et al. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system. FASEB J. 2019, 33, 6962–6968. [Google Scholar] [CrossRef]
- Liu, K.; Petree, C.; Requena, T.; Varshney, P.; Varshney, G.K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front. Cell Dev. Biol. 2019, 7, 13. [Google Scholar] [CrossRef]
- Han, C.R.; Holmsen, E.; Carrington, B.; Bishop, K.; Zhu, Y.J.; Starost, M.; Meltzer, P.; Sood, R.; Liu, P.; Cheng, S.Y. Generation of Novel Genetic Models to Dissect Resistance to Thyroid Hormone Receptor alpha in Zebrafish. Thyroid 2020, 30, 314–328. [Google Scholar] [CrossRef]
- Fu, L.; Wen, L.; Luu, N.; Shi, Y.B. A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing. Sci. Rep. 2016, 6, 35488. [Google Scholar] [CrossRef]
- Wen, L.; Shi, Y.B. Unliganded thyroid hormone receptor alpha controls developmental timing in Xenopus tropicalis. Endocrinology 2015, 156, 721–734. [Google Scholar] [CrossRef]
- Bennett, E.P.; Petersen, B.L.; Johansen, I.E.; Niu, Y.; Yang, Z.; Chamberlain, C.A.; Met, O.; Wandall, H.H.; Frodin, M. INDEL detection, the ‘Achilles heel’ of precise genome editing: A survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res. 2020, 48, 11958–11981. [Google Scholar] [CrossRef]
- Qiu, P.; Shandilya, H.; D’Alessio, J.M.; O’Connor, K.; Durocher, J.; Gerard, G.F. Mutation detection using Surveyor nuclease. Biotechniques 2004, 36, 702–707. [Google Scholar] [CrossRef]
- Yang, Z.; Steentoft, C.; Hauge, C.; Hansen, L.; Thomsen, A.L.; Niola, F.; Vester-Christensen, M.B.; Frodin, M.; Clausen, H.; Wandall, H.H.; et al. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res. 2015, 43, e59. [Google Scholar] [CrossRef]
- Denbow, C.; Ehivet, S.C.; Okumoto, S. High Resolution Melting Temperature Analysis to IdentifyCRISPR/Cas9 Mutants from Arabidopsis. Bio Protoc. 2018, 8, e2944. [Google Scholar] [CrossRef]
- Shibata, Y.; Wen, L.; Okada, M.; Shi, Y.B. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of Xenopus Metamorphosis. Thyroid 2020, 30, 300–313. [Google Scholar] [CrossRef]
- Fu, L.; Ma, E.; Okada, M.; Shibata, Y.; Shi, Y.B. Competitive PCR with dual fluorescent primers enhances the specificity and reproducibility of genotyping animals generated from genome editing. Cell Biosci. 2023, 13, 83. [Google Scholar] [CrossRef]
- Wang, S.; Shibata, Y.; Fu, L.; Tanizaki, Y.; Luu, N.; Bao, L.; Peng, Z.; Shi, Y.B. Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax. Cell Biosci. 2023, 13, 40. [Google Scholar] [CrossRef]
- Lei, Y.; Guo, X.; Deng, Y.; Chen, Y.; Zhao, H. Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos. Cell Biosci. 2013, 3, 21. [Google Scholar] [CrossRef]
- Doyle, E.L.; Booher, N.J.; Standage, D.S.; Voytas, D.F.; Brendel, V.P.; Vandyk, J.K.; Bogdanove, A.J. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Res. 2012, 40, W117–W122. [Google Scholar] [CrossRef]
- Evans, B.A.; Smith, O.L.; Pickerill, E.S.; York, M.K.; Buenconsejo, K.J.P.; Chambers, A.E.; Bernstein, D.A. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6. PeerJ 2018, 6, e4920. [Google Scholar] [CrossRef]
- Foster, S.D.; Glover, S.R.; Turner, A.N.; Chatti, K.; Challa, A.K. A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases. MethodsX 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Kc, R.; Srivastava, A.; Wilkowski, J.M.; Richter, C.E.; Shavit, J.A.; Burke, D.T.; Bielas, S.L. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection. Sci. Rep. 2016, 6, 32048. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS ONE 2017, 12, e0179165. [Google Scholar] [CrossRef]
- Sakurai, T.; Kamiyoshi, A.; Takei, N.; Watanabe, S.; Sato, M.; Shindo, T. Bindel-PCR: A novel and convenient method for identifying CRISPR/Cas9-induced biallelic mutants through modified PCR using Thermus aquaticus DNA polymerase. Sci. Rep. 2019, 9, 9923. [Google Scholar] [CrossRef]
