Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips
Abstract
:1. Introduction
2. Methods
2.1. Patients Selection
2.2. Data Selection for Evaluation of Repair
2.2.1. Tissue Source
2.2.2. Number and Characterization of Cells
2.2.3. Liquid Injection Volume
2.2.4. Monitoring Repair with MRI
2.2.5. Other Parameters
2.3. Statistical Analysis
3. Results
3.1. Regeneration or Total Signal Regression Is Rare
3.2. Degree of Repair Analysis Using Logistic Regression in Each Group
3.3. Treatment Effects Analysis Comparison between Groups
3.4. Influence of Other Parameters on Cell Based Repair
4. Discussion
4.1. Osteonecrosis Repair: Evolutionary Vestige with a Very Low Spontaneous Capacity
4.2. Why Is Osteonecrosis Repair More Limited Than Fracture Healing in the Same Bone?
4.3. Background of Cell Therapy
4.4. Therapeutic Response Disparity: Therapy Puzzle
4.5. Poor versus Robust Regenerators Patients
4.6. Limitation of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sultan, A.A.; Mohamed, N.; Samuel, L.T.; Chughtai, M.; Sodhi, N.; Krebs, V.E.; Stearns, K.L.; Molloy, R.M.; Mont, M.A. Classification systems of hip osteonecrosis: An updated review. Int. Orthop. 2019, 43, 1089–1095. [Google Scholar] [CrossRef]
- Mont, M.A.; Cherian, J.J.; Sierra, R.J.; Jones, L.C.; Lieberman, J.R. Nontraumatic Osteonecrosis of the femoral head: Where do we stand today? A ten-year update. J. Bone Jt. Surg. Am. 2015, 97, 1604–1627. [Google Scholar] [CrossRef]
- Zhang, W.; Du, H.; Liu, Z.; Zhou, D.; Li, Q.; Liu, W. Worldwide research trends on femur head necrosis (2000–2021): A bibliometrics analysis and suggestions for researchers. Ann. Transl. Med. 2023, 11, 155. [Google Scholar] [CrossRef]
- Ikeuchi, K.; Hasegawa, Y.; Seki, T.; Takegami, Y.; Amano, T.; Ishiguro, N. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Mod. Rheumatol. 2015, 25, 278–281. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, S.; Song, J.H.; Jung, Y.Y.; Cho, M.R.; Rhyu, K.H. Prevalence of Osteonecrosis of the femoral head: A nationwide epidemiologic analysis in Korea. J. Arthroplast. 2009, 24, 1178–1183. [Google Scholar] [CrossRef]
- Zhao, D.W.; Yu, M.; Hu, K.; Wang, W.; Yang, L.; Wang, B.J.; Gao, X.H.; Guo, Y.M.; Xu, Y.Q.; Wei, Y.S.; et al. Prevalence of nontraumatic Osteonecrosis of the femoral head and its associated risk factors in the Chinese population: Results from a nationally representative survey. Chin. Med. J. 2015, 128, 2843–2850. [Google Scholar] [CrossRef]
- GBD 2021 Sickle Cell Disease Collaborators. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e585–e599. [Google Scholar] [CrossRef]
- Babu, B.V.; Sharma, Y.; Surti, S.B.; Bhat, D.; Sridevi, P.; Ranjit, M.; Sudhakar, G.; Sarmah, J. Indian sickle cell disease registry for surveillance and patient management: Development and implementation. Int. J. Health Plann. Manag. 2023, 38, 1483–1494. [Google Scholar] [CrossRef]
- Silva-Pinto, A.C.; Costa, F.F.; Gualandro, S.F.M.; Fonseca, P.B.B.; Grindler, C.M.; Souza Filho, H.C.R.; Bueno, C.T.; Cançado, R.D. Economic burden of sickle cell disease in Brazil. PLoS ONE 2022, 17, e02697032022. [Google Scholar] [CrossRef]
- Reddy, G.B.; Tremblay, J.O.; Yakkanti, R.R.; Hernandez, V.H.; D’Apuzzo, M.R. Increased Risk of In-Hospital Complications and Costs after Total Hip Arthroplasty for Primary and Secondary Osteonecrosis. J. Arthroplast. 2023, 38, 2398–2403. [Google Scholar] [CrossRef]
- Ficat, P.; Grijalvo, P. Long-term results of the forage-biopsy in grade I and II Osteonecrosis of the femoral head. Apropos of 133 cases re-examined after an average time of 9 years 6 months. Rev. Chir. Orthop. Reparatrice. Appar. Mot. 1984, 70, 253–255. [Google Scholar] [PubMed]
- Sugioka, Y. Transtrochanteric anterior rotational osteotomy of the femoral head in the treatment of Osteonecrosis affecting the hip: A new osteotomy operation. Clin. Orthop. Relat. Res. 1978, 130, 191–201. [Google Scholar] [CrossRef]
- Hernigou, P.; Beaujean, F. Treatment of Osteonecrosis with autologous bone marrow grafting. Clin. Orthop. Relat. Res. 2002, 405, 14–23. [Google Scholar] [CrossRef]
