The Evolving Landscape of Functional Models of Autism Spectrum Disorder
Abstract
:1. Introduction
2. Genetic Risk Factors
2.1. Inherited Genetic Variants
2.2. De Novo Variants (DNV)
2.3. Convergent Signaling Modules
2.4. Variants of Uncertain Significance (VUS)
Genes | Protein Function/Role in ASD | Chromosomal Location | Mouse Mutation | Mutant Phenotype | Associated NDDs | Limitations/Strengths | Reference |
---|---|---|---|---|---|---|---|
ANK3 | Scaffold protein, links membrane protein to cytoskeleton | 10q21.2 | Heterozygous KO | Increased anxiety, smaller cortex | Bipolar disorder, Schizophrenia | Lacked exon 37 genomic sequence, driver expressed Cre with enhancer which is less efficient in PNS | [85,92,93] |
CHD8 | Chromatin remodeling | 14q11.2 | Heterozygous KO | Altered social behavior, increased anxiety, repetitive behavior | Overgrowth with macrocephaly, ID | No conclusive evidence of CHD8 haploinsufficiency and abnormal REST activation | [94,95,96,97] |
CNTNAP2 | Cell adhesion molecule responsible for interaction between glia and neurons | 7q35-q36.1 | Homozygous KO | Mitochondrial dysregulation, axonal impairment, synaptic vesicle transport disruption | Cortical dysplasia, focal epilepsy, ID, language impairment, Tourette syndrome | Longer cue duration bisection tasks not employed; rearing influences not considered | [98,99,100,101,102,103] |
FMR1 | Synaptic mRNA translation; leading genetic cause of ASD | Xq27.3 | Hemizygous and Homozygous KO | Learning deficits, hyperactivity, dendritic spine maturation defects | Fragile X-associated tremor/ataxia syndrome (FXTAS), ID | Confirmation of behaviorally induced modulation of neuroplasticity by showing causal inverse relationship between behavior and neuroplasticity not performed; High level FMRP overexpression in Fmr1 KO mice cause aberrant behavior | [56,104,105,106,107] |
GRIN2B | NMDA receptor ion channel subunit: de novo mutations result in neuronal circuit alterations | 12p13.1 | Heterozygous KO, conditional KO | More spontaneous spikes and wave discharges | Epilepsy, ADHD, Schizophrenia, ID, developmental delay | Failure to suckle and death in mouse models; ASD; hypersensitivity due to supraspinal mechanisms | [108,109,110,111] |
MECP2 | Binds to methylated cytosines | Xq28 | Hemizygous and Homozygous KO | Battery of neurological phenotypes, hindlimb clasping | Rett syndrome, ASD, Epilepsy, regression | [55,112,113,114,115,116] | |
MSL2 | Biallelic expression of dosage sensitive genes, histone H4 acetylation | 3q22.3 | Homozygous KO | Heterogenous phenotype and perinatal lethality | Karayol-Borroto-Haghshenas NDD syndrome | Multiple cell type leads to heterogeneity | [61,117] |
NLGN4X | Post-synaptic cell adhesion molecule, binds neurexin | Xp22.32-p22.31 | Hemizygous and Homozygous KO | Reduced excitation: inhibition ratio, reduced social interaction, vocalization | Tourette syndrome, Fragile X syndrome | Network stimulation with 3D multi electrode array used to determine function of Nlgn4 at cortical column | [118,119,120,121] |
NRXN1 | Pre-synaptic cell adhesion molecule, binds neuroligin | 2p16.3 | Homozygous KO | Affected social novelty preference, increased aggression in males | ADHD, Schizophrenia | Nrxn1α KO mice engineered from SV129 mice as these can be targeted by homologous recombination. | [122,123] |
PTCHD1 | Transmembrane protein, Sonic hedgehog signaling | Xp22.11 | Hemizygous and Homozygous KO | Cognitive deficits, synaptic gene expression changes, excitatory synaptic dysfunction | ID | No localization or fluorescence in transfected cells with N terminal GFP tag | [124,125,126,127] |
PTEN | Synaptic inhibition and excitation imbalance | 10q23.31 | Heterozygous KO, conditional KO | Synaptic alterations, hyperactive hippocampal mTOR signaling, microglia activation | Macrocephaly, epilepsy | Only SSC region analyzed | [58,59,128,129,130] |
RELN | Cell positioning during brain development; loss results in neuronal dysplasia | 7q22.1 | Homozygous KO | “Reeler” mice, lamination defects in brain, deficiency in neurogenesis | Epilepsy, Schizophrenia, Bipolar disorder, Lissencephaly with cerebellar hypoplasia | Functional impairment more in Reln deficient mice | [131,132,133,134] |
SCN2A | De novo mutations impair voltage-gated sodium channels and affects dendritic excitability | 2q24.3 | Homozygous KO, Heterozygous KO, conditional KO | Delayed spatial learning, disrupted nesting, mating, anxiety | Epilepsy, movement disorder | Scn2a KO mice showed increased anxiety and little or no mating and nesting, suggesting behavioral abnormalities | [135,136,137,138,139] |
SHANK family | Encodes post-synaptic scaffold proteins, responsible for ~1% of ASD cases | SHANK3 (22q13.33) | Homozygous KO | Abnormal social interaction | Phelan–McDermid syndrome, Schizophrenia, ID, ASD, epilepsy, developmental delay | Mutant Shank3B affect social interaction | [81,140,141,142,143] |
UBE3A | E3 ubiquitin ligase, alteration of synaptic function | 15q11.2 | Ube3am-/p+ | Motor dysfunction, inducible seizures, impaired LTP | Angelman syndrome, ID, ataxia | Importance of nuclear UBE3A established | [144,145,146,147] |
3. Environmental Risk Factors
3.1. External Factors
3.2. Internal Factors
4. Animal Models of ASD
4.1. Murine Models of ASD
4.2. Porcine Models of ASD
4.3. Non-Human Primate Models of ASD
5. Human ASD Models
6. A Comparative Analysis of Current ASD Models
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Hirota, T.; King, B.H. Autism Spectrum Disorder: A Review. JAMA 2023, 329, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Vrijenhoek, T.; Middelburg, E.M.; Monroe, G.R.; van Gassen, K.L.I.; Geenen, J.W.; Hovels, A.M.; Knoers, N.V.; van Amstel, H.K.P.; Frederix, G.W.J. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. Eur. J. Hum. Genet. 2018, 26, 1566–1571. [Google Scholar] [CrossRef]
- Gibitova, E.A.; Dobrynin, P.V.; Pomerantseva, E.A.; Musatova, E.V.; Kostareva, A.; Evsyukov, I.; Rychkov, S.Y.; Zhukova, O.V.; Naumova, O.Y.; Grigorenko, E.L. A Study of the Genomic Variations Associated with Autistic Spectrum Disorders in a Russian Cohort of Patients Using Whole-Exome Sequencing. Genes 2022, 13, 920. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.; Ahmed, H.U.; Jalal Uddin, M.M.; Chowdhury, W.A.; Iqbal, M.S.; Kabir, R.I.; Chowdhury, I.A.; Aftab, A.; Datta, P.G.; Rabbani, G.; et al. Autism Spectrum disorders (ASD) in South Asia: A systematic review. BMC Psychiatry 2017, 17, 281. [Google Scholar] [CrossRef]
- American Pshychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5℗’); American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Anagnostou, E. Clinical trials in autism spectrum disorder: Evidence, challenges and future directions. Curr. Opin. Neurol. 2018, 31, 119–125. [Google Scholar] [CrossRef]
- Antaki, D.; Guevara, J.; Maihofer, A.X.; Klein, M.; Gujral, M.; Grove, J.; Carey, C.E.; Hong, O.; Arranz, M.J.; Hervas, A.; et al. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat. Genet. 2022, 54, 1284–1292. [Google Scholar] [CrossRef]
- Bicks, L.K.; Geschwind, D.H. Functional neurogenomics in autism spectrum disorders: A decade of progress. Curr. Opin. Neurobiol. 2024, 86, 102858. [Google Scholar] [CrossRef]
- Wigdor, E.M.; Weiner, D.J.; Grove, J.; Fu, J.M.; Thompson, W.K.; Carey, C.E.; Baya, N.; van der Merwe, C.; Walters, R.K.; Satterstrom, F.K.; et al. The female protective effect against autism spectrum disorder. Cell Genom. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Bai, D.; Yip, B.H.K.; Windham, G.C.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035–1043. [Google Scholar] [CrossRef]