- Lefever, S.; Rihani, A.; Van der Meulen, J.; Pattyn, F.; Van Maerken, T.; Van Dorpe, J.; Hellemans, J.; Vandesompele, J. Cost-effective and robust genotyping using double-mismatch allele-specific quantitative PCR. Sci. Rep. 2019, 9, 2150. [Google Scholar] [CrossRef]
- Nenni, M.J.; Fisher, M.E.; James-Zorn, C.; Pells, T.J.; Ponferrada, V.; Chu, S.; Fortriede, J.D.; Burns, K.A.; Wang, Y.; Lotay, V.S.; et al. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front. Physiol. 2019, 10, 154. [Google Scholar] [CrossRef]
- Buchholz, D.R. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology. Dev. Biol. 2015, 408, 188–195. [Google Scholar] [CrossRef]
- Tandon, P.; Conlon, F.; Furlow, J.D.; Horb, M.E. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev. Biol. 2017, 426, 325–335. [Google Scholar] [CrossRef]
- Shi, Y.B.; Hasebe, T.; Fu, L.; Fujimoto, K.; Ishizuya-Oka, A. The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci. 2011, 1, 30. [Google Scholar] [CrossRef]
Gene | Primer ID | Genotype Specificity | Primer Sequences (5′-3′) | PCR Product |
---|---|---|---|---|
MBD3 | F | Both | 5′-CCGGCAGCGTGGTCCTGCTATC-3′ | |
R | Both | 5′-CTCTTTATTCCTCCAGCTGCACC-3′ | 645 bp | |
IR800-Fwt | wt | (IR800)5′-ACCCGAAGGTCTGGCCT-3′ | 315 bp * | |
IR700-Fm | m | (IR700)5′-ACCCGAAGGTCTGGCCG-3′ | 307 bp * | |
Rq | Both | 5′-CTATAGTAATAGACATCGCTCT-3′ | ||
Fwt | wt | 5′-ACCCGAAGGTCTGGCCT-3′ | 50 bp ** | |
Fm | m | 5′-ACCCGAAGGTCTGGCCG-3′ | 42 bp ** | |
F967wt | wt | 5′-GAAGGTCTGGCCTCTCC-3′ | 46 bp ** | |
F970wt | wt | 5′-CCCGAAGGTCTGGCCTCT-3′ | 49 bp ** | |
TRβ | TR_F | Both | 5′-CTATCTAAAAGGACAACATTaga-3′ | |
TR_R | Both | 5′-GATATCACTATAACTGCTGTAGC-3′ | 246 bp | |
TR_Fwt1 | wt | 5′-TTGCTTTCCTTTATCAGGGTA-3′ | 140 bp *** | |
TR_Fm | m | 5′-TTGCTTTCCTTTATCAGGGAT-3′ | 121 bp *** | |
TR_Rq | Both | 5′-TCCACCTCCAATCTGTTACC-3′ | ||
Fwt2 | wt | 5′-AGGGTACATACCCAGCTACT-3′ | 124 bp *** | |
Fwt3 | wt | 5′-AGGGTACATACCCAGCTACTT-3′ | 124 bp *** | |
TR_Fa | Both | 5′-GGACAACATTAGATCTTTCTTTCTTTG-3′ | 87/68 bp (wt/m) | |
TR_Ra | Both | 5′-CACACCACGCATAGCTCATC-3′ | ||
AMDHD1 | A_F | Both | 5′-TGACCTCGCCCGACCTGTGGA-3′ | 688 bp |
A_R | Both | 5′-TTGTTCCTGCTCTGAGCATTCTCTCT-3′ | ||
A_Fwt | wt | 5′-CACACACTCACCCTGTGT-3′ | 169 bp # | |
A_Fm | m | 5′-CACACACTCACCCTGTGG-3′ | 168 bp # | |
A_Rq | Both | 5′-AGACCAGGCAGGTATTTCTG-3′ |
Sample ID | Value_wt | Value_m | iGenotype | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Wild type1 | 70,726 | 3405.8 | 1.3247 | 0.13861 | 0.99996 | 0.04815 |
Wild type2 | 5948.0 | 501.85 | 0.10228 | 0.00202 | 0.99997 | 0.08437 |
Wild type3 | 8872.8 | 246.82 | 0.16042 | 0.00810 | 0.99996 | 0.02782 |
Heterozygous1 | 13,443 | 383.77 | 10,951 | 253.05 | 0.10212 | 0.01573 |
Heterozygous2 | 14,239 | 720.72 | 13,771 | 528.56 | 0.01669 | 0.02573 |
Heterozygous3 | 12,497 | 438.65 | 12,081 | 606.20 | 0.01694 | 0.01785 |
Homozygous1 | 64.617 * | 2.9061 | 4004.7 | 41.622 | −0.96824 | 0.00071 |
Homozygous2 | 139.13 * | 7.5388 | 4213.1 | 723.54 | −0.93606 | 0.00173 |
Homozygous3 | 665.56 * | 27.653 | 18,307 | 540.69 | −0.92984 | 0.00146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Wang, S.; Liu, L.; Shibata, Y.; Okada, M.; Luu, N.; Shi, Y.-B. Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index. Cells 2024, 13, 247. https://doi.org/10.3390/cells13030247
Fu L, Wang S, Liu L, Shibata Y, Okada M, Luu N, Shi Y-B. Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index. Cells. 2024; 13(3):247. https://doi.org/10.3390/cells13030247
Chicago/Turabian StyleFu, Liezhen, Shouhong Wang, Lusha Liu, Yuki Shibata, Morihiro Okada, Nga Luu, and Yun-Bo Shi. 2024. "Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index" Cells 13, no. 3: 247. https://doi.org/10.3390/cells13030247
APA StyleFu, L., Wang, S., Liu, L., Shibata, Y., Okada, M., Luu, N., & Shi, Y. -B. (2024). Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index. Cells, 13(3), 247. https://doi.org/10.3390/cells13030247