- Hernigou, P.; Trousselier, M.; Roubineau, F.; Bouthors, C.; Chevallier, N.; Rouard, H.; Flouzat-Lachaniette, C.H. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress. Clin. Orthop. Surg. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Hernigou, P.; Verrier, S.; Homma, Y.; Rouard, H.; Lachaniette, C.H.F.; Sunil Kumar, K.H. Prognosis of hip osteonecrosis after cell therapy with a calculator and artificial intelligence: Ten year collapse-free survival prediction on three thousand and twenty one hips. Int. Orthop. 2023, 47, 1689–1705. [Google Scholar] [CrossRef]
- Hernigou, P. Revisiting prediction of collapse in hip osteonecrosis with artificial intelligence and machine learning: A new approach for quantifying and ranking the contribution and association of factors for collapse. Int. Orthop. 2023, 47, 677–689. [Google Scholar] [CrossRef]
- Kono, H.; Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008, 8, 279–289. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef]
- Adapala, N.S.; Yamaguchi, R.; Phipps, M.; Aruwajoye, O.; Kim, H.K.W. Necrotic bone stimulates proinflammatory responses in macrophages through the activation of tolllike receptor 4. Am. J. Pathol. 2016, 186, 2987–2999. [Google Scholar] [CrossRef]
- Hernigou, P.; Dubory, A.; Homma, Y.; Guissou, I.; Flouzat Lachaniette, C.H.; Chevallier, N.; Rouard, H. Cell therapy versus simultaneous contralateral decompression in symptomatic corticosteroid osteonecrosis: A thirty year follow-up prospective randomized study of one hundred and twenty five adult patients. Int. Orthop. 2018, 42, 1639–1649. [Google Scholar] [CrossRef]
- Te Winkel, M.L.; Pieters, R.; Wind, E.J.; Bessems, J.H.; van den Heuvel-Eibrink, M.M. Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia. Haematologica 2014, 99, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Barrena, E.; Padilla-Eguiluz, N.G.; Rosset, P.; Hernigou, P.; Baldini, N.; Ciapetti, G.; Gonzalo-Daganzo, R.M.; Avendaño-Solá, C.; Rouard, H.; Giordano, R.; et al. Osteonecrosis of the Femoral Head Safely Healed with Autologous, Expanded, Bone Marrow-Derived Mesenchymal Stromal Cells in a Multicentric Trial with Minimum 5 Years Follow-Up. J. Clin. Med. 2021, 10, 508. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.R.; Steinberg, M.E.; Garino, J.P.; Dalinka, M.; Udupa, J.K. Determining lesion size in Osteonecrosis of the femoral head. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. S3), 27–34. [Google Scholar] [CrossRef] [PubMed]
- Muschler, G.F.; Boehm, C.; Easley, K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: The influence of aspiration volume. J. Bone Jt. Surg. Am. 1997, 79, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Lebouvier, A.; Poignard, A.; Coquelin-Salsac, L.; Léotot, J.; Homma, Y.; Jullien, N.; Bierling, P.; Galactéros, F.; Hernigou, P.; Chevallier, N.; et al. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches. Stem Cell Res. 2015, 15, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y.; Kaneko, K.; Hernigou, P. Supercharging allografts with mesenchymal stem cells in the operating room during hip revision. Int. Orthop. 2014, 38, 2033–2044. [Google Scholar] [CrossRef]
- Steinberg, M.E.; Oh, S.C.; Khoury, V.; Udupa, J.K.; Steinberg, D.R. Lesion size measurement in femoral head necrosis. Int. Orthop. 2018, 42, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Bely, A.E.; Nyberg, K.G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 2010, 25, 161–170. [Google Scholar] [CrossRef]
- Grivas, J.; Haag, M.; Johnson, A.; Manalo, T.; Roell, J.; Das, T.L.; Brown, E.; Burns, A.R.; Lafontant, P.J. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014, 163, 14–23. [Google Scholar] [CrossRef]
- Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N.; Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331, 1078–1080. [Google Scholar] [CrossRef]