- Connolly, N.; Anixt, J.; Manning, P.; Ping, I.L.D.; Marsolo, K.A.; Bowers, K. Maternal metabolic risk factors for autism spectrum disorder-An analysis of electronic medical records and linked birth data. Autism Res. 2016, 9, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Taleb, A.; Lin, W.; Xu, X.; Zhang, G.; Zhou, Q.G.; Naveed, M.; Meng, F.; Fukunaga, K.; Han, F. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed. Pharmacother. 2021, 137, 111322. [Google Scholar] [CrossRef] [PubMed]
- Tordjman, S.; Somogyi, E.; Coulon, N.; Kermarrec, S.; Cohen, D.; Bronsard, G.; Bonnot, O.; Weismann-Arcache, C.; Botbol, M.; Lauth, B.; et al. Gene x Environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Front. Psychiatry 2014, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Parlanti, P.; Cavallo, L.; Farrow, E.; Spivey, T.; Renieri, A.; Mari, F.; Manzini, M.C. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum. Mol. Genet. 2024, 33, 1229–1240. [Google Scholar] [CrossRef]
- Nishizaki, S.S.; Haghani, N.K.; La, G.N.; Mariano, N.A.F.; Uribe-Salazar, J.M.; Kaya, G.; Regester, M.; Andrews, D.S.; Nordahl, C.W.; Amaral, D.G.; et al. m6A-mRNA Reader YTHDF2 Identified as a Potential Risk Gene in Autism with Disproportionate Megalencephaly. Autism Res. 2025, 18, 966–982. [Google Scholar] [CrossRef]
- Moon, S.J.; Hwang, J.S.; Shin, A.L.; Kim, J.Y.; Bae, S.M.; Sheehy-Knight, J.; Kim, J.W. Accuracy of the Childhood Autism Rating Scale: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2019, 61, 1030–1038. [Google Scholar] [CrossRef]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef]
- Chlebowski, C.; Green, J.A.; Barton, M.L.; Fein, D. Using the childhood autism rating scale to diagnose autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 787–799. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H., Jr.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Lefort-Besnard, J.; Vogeley, K.; Schilbach, L.; Varoquaux, G.; Thirion, B.; Dumas, G.; Bzdok, D. Patterns of autism symptoms: Hidden structure in the ADOS and ADI-R instruments. Transl. Psychiatry 2020, 10, 257. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, H.; Ming, G.L. Genetics of human brain development. Nat. Rev. Genet. 2024, 25, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef]
- Devlin, B.; Scherer, S.W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 2012, 22, 229–237. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef]
- Pinto, D.; Pagnamenta, A.T.; Klei, L.; Anney, R.; Merico, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466, 368–372. [Google Scholar] [CrossRef]
- Robinson, E.B.; St Pourcain, B.; Anttila, V.; Kosmicki, J.A.; Bulik-Sullivan, B.; Grove, J.; Maller, J.; Samocha, K.E.; Sanders, S.J.; Ripke, S.; et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 2016, 48, 552–555. [Google Scholar] [CrossRef]
- Vorstman, J.A.S.; Parr, J.R.; Moreno-De-Luca, D.; Anney, R.J.L.; Nurnberger, J.I., Jr.; Hallmayer, J.F. Autism genetics: Opportunities and challenges for clinical translation. Nat. Rev. Genet. 2017, 18, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feliciano, P.; Shu, C.; Wang, T.; Astrovskaya, I.; Hall, J.B.; Obiajulu, J.U.; Wright, J.R.; Murali, S.C.; Xu, S.X.; et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 2022, 54, 1305–1319. [Google Scholar] [CrossRef]
- Linaro, D.; Vermaercke, B.; Iwata, R.; Ramaswamy, A.; Libe-Philippot, B.; Boubakar, L.; Davis, B.A.; Wierda, K.; Davie, K.; Poovathingal, S.; et al. Xenotransplanted Human Cortical Neurons Reveal Species-Specific Development and Functional Integration into Mouse Visual Circuits. Neuron 2019, 104, 972–986.e6. [Google Scholar] [CrossRef]
- Molineris, I.; Grassi, E.; Ala, U.; Di Cunto, F.; Provero, P. Evolution of promoter affinity for transcription factors in the human lineage. Mol. Biol. Evol. 2011, 28, 2173–2183. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, S.; Irwin, C.; Singh, K.K. Human pluripotent stem cell (hPSC) and organoid models of autism: Opportunities and limitations. Transl. Psychiatry 2023, 13, 217. [Google Scholar] [CrossRef]
- Birey, F.; Andersen, J.; Makinson, C.D.; Islam, S.; Wei, W.; Huber, N.; Fan, H.C.; Metzler, K.R.C.; Panagiotakos, G.; Thom, N.; et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017, 545, 54–59. [Google Scholar] [CrossRef]
- Lewis, E.M.A.; Meganathan, K.; Baldridge, D.; Gontarz, P.; Zhang, B.; Bonni, A.; Constantino, J.N.; Kroll, K.L. Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol. Autism 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.; O’Roak, B.J.; Santini, E.; Samaco, R.C.; Kleiman, R.J.; Manzini, M.C. Current Perspectives in Autism Spectrum Disorder: From Genes to Therapy. J. Neurosci. 2016, 36, 11402–11410. [Google Scholar] [CrossRef]
- Iakoucheva, L.M.; Muotri, A.R.; Sebat, J. Getting to the Cores of Autism. Cell 2019, 178, 1287–1298. [Google Scholar] [CrossRef]
- de la Torre-Ubieta, L.; Won, H.; Stein, J.L.; Geschwind, D.H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 2016, 22, 345–361. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Tick, B.; Bolton, P.; Happe, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef]
- Rosenberg, R.E.; Law, J.K.; Yenokyan, G.; McGready, J.; Kaufmann, W.E.; Law, P.A. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 2009, 163, 907–914. [Google Scholar] [CrossRef]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef]
- Fu, J.M.; Satterstrom, F.K.; Peng, M.; Brand, H.; Collins, R.L.; Dong, S.; Wamsley, B.; Klei, L.; Wang, L.; Hao, S.P.; et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 2022, 54, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Trost, B.; Thiruvahindrapuram, B.; Chan, A.J.S.; Engchuan, W.; Higginbotham, E.J.; Howe, J.L.; Loureiro, L.O.; Reuter, M.S.; Roshandel, D.; Whitney, J.; et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022, 185, 4409–4427.e18. [Google Scholar] [CrossRef]
- Jamain, S.; Quach, H.; Betancur, C.; Rastam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Gogate, A.; Kaur, K.; Khalil, R.; Bashtawi, M.; Morris, M.A.; Goodspeed, K.; Evans, P.; Chahrour, M.H. The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort. NPJ Genom. Med. 2024, 9, 62. [Google Scholar] [CrossRef]
- Takumi, T.; Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol. 2018, 48, 183–192. [Google Scholar] [CrossRef]
- Kerin, T.; Ramanathan, A.; Rivas, K.; Grepo, N.; Coetzee, G.A.; Campbell, D.B. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci. Transl. Med. 2012, 4, 128ra140. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.; Zoghbi, H.Y. The story of Rett syndrome: From clinic to neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Darnell, J.C.; Van Driesche, S.J.; Zhang, C.; Hung, K.Y.; Mele, A.; Fraser, C.E.; Stone, E.F.; Chen, C.; Fak, J.J.; Chi, S.W.; et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146, 247–261. [Google Scholar] [CrossRef]
- Na, E.S.; Monteggia, L.M. The role of MeCP2 in CNS development and function. Horm. Behav. 2011, 59, 364–368. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Silverman, J.L.; Crawley, J.N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 2014, 3, 118–133. [Google Scholar] [CrossRef]
- Splawski, I.; Timothy, K.W.; Sharpe, L.M.; Decher, N.; Kumar, P.; Bloise, R.; Napolitano, C.; Schwartz, P.J.; Joseph, R.M.; Condouris, K.; et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004, 119, 19–31. [Google Scholar] [CrossRef]
- Rademacher, S.; Eickholt, B.J. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb. Perspect. Med. 2019, 9, a036780. [Google Scholar] [CrossRef] [PubMed]
- Narvaiz, D.A.; Sullens, D.G.; Santana-Coelho, D.; Lugo, J.N. Neuronal subset-specific phosphatase and tensin homolog knockout mice exhibit age and brain region-associated alterations in microglia/macrophage activation. Neuroreport 2022, 33, 476–480. [Google Scholar] [CrossRef]
- Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci. 2016, 19, 1408–1417. [Google Scholar] [CrossRef]
- Sun, Y.; Wiese, M.; Hmadi, R.; Karayol, R.; Seyfferth, J.; Martinez Greene, J.A.; Erdogdu, N.U.; Deboutte, W.; Arrigoni, L.; Holz, H.; et al. MSL2 ensures biallelic gene expression in mammals. Nature 2023, 624, 173–181. [Google Scholar] [CrossRef]
- Manzini, M.C.; Xiong, L.; Shaheen, R.; Tambunan, D.E.; Di Costanzo, S.; Mitisalis, V.; Tischfield, D.J.; Cinquino, A.; Ghaziuddin, M.; Christian, M.; et al. CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell Rep. 2014, 8, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.W.; Chahrour, M.H.; Coulter, M.E.; Jiralerspong, S.; Okamura-Ikeda, K.; Ataman, B.; Schmitz-Abe, K.; Harmin, D.A.; Adli, M.; Malik, A.N.; et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013, 77, 259–273. [Google Scholar] [CrossRef]
- Martin, H.C.; Jones, W.D.; McIntyre, R.; Sanchez-Andrade, G.; Sanderson, M.; Stephenson, J.D.; Jones, C.P.; Handsaker, J.; Gallone, G.; Bruntraeger, M.; et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science 2018, 362, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Chundru, V.K.; Zhang, Z.; Walter, K.; Lindsay, S.J.; Danecek, P.; Eberhardt, R.Y.; Gardner, E.J.; Malawsky, D.S.; Wigdor, E.M.; Torene, R.; et al. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat. Genet. 2024, 56, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Basel-Vanagaite, L.; Attia, R.; Yahav, M.; Ferland, R.J.; Anteki, L.; Walsh, C.A.; Olender, T.; Straussberg, R.; Magal, N.; Taub, E.; et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J. Med. Genet. 2006, 43, 203–210. [Google Scholar] [CrossRef]
- Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med. 2021, 51, 2260–2273. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Myers, S.M.; Challman, T.D.; Bernier, R.; Bourgeron, T.; Chung, W.K.; Constantino, J.N.; Eichler, E.E.; Jacquemont, S.; Miller, D.T.; Mitchell, K.J.; et al. Insufficient Evidence for “Autism-Specific” Genes. Am. J. Hum. Genet. 2020, 106, 587–595. [Google Scholar] [CrossRef]
- Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.; Parikshak, N.N.; Stein, J.L.; et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485, 237–241. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; Mackenzie, A.P.; Ng, S.B.; Baker, C.; et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011, 43, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gonzalez, A.; Rodriguez-Fontenla, C.; Carracedo, A. De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis. Front. Genet. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.H.; Narzisi, G.; Leotta, A.; et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef]
- Geschwind, D.H.; State, M.W. Gene hunting in autism spectrum disorder: On the path to precision medicine. Lancet Neurol. 2015, 14, 1109–1120. [Google Scholar] [CrossRef]
- Prem, S.; Dev, B.; Peng, C.; Mehta, M.; Alibutud, R.; Connacher, R.J.; St Thomas, M.; Zhou, X.; Matteson, P.; Xing, J.; et al. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024, 13, e82809. [Google Scholar] [CrossRef]
- Notwell, J.H.; Heavner, W.E.; Darbandi, S.F.; Katzman, S.; McKenna, W.L.; Ortiz-Londono, C.F.; Tastad, D.; Eckler, M.J.; Rubenstein, J.L.; McConnell, S.K.; et al. TBR1 regulates autism risk genes in the developing neocortex. Genome Res. 2016, 26, 1013–1022. [Google Scholar] [CrossRef]
- Wagnon, J.L.; Briese, M.; Sun, W.; Mahaffey, C.L.; Curk, T.; Rot, G.; Ule, J.; Frankel, W.N. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet. 2012, 8, e1003067. [Google Scholar] [CrossRef] [PubMed]
- Parikshak, N.N.; Luo, R.; Zhang, A.; Won, H.; Lowe, J.K.; Chandran, V.; Horvath, S.; Geschwind, D.H. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013, 155, 1008–1021. [Google Scholar] [CrossRef]
- Shi, R.; Redman, P.; Ghose, D.; Hwang, H.; Liu, Y.; Ren, X.; Ding, L.J.; Liu, M.; Jones, K.J.; Xu, W. Shank Proteins Differentially Regulate Synaptic Transmission. eNeuro 2017, 4, ENEURO.0163-15.2017. [Google Scholar] [CrossRef]
- Zaslavsky, K.; Zhang, W.B.; McCready, F.P.; Rodrigues, D.C.; Deneault, E.; Loo, C.; Zhao, M.; Ross, P.J.; El Hajjar, J.; Romm, A.; et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 2019, 22, 556–564. [Google Scholar] [CrossRef]
- Fischer, I.; Shohat, S.; Leichtmann-Bardoogo, Y.; Nayak, R.; Wiener, G.; Rosh, I.; Shemen, A.; Tripathi, U.; Rokach, M.; Bar, E.; et al. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. Sci. Adv. 2024, 10, eadl4573. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Wu, J.; Jiang, T.; Liu, Q.; Cai, W.; Yu, P.; Cai, T.; Zhao, M.; Jiang, Y.H.; Sun, Z.S. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Hum. Mutat. 2012, 33, 1635–1638. [Google Scholar] [CrossRef]
- Furia, F.; Levy, A.M.; Theunis, M.; Bamshad, M.J.; Bartos, M.N.; Bijlsma, E.K.; Brancati, F.; Cejudo, L.; Chong, J.X.; De Luca, C.; et al. The phenotypic and genotypic spectrum of individuals with mono- or biallelic ANK3 variants. Clin. Genet. 2024, 106, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.I.; Akhtar, A. The MSL complex: Juggling RNA-protein interactions for dosage compensation and beyond. Curr. Opin. Genet. Dev. 2015, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Karayol, R.; Borroto, M.C.; Haghshenas, S.; Namasivayam, A.; Reilly, J.; Levy, M.A.; Relator, R.; Kerkhof, J.; McConkey, H.; Shvedunova, M.; et al. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am. J. Hum. Genet. 2024, 111, 1330–1351. [Google Scholar] [CrossRef]
- Lovato, D.V.; Herai, R.R.; Pignatari, G.C.; Beltrao-Braga, P.C.B. The Relevance of Variants with Unknown Significance for Autism Spectrum Disorder Considering the Genotype-Phenotype Interrelationship. Front. Psychiatry 2019, 10, 409. [Google Scholar] [CrossRef]
- Starita, L.M.; Ahituv, N.; Dunham, M.J.; Kitzman, J.O.; Roth, F.P.; Seelig, G.; Shendure, J.; Fowler, D.M. Variant Interpretation: Functional Assays to the Rescue. Am. J. Hum. Genet. 2017, 101, 315–325. [Google Scholar] [CrossRef]
- Anderson, C.L.; Munawar, S.; Reilly, L.; Kamp, T.J.; January, C.T.; Delisle, B.P.; Eckhardt, L.L. How Functional Genomics Can Keep Pace with VUS Identification. Front. Cardiovasc. Med. 2022, 9, 900431. [Google Scholar] [CrossRef]
- Calhoun, J.D.; Aziz, M.C.; Happ, H.C.; Gunti, J.; Gleason, C.; Mohamed, N.; Zeng, K.; Hiller, M.; Bryant, E.; Mithal, D.S.; et al. mTORC1 functional assay reveals SZT2 loss-of-function variants and a founder in-frame deletion. Brain 2022, 145, 1939–1948. [Google Scholar] [CrossRef]
- Yoon, S.; Piguel, N.H.; Penzes, P. Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp. Mol. Med. 2022, 54, 867–877. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, I.M.; Van Dam, D.; Missault, S.; Yalcin, B.; De Deyn, P.P.; Vandeweyer, G.; Kooy, R.F. Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders. Behav. Brain Res. 2017, 328, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Haddad Derafshi, B.; Danko, T.; Chanda, S.; Batista, P.J.; Litzenburger, U.; Lee, Q.Y.; Ng, Y.H.; Sebin, A.; Chang, H.Y.; Sudhof, T.C.; et al. The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Sci. Rep. 2022, 12, 22425. [Google Scholar] [CrossRef]