- Hernigou, P. Bone marrow in orthopaedics (part II): A three hundred and seventy million-year saga from the Devonian to the coronavirus disease 2019 pandemic-osteonecrosis; transplantation; “human chimera”; stem cells, bioreactors, and coronavirus disease. Int. Orthop. 2020, 44, 2787–2805. [Google Scholar] [CrossRef] [PubMed]
- Alves do Monte, F.; Sung Park, M.; Gokani, V.; Singhal, M.; Ma, C.; Aruwajoye, O.O.; Niese, B.; Liu, X.; Kim, H.K.W. Development of a novel minimally invasive technique to washout necrotic bone marrow content from epiphyseal bone: A preliminary cadaveric bone study. Orthop. Traumatol. Surg. Res. 2020, 106, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, B.; Wang, R.; Gong, S.; Chen, G.; Xu, W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res. Ther. 2019, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Gangji, V.; De Maertelaer, V.; Hauzeur, J.P. Autologous bone marrow cell implantation in the treatment of nontraumatic Osteonecrosis of the femoral head: Five year follow-up of a prospective controlled study. Bone 2011, 49, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, L.; Merli, G.; Tobar, C.; Altamura, S.A.; Kon, E.; Filardo, G. Regenerative therapies increase survivorship of avascular necrosis of the femoral head: A systematic review and meta-analysis. Int. Orthop 2018, 42, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, P.; Li, J.; Chen, G.; Xiong, Y. Efficacy and Safety of Stem Cell Combination Therapy for Osteonecrosis of the Femoral Head: A Systematic Review and Meta-Analysis. J. Health Eng. 2021, 2021, 9313201. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Qing, L.; Xiao, Y.; Tang, J.; Wu, P. Insight into Steroid-Induced ONFH: The Molecular Mechanism and Function of Epigenetic Modification in Mesenchymal Stem Cells. Biomolecules 2023, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, L.; Wei, B.; Wang, J.; Hou, D.; Deng, X. Regenerative therapies for femoral head necrosis in the past two decades: A systematic review and network meta-analysis. Stem Cell Res. Ther. 2024, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Canencio Salgado, M.C.; Pico, O.A.; Sossa, C.L.; Arango-Rodríguez, M.L. Treatment of osteonecrosis of the femoral head with multiple drilling and bone marrow mesenchymal stem cells expanded ex vivo plus biomolecules derived from platelet-rich plasma: A case report. Am. J. Stem Cells 2023, 12, 92–97. [Google Scholar]
- Wang, C.; Stöckl, S.; Li, S.; Herrmann, M.; Lukas, C.; Reinders, Y.; Sickmann, A.; Grässel, S. Effects of Extracellular Vesicles from Osteogenic Differentiated Human BMSCs on Osteogenic and Adipogenic Differentiation Capacity of Naïve Human BMSCs. Cells 2022, 11, 2491. [Google Scholar] [CrossRef]
- Blanco, J.F.; Garcia-Garcia, F.J.; Villarón, E.M.; da Casa, C.; Fidalgo, H.; López-Parra, M.; Santos, J.A.; Sánchez-Guijo, F. Long-Term Results of a Phase I/II Clinical Trial of Autologous Mesenchymal Stem Cell Therapy for Femoral Head Osteonecrosis. J. Clin. Med. 2023, 12, 2117. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Huang, T.; Zhang, Z.; Yang, Z.; Hao, F.; Yuan, T.; Zhou, Z. The potential effect of BMSCs with miR-27a in improving steroid-induced osteonecrosis of the femoral head. Sci. Rep. 2022, 12, 21051. [Google Scholar] [CrossRef]
- Hsu, S.L.; Jhan, S.W.; Hsu, C.C.; Wu, Y.N.; Wu, K.L.H.; Kuo, C.A.; Chiu, H.W.; Cheng, J.H. Effect of three clinical therapies on cytokines modulation in the hip articular cartilage and bone improvement in rat early osteonecrosis of the femoral head. Biomed J. 2023, 46, 100571. [Google Scholar] [CrossRef] [PubMed]