- Dingemans, A.J.M.; Truijen, K.M.G.; van de Ven, S.; Bernier, R.; Bongers, E.; Bouman, A.; de Graaff-Herder, L.; Eichler, E.E.; Gerkes, E.H.; De Geus, C.M.; et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 2022, 12, 421. [Google Scholar] [CrossRef]
- Katayama, Y.; Nishiyama, M.; Shoji, H.; Ohkawa, Y.; Kawamura, A.; Sato, T.; Suyama, M.; Takumi, T.; Miyakawa, T.; Nakayama, K.I. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 2016, 537, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, U.; Boesch, S.; Doummar, D.; Ravelli, C.; Serranova, T.; Indelicato, E.; Winkelmann, J.; Burglen, L.; Jech, R.; Zech, M. CHD8-related disorders redefined: An expanding spectrum of dystonic phenotypes. J. Neurol. 2024, 271, 2859–2865. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, M.; Bao, Z.; Xu, L.; Bai, Y.; Chen, W.; Pan, W.; Cai, F.; Wang, Q.; Guo, S.; et al. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential alpha-secretase cleavages, leading to autism-like phenotypes. Signal Transduct. Target Ther. 2024, 9, 51. [Google Scholar] [CrossRef]
- Jang, W.E.; Park, J.H.; Park, G.; Bang, G.; Na, C.H.; Kim, J.Y.; Kim, K.Y.; Kim, K.P.; Shin, C.Y.; An, J.Y.; et al. Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol. Psychiatry 2023, 28, 810–821. [Google Scholar] [CrossRef]
- Toma, C.; Pierce, K.D.; Shaw, A.D.; Heath, A.; Mitchell, P.B.; Schofield, P.R.; Fullerton, J.M. Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet. 2018, 14, e1007535. [Google Scholar] [CrossRef]
- St George-Hyslop, F.; Kivisild, T.; Livesey, F.J. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front. Mol. Neurosci. 2022, 15, 1017144. [Google Scholar] [CrossRef]
- Poulin, C.J.; Fox, A.E. Preliminary evidence for timing abnormalities in the CNTNAP2 knockout rat. Behav. Process. 2021, 190, 104449. [Google Scholar] [CrossRef] [PubMed]
- Chalkiadaki, K.; Statoulla, E.; Zafeiri, M.; Voudouri, G.; Amvrosiadis, T.; Typou, A.; Theodoridou, N.; Moschovas, D.; Avgeropoulos, A.; Samiotaki, M.; et al. GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2-/- Cerebral Organoids. Biol. Psychiatry Glob. Open Sci. 2025, 5, 100413. [Google Scholar] [CrossRef] [PubMed]
- Bakker, C.E.; Verheij, C.; Willemsen, R.; Van der Helm, R.; Oerlemans, F.; Vermey, M.; Bygrave, A.; Hoogeveen, A.T.; Oostra, B.A.; Reyniers, E.; et al. Fmr1 knockout mice: A model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994, 78, 23–33. [Google Scholar]
- Fyke, W.; Velinov, M. FMR1 and Autism, an Intriguing Connection Revisited. Genes 2021, 12, 1218. [Google Scholar] [CrossRef]
- Ascano, M., Jr.; Mukherjee, N.; Bandaru, P.; Miller, J.B.; Nusbaum, J.D.; Corcoran, D.L.; Langlois, C.; Munschauer, M.; Dewell, S.; Hafner, M.; et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012, 492, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Borreca, A.; De Luca, M.; Ferrante, A.; Boussadia, Z.; Pignataro, A.; Martire, A.; Ammassari-Teule, M. Fmr1-KO mice failure to detect object novelty associates with a post-test decrease of structural and synaptic plasticity upstream of the hippocampus. Sci. Rep. 2023, 13, 755. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Guo, H.; Ou, J.; Peng, Y.; Liu, Q.; Shen, Y.; Shi, L.; Liu, Y.; Xiong, Z.; et al. Association of genetic variants of GRIN2B with autism. Sci. Rep. 2015, 5, 8296. [Google Scholar] [CrossRef]
- Kutsuwada, T.; Sakimura, K.; Manabe, T.; Takayama, C.; Katakura, N.; Kushiya, E.; Natsume, R.; Watanabe, M.; Inoue, Y.; Yagi, T.; et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 1996, 16, 333–344. [Google Scholar] [CrossRef]
- Sabo, S.L.; Lahr, J.M.; Offer, M.; Weekes, A.; Sceniak, M.P. GRIN2B-related neurodevelopmental disorder: Current understanding of pathophysiological mechanisms. Front. Synaptic Neurosci. 2022, 14, 1090865. [Google Scholar] [CrossRef]
- Lee, S.; Jung, W.B.; Moon, H.; Im, G.H.; Noh, Y.W.; Shin, W.; Kim, Y.G.; Yi, J.H.; Hong, S.J.; Jung, Y.; et al. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol. Psychiatry 2024, 29, 3195–3207. [Google Scholar] [CrossRef]
- Quaderi, N.A.; Meehan, R.R.; Tate, P.H.; Cross, S.H.; Bird, A.P.; Chatterjee, A.; Herman, G.E.; Brown, S.D. Genetic and physical mapping of a gene encoding a methyl CpG binding protein, Mecp2, to the mouse X chromosome. Genomics 1994, 22, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.; Hooper, A.W.M.; Gholizadeh, S.; Kong, T.; Pacey, L.K.; Koxhioni, E.; Niibori, Y.; Eubanks, J.H.; Wang, L.Y.; Hampson, D.R. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum. Mol. Genet. 2021, 29, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Kim, S.T.; Johnston, M.V.; Kadam, S.D. Temporal- and Location-Specific Alterations of the GABA Recycling System in Mecp2 KO Mouse Brains. J. Cent. Nerv. Syst. Dis. 2014, 6, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.; Hendrich, B.; Holmes, M.; Martin, J.E.; Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 2001, 27, 322–326. [Google Scholar] [CrossRef]
- Guy, J.; Gan, J.; Selfridge, J.; Cobb, S.; Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007, 315, 1143–1147. [Google Scholar] [CrossRef]
- Lu, X.; Ng, K.; Pinto, E.V.F.; Collins, J.; Cohn, R.; Riley, K.; Agre, K.; Gavrilova, R.; Klee, E.W.; Rosenfeld, J.A.; et al. Novel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders. Eur. J. Hum. Genet. 2024, 32, 879–883. [Google Scholar] [CrossRef]
- El-Kordi, A.; Winkler, D.; Hammerschmidt, K.; Kastner, A.; Krueger, D.; Ronnenberg, A.; Ritter, C.; Jatho, J.; Radyushkin, K.; Bourgeron, T.; et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav. Brain Res. 2013, 251, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Delattre, V.; La Mendola, D.; Meystre, J.; Markram, H.; Markram, K. Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro. Sci. Rep. 2013, 3, 2897. [Google Scholar] [CrossRef]
- Toya, A.; Fukada, M.; Aoki, E.; Matsuki, T.; Ueda, M.; Eda, S.; Hashizume, Y.; Iio, A.; Masaki, S.; Nakayama, A. The distribution of neuroligin4, an autism-related postsynaptic molecule, in the human brain. Mol. Brain 2023, 16, 20. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Wu, K.; Pandey, S.; Lehr, A.W.; Li, Y.; Bemben, M.A.; Badger, J.D., 2nd; Lauzon, J.L.; Wang, T.; Zaghloul, K.A.; et al. A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y. Neuron 2020, 106, 759–768.e7. [Google Scholar] [CrossRef]
- Grayton, H.M.; Missler, M.; Collier, D.A.; Fernandes, C. Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 2013, 8, e67114. [Google Scholar] [CrossRef]
- Onay, H.; Kacamak, D.; Kavasoglu, A.N.; Akgun, B.; Yalcinli, M.; Kose, S.; Ozbaran, B. Mutation analysis of the NRXN1 gene in autism spectrum disorders. Balkan J. Med. Genet. 2016, 19, 17–22. [Google Scholar] [CrossRef]
- Noor, A.; Whibley, A.; Marshall, C.R.; Gianakopoulos, P.J.; Piton, A.; Carson, A.R.; Orlic-Milacic, M.; Lionel, A.C.; Sato, D.; Pinto, D.; et al. Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci. Transl. Med. 2010, 2, 49ra68. [Google Scholar] [CrossRef]
- Filges, I.; Rothlisberger, B.; Blattner, A.; Boesch, N.; Demougin, P.; Wenzel, F.; Huber, A.R.; Heinimann, K.; Weber, P.; Miny, P. Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clin. Genet. 2011, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Tora, D.; Gomez, A.M.; Michaud, J.F.; Yam, P.T.; Charron, F.; Scheiffele, P. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice. J. Neurosci. 2017, 37, 11993–12005. [Google Scholar] [CrossRef] [PubMed]