- Mastrolia, I.; Giorgini, A.; Murgia, A.; Loschi, P.; Petrachi, T.; Rasini, V.; Pinelli, M.; Pinto, V.; Lolli, F.; Chiavelli, C.; et al. Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis. Pharmaceutics 2022, 14, 2127. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Shen, Y.-S.; He, M.-C.; Yang, F.; Yang, P.; Pang, F.-X.; He, W.; Cao, Y.-M.; Wei, Q.-S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/beta-catenin signaling pathway. Biomed. Pharmacother. 2019, 112, 108746. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Meng, H.; Liao, S.; Zhang, J.; Guan, Y.; Tian, H.; Peng, J. Research Progress on Exosomes in Osteonecrosis of the Femoral Head. Orthop. Surg. 2022, 14, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Tomaru, Y.; Yoshioka, T.; Sugaya, H.; Kumagai, H.; Aoto, K.; Wada, H.; Akaogi, H.; Yamazaki, M.; Mishima, H. Comparison Between Concentrated Autologous Bone Marrow Aspirate Transplantation as a Hip Preserving Surgery and Natural Course in Idiopathic Osteonecrosis of the Femoral Head. Cureus 2022, 14, e24658. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Wei, Q.; Dong, Y.; Liu, Y.; Yuan, Q.; He, W.; Jing, Z.; Hong, Z.; Zhang, L.; et al. MiRNA-320a-5p contributes to the homeostasis of osteogenesis and adipogenesis in bone marrow mesenchymal stem cell. Regen. Ther. 2022, 20, 32–40. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, K.; Tong, L.; Wang, Y.; Yang, W.; Sun, Z. Knowledge structure and emerging trends on osteonecrosis of the femoral head: A bibliometric and visualized study. J. Orthop. Surg. Res. 2022, 17, 194. [Google Scholar] [CrossRef]
- Wang, L.; Tian, X.; Li, K.; Liu, C. Combination use of core decompression for osteonecrosis of the femoral head: A systematic review and meta-analysis using Forest and Funnel Plots. Comput. Math. Methods Med. 2021. 2021, 1284149. [Google Scholar] [CrossRef]
- López-Fernández, A.; Barro, V.; Ortiz-Hernández, M.; Manzanares, M.C.; Vivas, D.; Vives, J.; Vélez, R.; Ginebra, M.P.; Aguirre, M. Effect of Allogeneic Cell-Based Tissue-Engineered Treatments in a Sheep Osteonecrosis Model. Tissue Eng. Part A 2020, 26, 993–1004. [Google Scholar] [CrossRef]
- Houdek, M.T.; Wyles, C.C.; Smith, J.H.; Terzic, A.; Behfar, A.; Sierra, R.J. Hip decompression combined with bone marrow concentrate and platelet-rich plasma for corticosteroid-induced osteonecrosis of the femoral head: Mid-term update from a prospective study. Bone Jt. Open. 2021, 2, 926–931. [Google Scholar] [CrossRef]
- Deng, Z.; Ren, Y.; Park, M.S.; Kim, H.K.W. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone 2022, 154, 116215. [Google Scholar] [CrossRef]
- Guzman, R.A.; Maruyama, M.; Moeinzadeh, S.; Lui, E.; Zhang, N.; Storaci, H.W.; Tam, K.; Huang, E.E.; Utsunomiya, T.; Rhee, C.; et al. The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroid-associated osteonecrosis of the femoral head in rabbits. Stem Cell Res. Ther. 2021, 12, 503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, Z.; Wei, Q.; Li, P.; Li, J.; Fan, Y.; Zhang, L.; Hong, Z.; He, W.; Wang, H.; et al. Inhibition of miR-93-5p promotes osteogenic differentiation in a rabbit model of trauma-induced osteonecrosis of the femoral head. FEBS Open Bio. 2021, 11, 2152–2165. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, S.; Wei, Q.; Zhuang, Z.; Li, J.; Fan, Y.; Zhang, L.; Hong, Z.; Ma, X.; Sun, R.; et al. CircRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regen. Ther. 2020, 16, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, Y.; Xia, C.; Wang, Y.; Zhao, Z.; Li, T. Stem cell therapy for osteonecrosis of femoral head: Opportunities and challenges. Regen. Ther. 2020, 15, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gong, S.; Wang, R.; Liu, S.; Wang, B.; Chen, G.; Gong, T.; Xu, W. Knockdown of POSTN Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells From Patients With Steroid-Induced Osteonecrosis. Front. Cell Dev. Biol. 2020, 8, 606289. [Google Scholar] [CrossRef]
- Rocchi, M.; Del Piccolo, N.; Mazzotta, A.; Giavaresi, G.; Fini, M.; Facchini, F.; Stagni, C.; Dallari, D. Core decompression with bone chips allograft in combination with fibrin platelet-rich plasma and concentrated autologous mesenchymal stromal cells, isolated from bone marrow: Results for the treatment of avascular necrosis of the femoral head after 2 years minimum follow-up. Hip Int. 2020, 30 (Suppl. S2), 3–12. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Yang, B.; Hu, W.; Chan, M.T.; Wu, W.K.K. Emerging roles of long non-coding RNAs in osteonecrosis of the femoral head. Am. J. Transl. Res. 2020, 12, 5984–5991. [Google Scholar]