- Ung, D.C.; Iacono, G.; Meziane, H.; Blanchard, E.; Papon, M.A.; Selten, M.; van Rhijn, J.R.; Montjean, R.; Rucci, J.; Martin, S.; et al. Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol. Psychiatry 2018, 23, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- DeSpenza, T., Jr.; Carlson, M.; Panchagnula, S.; Robert, S.; Duy, P.Q.; Mermin-Bunnell, N.; Reeves, B.C.; Kundishora, A.; Elsamadicy, A.A.; Smith, H.; et al. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: Developmental pleiotropy and therapeutic targets. Trends Neurosci. 2021, 44, 961–976. [Google Scholar] [CrossRef]
- Cheung, S.K.K.; Kwok, J.; Or, P.M.Y.; Wong, C.W.; Feng, B.; Choy, K.W.; Chang, R.C.C.; Burbach, J.P.H.; Cheng, A.S.L.; Chan, A.M. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci. Rep. 2023, 13, 6763. [Google Scholar] [CrossRef]
- Narvaiz, D.A.; Blandin, K.J.; Sullens, D.G.; Womble, P.D.; Pilcher, J.B.; O’Neill, G.; Wiley, T.A.; Kwok, E.M.; Chilukuri, S.V.; Lugo, J.N. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res. 2024, 206, 107440. [Google Scholar] [CrossRef]
- Won, S.J.; Kim, S.H.; Xie, L.; Wang, Y.; Mao, X.O.; Jin, K.; Greenberg, D.A. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp. Neurol. 2006, 198, 250–259. [Google Scholar] [CrossRef]
- Lammert, D.B.; Howell, B.W. RELN Mutations in Autism Spectrum Disorder. Front. Cell. Neurosci. 2016, 10, 84. [Google Scholar] [CrossRef]
- D’Arcangelo, G.; Miao, G.G.; Chen, S.C.; Soares, H.D.; Morgan, J.I.; Curran, T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995, 374, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.E.; Shugart, Y.Y.; Huang, D.T.; Shahwan, S.A.; Grant, P.E.; Hourihane, J.O.; Martin, N.D.; Walsh, C.A. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 2000, 26, 93–96. [Google Scholar] [CrossRef]
- Spratt, P.W.E.; Ben-Shalom, R.; Keeshen, C.M.; Burke, K.J., Jr.; Clarkson, R.L.; Sanders, S.J.; Bender, K.J. The Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and Synaptic Function in the Prefrontal Cortex. Neuron 2019, 103, 673–685.e5. [Google Scholar] [CrossRef] [PubMed]
- Tatsukawa, T.; Raveau, M.; Ogiwara, I.; Hattori, S.; Miyamoto, H.; Mazaki, E.; Itohara, S.; Miyakawa, T.; Montal, M.; Yamakawa, K. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol. Autism 2019, 10, 15. [Google Scholar] [CrossRef]
- Eaton, M.; Zhang, J.; Ma, Z.; Park, A.C.; Lietzke, E.; Romero, C.M.; Liu, Y.; Coleman, E.R.; Chen, X.; Xiao, T.; et al. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Nav 1.2 expression. Genes Brain Behav. 2021, 20, e12725. [Google Scholar] [CrossRef] [PubMed]
- Hedrich, U.B.S.; Lauxmann, S.; Lerche, H. SCN2A channelopathies: Mechanisms and models. Epilepsia 2019, 60, S68–S76. [Google Scholar] [CrossRef]
- Kruth, K.A.; Grisolano, T.M.; Ahern, C.A.; Williams, A.J. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: A role for pluripotent stem cells? Mol. Autism 2020, 11, 23. [Google Scholar] [CrossRef]
- Woelfle, S.; Pedro, M.T.; Wagner, J.; Schon, M.; Boeckers, T.M. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol. 2023, 21, 254. [Google Scholar] [CrossRef]
- Peca, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef]
- Uchino, S.; Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013, 35, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Poot, M. SHANK Mutations May Disorder Brain Development. Mol. Syndromol. 2015, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Gustin, R.M.; Bichell, T.J.; Bubser, M.; Daily, J.; Filonova, I.; Mrelashvili, D.; Deutch, A.Y.; Colbran, R.J.; Weeber, E.J.; Haas, K.F. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol. Dis. 2010, 39, 283–291. [Google Scholar] [CrossRef]
- Vatsa, N.; Jana, N.R. UBE3A and Its Link with Autism. Front. Mol. Neurosci. 2018, 11, 448. [Google Scholar] [CrossRef]
- Avagliano Trezza, R.; Sonzogni, M.; Bossuyt, S.N.V.; Zampeta, F.I.; Punt, A.M.; van den Berg, M.; Rotaru, D.C.; Koene, L.M.C.; Munshi, S.T.; Stedehouder, J.; et al. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat. Neurosci. 2019, 22, 1235–1247. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Armstrong, D.; Albrecht, U.; Atkins, C.M.; Noebels, J.L.; Eichele, G.; Sweatt, J.D.; Beaudet, A.L. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998, 21, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.; Institute of Medicine (U.S.); National Institute of Mental Health (U.S.). Discovering the Brain; National Academy Press: Washington, DC, USA, 1992; pp. 1–194. [Google Scholar]
- Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.J.; Yu, H.P.; Tu, Z.; Guo, X.; Jiang, Y.H.; Li, X.J.; et al. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry 2019, 9, 267. [Google Scholar] [CrossRef]
- Qiu, S.; Jia, J.; Xu, B.; Wu, N.; Cao, H.; Xie, S.; Cui, J.; Ma, J.; Pan, Y.H.; Yuan, X.B. Development and evaluation of an autism pig model. Lab. Anim. 2024, 53, 376–386. [Google Scholar] [CrossRef]
- Christensen, J.; Gronborg, T.K.; Sorensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013, 309, 1696–1703. [Google Scholar] [CrossRef]
- Daugaard, C.A.; Pedersen, L.; Sun, Y.; Dreier, J.W.; Christensen, J. Association of Prenatal Exposure to Valproate and Other Antiepileptic Drugs with Intellectual Disability and Delayed Childhood Milestones. JAMA Netw. Open 2020, 3, e2025570. [Google Scholar] [CrossRef]
- Blotiere, P.O.; Miranda, S.; Weill, A.; Mikaeloff, Y.; Peyre, H.; Ramus, F.; Mahmoud, Z.; Coste, J.; Dray-Spira, R. Risk of early neurodevelopmental outcomes associated with prenatal exposure to the antiepileptic drugs most commonly used during pregnancy: A French nationwide population-based cohort study. BMJ Open 2020, 10, e034829. [Google Scholar] [CrossRef] [PubMed]
- Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004, 64, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Ojha, S.K.; Kartawy, M.; Hamoudi, W.; Choudhary, A.; Stern, S.; Aran, A.; Amal, H. The NO Answer for Autism Spectrum Disorder. Adv. Sci. 2023, 10, e2205783. [Google Scholar] [CrossRef] [PubMed]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef]
- Lam, J.; Sutton, P.; Kalkbrenner, A.; Windham, G.; Halladay, A.; Koustas, E.; Lawler, C.; Davidson, L.; Daniels, N.; Newschaffer, C.; et al. A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLoS ONE 2016, 11, e0161851. [Google Scholar] [CrossRef]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017, 8, 13. [Google Scholar] [CrossRef]
- Yoshimasu, K.; Kiyohara, C.; Takemura, S.; Nakai, K. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology 2014, 44, 121–131. [Google Scholar] [CrossRef]
- Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay. Pediatrics 2014, 133, e1241–e1248. [Google Scholar] [CrossRef]
- Kaplan, Y.C.; Keskin-Arslan, E.; Acar, S.; Sozmen, K. Prenatal selective serotonin reuptake inhibitor use and the risk of autism spectrum disorder in children: A systematic review and meta-analysis. Reprod. Toxicol. 2016, 66, 31–43. [Google Scholar] [CrossRef]
- Boukhris, T.; Sheehy, O.; Mottron, L.; Berard, A. Antidepressant Use During Pregnancy and the Risk of Autism Spectrum Disorder in Children. JAMA Pediatr. 2016, 170, 117–124. [Google Scholar] [CrossRef]
- Kapra, O.; Rotem, R.; Gross, R. The Association Between Prenatal Exposure to Antidepressants and Autism: Some Research and Public Health Aspects. Front. Psychiatry 2020, 11, 555740. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Sominsky, L.; O’Hely, M.; Berk, M.; Vuillermin, P.; Dawson, S.L. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med. 2024, 22, 393. [Google Scholar] [CrossRef]
- Yu, R.; Hafeez, R.; Ibrahim, M.; Alonazi, W.B.; Li, B. The complex interplay between autism spectrum disorder and gut microbiota in children: A comprehensive review. Behav. Brain Res. 2024, 473, 115177. [Google Scholar] [CrossRef] [PubMed]
- Taniya, M.A.; Chung, H.J.; Al Mamun, A.; Alam, S.; Aziz, M.A.; Emon, N.U.; Islam, M.M.; Hong, S.S.; Podder, B.R.; Ara Mimi, A.; et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022, 12, 915701. [Google Scholar] [CrossRef]
- Salehi, A.M.; Ayubi, E.; Khazaei, S.; Jenabi, E.; Bashirian, S.; Salimi, Z. Neonatal risk factors associated with autism spectrum disorders: An umbrella review. Clin. Exp. Pediatr. 2024, 67, 459–464. [Google Scholar] [CrossRef]
- Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968, 35, 100–136. [Google Scholar] [PubMed]
- Li, Z.; Zhu, Y.X.; Gu, L.J.; Cheng, Y. Understanding autism spectrum disorders with animal models: Applications, insights, and perspectives. Zool. Res. 2021, 42, 800–824. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Crawley, J.N. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016, 15, 7–26. [Google Scholar] [CrossRef]
- Crawley, J.N. Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol. 2007, 17, 448–459. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Yang, M.; Silverman, J.L.; Solomon, M.; Crawley, J.N. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr. Top. Behav. Neurosci. 2016, 28, 1–52. [Google Scholar] [CrossRef]
- Crawley, J.N. Twenty years of discoveries emerging from mouse models of autism. Neurosci. Biobehav. Rev. 2023, 146, 105053. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.H. Modeling autistic features in animals. Pediatr. Res. 2011, 69, 34R–40R. [Google Scholar] [CrossRef]
- Silverman, J.L.; Thurm, A.; Ethridge, S.B.; Soller, M.M.; Petkova, S.P.; Abel, T.; Bauman, M.D.; Brodkin, E.S.; Harony-Nicolas, H.; Wohr, M.; et al. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav. 2022, 21, e12803. [Google Scholar] [CrossRef]
- Ergaz, Z.; Weinstein-Fudim, L.; Ornoy, A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod. Toxicol. 2016, 64, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Xu, Y.; Tian, F.; Zhou, Y.; Chen, D.; Wang, Y. Establishment of animal models and behavioral studies for autism spectrum disorders. J. Int. Med. Res. 2024, 52, 3000605241245293. [Google Scholar] [CrossRef]
- Pond, H.L.; Heller, A.T.; Gural, B.M.; McKissick, O.P.; Wilkinson, M.K.; Manzini, M.C. Digging behavior discrimination test to probe burrowing and exploratory digging in male and female mice. J. Neurosci. Res. 2021, 99, 2046–2058. [Google Scholar] [CrossRef] [PubMed]
- Dalla Vecchia, E.; Mortimer, N.; Palladino, V.S.; Kittel-Schneider, S.; Lesch, K.P.; Reif, A.; Schenck, A.; Norton, W.H.J. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: Lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr. Genet. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Kozol, R.A.; Cukier, H.N.; Zou, B.; Mayo, V.; De Rubeis, S.; Cai, G.; Griswold, A.J.; Whitehead, P.L.; Haines, J.L.; Gilbert, J.R.; et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum. Mol. Genet. 2015, 24, 4006–4023. [Google Scholar] [CrossRef]
- Liu, C.X.; Li, C.Y.; Hu, C.C.; Wang, Y.; Lin, J.; Jiang, Y.H.; Li, Q.; Xu, X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism 2018, 9, 23. [Google Scholar] [CrossRef]
- Berendzen, K.M.; Sharma, R.; Mandujano, M.A.; Wei, Y.; Rogers, F.D.; Simmons, T.C.; Seelke, A.M.H.; Bond, J.M.; Larios, R.; Goodwin, N.L.; et al. Oxytocin receptor is not required for social attachment in prairie voles. Neuron 2023, 111, 787–796.e4. [Google Scholar] [CrossRef]
- Danoff, J.S.; Ramos, E.N.; Hinton, T.D.; Perkeybile, A.M.; Graves, A.J.; Quinn, G.C.; Lightbody-Cimer, A.R.; Gordevicius, J.; Milciute, M.; Brooke, R.T.; et al. Father’s care uniquely influences male neurodevelopment. Proc. Natl. Acad. Sci. USA 2023, 120, e2308798120. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.; Manzini, M.C. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J. Neurosci. Res. 2021, 99, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.L.; Jami, S.A.; Petkova, S.P.; Berz, A.; Fenton, T.A.; Lerch, J.P.; Segal, D.J.; Gray, J.A.; Ellegood, J.; Wohr, M.; et al. Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J. Neurosci. 2021, 41, 8801–8814. [Google Scholar] [CrossRef]
- Till, S.M.; Hickson, R.D.L.; Kind, P.C. Cross-species considerations in models of neurodevelopmental disorders. Trends Neurosci. 2022, 45, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.H.; Titley, H.K.; Hansel, C.; Mason, P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021, 462, 303–319. [Google Scholar] [CrossRef]
- Kim, K.C.; Gonzales, E.L.; Lazaro, M.T.; Choi, C.S.; Bahn, G.H.; Yoo, H.J.; Shin, C.Y. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol. Ther. 2016, 24, 207–243. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, Y.H.; Zhang, Y.Q. Modeling autism in non-human primates: Opportunities and challenges. Autism Res. 2018, 11, 686–694. [Google Scholar] [CrossRef]
- Tian, R.; Li, Y.; Zhao, H.; Lyu, W.; Zhao, J.; Wang, X.; Lu, H.; Xu, H.; Ren, W.; Tan, Q.Q.; et al. Modeling SHANK3-associated autism spectrum disorder in Beagle dogs via CRISPR/Cas9 gene editing. Mol. Psychiatry 2023, 28, 3739–3750. [Google Scholar] [CrossRef]
- Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; et al. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat. Commun. 2021, 12, 5388. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Niu, Y.; Qin, D.; Liu, H.; Li, G.; Hu, Y.; Wang, J.; Lu, Y.; Kang, Y.; et al. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell 2017, 169, 945–955.e10. [Google Scholar] [CrossRef]
- Bauman, M.D.; Schumann, C.M. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp. Neurol. 2018, 299, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Delling, J.P.; Boeckers, T.M. Comparison of SHANK3 deficiency in animal models: Phenotypes, treatment strategies, and translational implications. J. Neurodev. Disord. 2021, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Gora, C.; Dudas, A.; Court, L.; Annamneedi, A.; Lefort, G.; Nakahara, T.S.; Azzopardi, N.; Acquistapace, A.; Laine, A.L.; Trouillet, A.C.; et al. Effect of the social environment on olfaction and social skills in wild-type and a mouse model of autism. Transl. Psychiatry 2024, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Gora, C.; Dudas, A.; Vaugrente, O.; Drobecq, L.; Pecnard, E.; Lefort, G.; Pellissier, L.P. Deciphering autism heterogeneity: A molecular stratification approach in four mouse models. Transl. Psychiatry 2024, 14, 416. [Google Scholar] [CrossRef]
- Haetzel, L.M.; Iafrati, J.; Cording, K.R.; Farhan, M.; Noveir, S.D.; Rumbaugh, G.; Bateup, H.S. Haploinsufficiency of Syngap1 in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice. J. Neurosci. 2024, 44, e1264232024. [Google Scholar] [CrossRef]
- Fan, L.; Li, Q.; Shi, Y.; Li, X.; Liu, Y.; Chen, J.; Sun, Y.; Chen, A.; Yang, Y.; Zhang, X.; et al. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med. 2024, 22, 504. [Google Scholar] [CrossRef]