- Li, M.; Ma, Y.; Fu, G.; Zhang, R.; Li, Q.; Deng, Z.; Zheng, M.; Zheng, Q. 10-year follow-up results of the prospective, double-blinded, randomized, controlled study on autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of the femoral head. Stem Cell Res. Ther. 2020, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Sun, Q.; Liu, M.; Grottkau, B.E.; He, Z.X.; Zou, Q.; Ye, C. Correlation between the efficacy of stem cell therapy for osteonecrosis of the femoral head and cell viability. BMC Musculoskelet. Disord. 2020, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Gou, G.H.; Wu, C.C.; Shen, H.C.; Lin, L.C.; Pan, R.Y. Increased COUP-TFII Expression Mediates the Differentiation Imbalance of Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Osteonecrosis. Biomed Res. Int. 2019, 2019, 9262430. [Google Scholar] [CrossRef]
- Duan, L.; Zuo, J.; Zhang, F.; Li, B.; Xu, Z.; Zhang, H.; Yang, B.; Song, W.; Jiang, J. Magnetic Targeting of HU-MSCs in the Treatment of Glucocorticoid-Associated Osteonecrosis of the Femoral Head Through Akt/Bcl2/Bad/Caspase-3 Pathway. Int. J. Nanomed. 2020, 15, 3605–3620. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.H.; Chen, L.; Chen, H.H.; Li, Y.F.; Luo, H.B.; Hu, D.Q.; Chen, P. MiR-15b ameliorates SONFH by targeting Smad7 and inhibiting osteogenic differentiation of BMSCs. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9761–9771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, Q.M.; Zhang, F.Q.; Zhang, Q.L.; Wang, L.G.; Wang, W.J. Core decompression combined with autologous bone marrow stem cells versus core decompression alone for patients with osteonecrosis of the femoral head: A meta-analysis. Int. J. Surg. 2019, 69, 23–31. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Ma, C.; Gu, G.; Han, D.-F. A Mini Review: Stem Cell Therapy for Osteonecrosis of the Femoral Head and Pharmacological Aspects. Curr. Pharm. Des. 2019, 25, 1099–1104. [Google Scholar] [CrossRef]
Eventual Repair | No Repair | ||
---|---|---|---|
No cell | Stage I | ≤20% | >20% |
Stage II | Never repair | ||
Cells | Stage I | ≤40% | >40% |
Stage II | ≤30% | >30% |
Blood Disorders | Metabolic Diseases | Corticosteroids for | |||
---|---|---|---|---|---|
sickle cell disease | Pregnancy | lupus erythematosus | |||
thalassemia | Gaucher disease | uveitis | |||
polycythemia | Gout | multiple sclerosis | |||
hemophilia | HIV infection | Crohn’s disease | |||
lupus erythematosus | Pancreas | pemphigus vulgaris | |||
coagulation abnormalities | Hemochromatosis | nephrotic syndrome | |||
cancer, such as leukemia | chronic renal failure | liver transplantation | |||
hyperparathyroidism | renal transplantation | ||||
Associated factors: | Cushing’s disease | aplastic anemia | |||
«Caisson disease» | MTHFR | cardiac transplantation | |||
alcohol abuse | |||||
smoking |
Status at ⊄ Implantation | Reduction in % of Volume ON | ||
---|---|---|---|
Age ≤ 30 Range (12;30) | Age > 30 Range (31;48) | p | |
Stage I | 32% ± 10% | 31% ± 15% | <0.01 |
Stage II | 30% ± 16% | 29% ± 20% | <0.01 |
ON volume >20% | 38% ± 21% | 37% ± 29% | <0.01 |
ON volume ≤20% | 15% ± 5% | 16% ± 10% | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernigou, P.; Homma, Y.; Hernigou, J.; Flouzat Lachaniette, C.H.; Rouard, H.; Verrier, S. Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips. Cells 2024, 13, 776. https://doi.org/10.3390/cells13090776
Hernigou P, Homma Y, Hernigou J, Flouzat Lachaniette CH, Rouard H, Verrier S. Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips. Cells. 2024; 13(9):776. https://doi.org/10.3390/cells13090776
Chicago/Turabian StyleHernigou, Philippe, Yasuhiro Homma, Jacques Hernigou, Charles Henri Flouzat Lachaniette, Helène Rouard, and Sophie Verrier. 2024. "Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips" Cells 13, no. 9: 776. https://doi.org/10.3390/cells13090776
APA StyleHernigou, P., Homma, Y., Hernigou, J., Flouzat Lachaniette, C. H., Rouard, H., & Verrier, S. (2024). Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips. Cells, 13(9), 776. https://doi.org/10.3390/cells13090776