- Drehmer, I.; Santos-Terra, J.; Gottfried, C.; Deckmann, I. mTOR signaling pathway as a pathophysiologic mechanism in preclinical models of autism spectrum disorder. Neuroscience 2024, 563, 33–42. [Google Scholar] [CrossRef]
- Teixeira, J.R.; Szeto, R.A.; Carvalho, V.M.A.; Muotri, A.R.; Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 2021, 11, 19. [Google Scholar] [CrossRef]
- Chen, H.Y.; Phan, B.N.; Shim, G.; Hamersky, G.R.; Sadowski, N.; O’Donnell, T.S.; Sripathy, S.R.; Bohlen, J.F.; Pfenning, A.R.; Maher, B.J. Psychiatric risk gene Transcription Factor 4 (TCF4) regulates the density and connectivity of distinct inhibitory interneuron subtypes. Mol. Psychiatry 2023, 28, 4679–4692. [Google Scholar] [CrossRef]
- Papes, F.; Camargo, A.P.; de Souza, J.S.; Carvalho, V.M.A.; Szeto, R.A.; LaMontagne, E.; Teixeira, J.R.; Avansini, S.H.; Sanchez-Sanchez, S.M.; Nakahara, T.S.; et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 2022, 13, 2387. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Q.; Wang, C.; Han, B. Clinical Characteristics and Novel ZEB2 Gene Mutation Analysis of Three Chinese Patients with Mowat-Wilson Syndrome. Pharmgenomics Pers. Med. 2023, 16, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Xie, S.; Duan, J.; Tian, B.; Ren, P.; Hu, E.; Huang, Q.; Mao, H.; Zou, Y.; Chen, Q.; et al. Imbalance between hippocampal projection cell and parvalbumin interneuron architecture increases epileptic susceptibility in mouse model of methyl CpG binding protein 2 duplication syndrome. Epilepsia 2024, 65, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
- Camasio, A.; Panzeri, E.; Mancuso, L.; Costa, T.; Manuello, J.; Ferraro, M.; Duca, S.; Cauda, F.; Liloia, D. Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS ONE 2022, 17, e0277466. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, S.; Calhoun, V.; Dai, J.; Yu, B.; Zhang, K.; Pei, M.; Li, C.; Wei, Y.; Jiang, R.; et al. Aberrant brain functional and structural developments in MECP2 duplication rats. Neurobiol. Dis. 2022, 173, 105838. [Google Scholar] [CrossRef] [PubMed]
- Srinath, S.; Kalal, A.; Anand, P.; Mohapatra, S.; Chakraborty, P. Small SNPs, Big Effects: A Review of Single Nucleotide Variations and Polymorphisms in Key Genes Associated with Autism Spectrum Disorder. Int. J. Dev. Neurosci. 2025, 85, e70016. [Google Scholar] [CrossRef]
- Niu, X.; Huang, F.; Lyu, H.; Liu, J.; Zhang, X.; Bian, J.; Gao, Z.; Liu, B. The Deficiency of the ASD-Related Gene CHD8 Disrupts Behavioral Patterns and Inhibits Hippocampal Neurogenesis in Mice. J. Mol. Neurosci. 2024, 74, 103. [Google Scholar] [CrossRef]
- Hui, K.; Katayama, Y.; Nakayama, K.I.; Nomura, J.; Sakurai, T. Characterizing vulnerable brain areas and circuits in mouse models of autism: Towards understanding pathogenesis and new therapeutic approaches. Neurosci. Biobehav. Rev. 2020, 110, 77–91. [Google Scholar] [CrossRef]
- Meng, J.; Pan, P.; Guo, G.; Chen, A.; Meng, X.; Liu, H. Transient CSF1R inhibition ameliorates behavioral deficits in Cntnap2 knockout and valproic acid-exposed mouse models of autism. J. Neuroinflammation 2024, 21, 262. [Google Scholar] [CrossRef]
- Rein, B.; Yan, Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci. 2020, 43, 886–901. [Google Scholar] [CrossRef]
- Horev, G.; Ellegood, J.; Lerch, J.P.; Son, Y.E.; Muthuswamy, L.; Vogel, H.; Krieger, A.M.; Buja, A.; Henkelman, R.M.; Wigler, M.; et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc. Natl. Acad. Sci. USA 2011, 108, 17076–17081. [Google Scholar] [CrossRef]
- Lopez-Tobon, A.; Shyti, R.; Villa, C.E.; Cheroni, C.; Fuentes-Bravo, P.; Trattaro, S.; Caporale, N.; Troglio, F.; Tenderini, E.; Mihailovich, M.; et al. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. Sci. Adv. 2023, 9, eadh2726. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; Bediwy, E.A.; Elbeltagi, R. Decoding the genetic landscape of autism: A comprehensive review. World J. Clin. Pediatr. 2024, 13, 98468. [Google Scholar] [CrossRef] [PubMed]
- Fard, Y.A.; Sadeghi, E.N.; Pajoohesh, Z.; Gharehdaghi, Z.; Khatibi, D.M.; Khosravifar, S.; Pishkari, Y.; Nozari, S.; Hijazi, A.; Pakmehr, S.; et al. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2024, 195, e32986. [Google Scholar] [CrossRef]
- Brauer, B.; Ancaten-Gonzalez, C.; Ahumada-Marchant, C.; Meza, R.C.; Merino-Veliz, N.; Nardocci, G.; Varela-Nallar, L.; Arriagada, G.; Chavez, A.E.; Bustos, F.J. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci. Rep. 2024, 14, 20416. [Google Scholar] [CrossRef]
- Lamonica, J.M.; Zhou, Z. Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr. Opin. Genet. Dev. 2019, 55, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.; Song, J.H.T.; Kosicki, M.; Kenny, C.; Beck, S.G.; Kelley, L.; Antony, I.; Qian, X.; Bonacina, J.; Papandile, F.; et al. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. Cell Genom. 2024, 4, 100609. [Google Scholar] [CrossRef] [PubMed]
- Zerbi, V.; Pagani, M.; Markicevic, M.; Matteoli, M.; Pozzi, D.; Fagiolini, M.; Bozzi, Y.; Galbusera, A.; Scattoni, M.L.; Provenzano, G.; et al. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol. Psychiatry 2021, 26, 7610–7620. [Google Scholar] [CrossRef]
- Gozzi, A.; Zerbi, V. Modeling Brain Dysconnectivity in Rodents. Biol. Psychiatry 2023, 93, 419–429. [Google Scholar] [CrossRef]
- Moy, S.S.; Nadler, J.J.; Magnuson, T.R.; Crawley, J.N. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142C, 40–51. [Google Scholar] [CrossRef]
- Porta-Sanchez, A.; Mazzanti, A.; Tarifa, C.; Kukavica, D.; Trancuccio, A.; Mohsin, M.; Zanfrini, E.; Perota, A.; Duchi, R.; Hernandez-Lopez, K.; et al. Unexpected impairment of I(Na) underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome. Nat. Cardiovasc. Res. 2023, 2, 1291–1309. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Mao, K.; Jiao, D.; Li, Z.; Zhao, H.; Sun, Y.; Feng, J.; Lai, Y.; Peng, R.; et al. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci. 2024, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Zhao, H.; Li, B.; Yan, S.; Wang, L.; Tang, Y.; Li, Z.; Bai, D.; Li, C.; Lin, Y.; et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum. Mol. Genet. 2019, 28, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Veenstra-VanderWeele, J.; O’Reilly, K.C.; Dennis, M.Y.; Uribe-Salazar, J.M.; Amaral, D.G. Translational Neuroscience Approaches to Understanding Autism. Am. J. Psychiatry 2023, 180, 265–276. [Google Scholar] [CrossRef]
- Aida, T.; Feng, G. The dawn of non-human primate models for neurodevelopmental disorders. Curr. Opin. Genet. Dev. 2020, 65, 160–168. [Google Scholar] [CrossRef]
- Krienen, F.M.; Goldman, M.; Zhang, Q.; Del Rosario, R.C.H.; Florio, M.; Machold, R.; Saunders, A.; Levandowski, K.; Zaniewski, H.; Schuman, B.; et al. Author Correction: Innovations present in the primate interneuron repertoire. Nature 2020, 588, E17. [Google Scholar] [CrossRef]
- Bae, B.I.; Tietjen, I.; Atabay, K.D.; Evrony, G.D.; Johnson, M.B.; Asare, E.; Wang, P.P.; Murayama, A.Y.; Im, K.; Lisgo, S.N.; et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 2014, 343, 764–768. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Uddin, M.; Veltman, J.A.; Wells, S.; Morris, C.; Woodbury-Smith, M. Evolutionary constrained genes associated with autism spectrum disorder across 2,054 nonhuman primate genomes. Mol. Autism 2025, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tu, Z.; Xu, H.; Yan, S.; Yan, H.; Zheng, Y.; Yang, W.; Zheng, J.; Li, Z.; Tian, R.; et al. Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res. 2017, 27, 1293–1297. [Google Scholar] [CrossRef]
- Zhou, Y.; Sharma, J.; Ke, Q.; Landman, R.; Yuan, J.; Chen, H.; Hayden, D.S.; Fisher, J.W., 3rd; Jiang, M.; Menegas, W.; et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019, 570, 326–331. [Google Scholar] [CrossRef]
- Santana-Coelho, D.; Layne-Colon, D.; Valdespino, R.; Ross, C.C.; Tardif, S.D.; O’Connor, J.C. Advancing Autism Research From Mice to Marmosets: Behavioral Development of Offspring Following Prenatal Maternal Immune Activation. Front. Psychiatry 2021, 12, 705554. [Google Scholar] [CrossRef]
- Vermaercke, B.; Iwata, R.; Wierda, K.; Boubakar, L.; Rodriguez, P.; Ditkowska, M.; Bonin, V.; Vanderhaeghen, P. SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo. Neuron 2024, 112, 3058–3068.e8. [Google Scholar] [CrossRef] [PubMed]
- Quaid, K.; Xing, X.; Chen, Y.H.; Miao, Y.; Neilson, A.; Selvamani, V.; Tran, A.; Cui, X.; Hu, M.; Wang, T. iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation. Nat. Commun. 2025, 16, 1750. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007, 1, 39–49. [Google Scholar] [CrossRef]
- Connacher, R.; Williams, M.; Prem, S.; Yeung, P.L.; Matteson, P.; Mehta, M.; Markov, A.; Peng, C.; Zhou, X.; McDermott, C.R.; et al. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Rep. 2022, 17, 1380–1394. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, D.; Palmer, N.P.; Smedemark-Margulies, N.; Schlaeger, T.M.; Margulies, D.M.; Kohane, I.S. iPSC-derived neurons as a higher-throughput readout for autism: Promises and pitfalls. Trends Mol. Med. 2014, 20, 91–104. [Google Scholar] [CrossRef]
- Chiola, S.; Edgar, N.U.; Shcheglovitov, A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol. Psychiatry 2022, 27, 249–258. [Google Scholar] [CrossRef]
- Pintacuda, G.; Hsu, Y.H.; Tsafou, K.; Li, K.W.; Martin, J.M.; Riseman, J.; Biagini, J.C.; Ching, J.K.T.; Mena, D.; Gonzalez-Lozano, M.A.; et al. Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. Cell Genom. 2023, 3, 100250. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Sinson, J.C.; Bajic, A.; Rosenfeld, J.A.; Neeley, M.B.; Pena, M.; Worley, K.C.; Burrage, L.C.; Weisz-Hubshman, M.; et al. The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing. Am. J. Hum. Genet. 2024, 111, 841–862. [Google Scholar] [CrossRef]
- Zhang, Y.; Pak, C.; Han, Y.; Ahlenius, H.; Zhang, Z.; Chanda, S.; Marro, S.; Patzke, C.; Acuna, C.; Covy, J.; et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013, 78, 785–798. [Google Scholar] [CrossRef]
- Chen, M.; Maimaitili, M.; Habekost, M.; Gill, K.P.; Mermet-Joret, N.; Nabavi, S.; Febbraro, F.; Denham, M. Rapid generation of regionally specified CNS neurons by sequential patterning and conversion of human induced pluripotent stem cells. Stem Cell Res. 2020, 48, 101945. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, A.; Rezzonico, M.G.; Tsai, M.C.; Sanchez-Priego, C.; Zhang, Y.; Chen, M.B.; Choi, M.; Andrade Lopez, J.M.; Phu, L.; et al. Fully defined NGN2 neuron protocol reveals diverse signatures of neuronal maturation. Cell Rep. Methods 2024, 4, 100858. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Cramer, A.L.; Jeong, C.G. Protocol for generating NGN2 iPSC lines and large-scale human neuron production. STAR Protoc. 2025, 6, 103654. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.; Alsaqati, M.; Lunn, S.; Singh, T.; Linden, S.C.; Linden, D.E.J.; van den Bree, M.B.M.; Ziller, M.; Owen, M.J.; Hall, J.; et al. Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21.1 deletion and duplication syndrome. Mol. Psychiatry 2022, 27, 819–830. [Google Scholar] [CrossRef]
- Zhang, H.; McCarroll, A.; Peyton, L.; Diaz de Leon-Guerrerro, S.; Zhang, S.; Gowda, P.; Sirkin, D.; ElAchwah, M.; Duhe, A.; Wood, W.G.; et al. Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Rep. 2024, 19, 1489–1504. [Google Scholar] [CrossRef]
- Uzquiano, A.; Arlotta, P. Brain organoids: The quest to decipher human-specific features of brain development. Curr. Opin. Genet. Dev. 2022, 75, 101955. [Google Scholar] [CrossRef]
- Pagliaro, A.; Artegiani, B.; Hendriks, D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Paulsen, B.; Velasco, S.; Kedaigle, A.J.; Pigoni, M.; Quadrato, G.; Deo, A.J.; Adiconis, X.; Uzquiano, A.; Sartore, R.; Yang, S.M.; et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022, 602, 268–273. [Google Scholar] [CrossRef]
- Trujillo, C.A.; Gao, R.; Negraes, P.D.; Gu, J.; Buchanan, J.; Preissl, S.; Wang, A.; Wu, W.; Haddad, G.G.; Chaim, I.A.; et al. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 2019, 25, 558–569.e7. [Google Scholar] [CrossRef]
- Dhaliwal, N.; Choi, W.W.Y.; Muffat, J.; Li, Y. Modeling PTEN overexpression-induced microcephaly in human brain organoids. Mol. Brain 2021, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Yu, S.; Li, X.; Wang, Z.; Chen, R.; Michalski, C.; Jahangiri, A.; Zohdy, Y.; Chern, J.J.; Whitworth, T.J.; et al. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kanton, S.; Boyle, M.J.; He, Z.; Santel, M.; Weigert, A.; Sanchis-Calleja, F.; Guijarro, P.; Sidow, L.; Fleck, J.S.; Han, D.; et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574, 418–422. [Google Scholar] [CrossRef]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.; Guimaraes, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016, 534, 267–271. [Google Scholar] [CrossRef]
- Kanton, S.; Pasca, S.P. Human assembloids. Development 2022, 149, dev201120. [Google Scholar] [CrossRef] [PubMed]
- Onesto, M.M.; Kim, J.I.; Pasca, S.P. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 2024, 31, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Birey, F.; Li, M.Y.; Gordon, A.; Thete, M.V.; Valencia, A.M.; Revah, O.; Pasca, A.M.; Geschwind, D.H.; Pasca, S.P. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 2022, 29, 248–264 e247. [Google Scholar] [CrossRef]
- Semendeferi, K.; Teffer, K.; Buxhoeveden, D.P.; Park, M.S.; Bludau, S.; Amunts, K.; Travis, K.; Buckwalter, J. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb. Cortex 2011, 21, 1485–1497. [Google Scholar] [CrossRef]
- Levy, R.J.; Pasca, S.P. From Organoids to Assembloids: Experimental Approaches to Study Human Neuropsychiatric Disorders. Annu. Rev. Neurosci. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Miura, Y.; Kim, J.I.; Jurjut, O.; Kelley, K.W.; Yang, X.; Chen, X.; Thete, M.V.; Revah, O.; Cui, B.; Pachitariu, M.; et al. Assembloid model to study loop circuits of the human nervous system. bioRxiv 2024. [Google Scholar] [CrossRef]
- Li, C.; Fleck, J.S.; Martins-Costa, C.; Burkard, T.R.; Themann, J.; Stuempflen, M.; Peer, A.M.; Vertesy, A.; Littleboy, J.B.; Esk, C.; et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 2023, 621, 373–380. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, P.; Xiong, W.; Duan, X.; Jing, S.; He, Y.; Zeng, Z.; Wei, Y.; Ye, Q. Genome-scale CRISPR-Cas9 screening in stem cells: Theories, applications and challenges. Stem Cell Res. Ther. 2024, 15, 218. [Google Scholar] [CrossRef]
- He, Z.; Dony, L.; Fleck, J.S.; Szalata, A.; Li, K.X.; Sliskovic, I.; Lin, H.C.; Santel, M.; Atamian, A.; Quadrato, G.; et al. An integrated transcriptomic cell atlas of human neural organoids. Nature 2024, 635, 690–698. [Google Scholar] [CrossRef]
- Birtele, M.; Lancaster, M.; Quadrato, G. Modelling human brain development and disease with organoids. Nat. Rev. Mol. Cell. Biol. 2025, 26, 389–412. [Google Scholar] [CrossRef]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.Q.; Tang, L.T.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Marcogliese, P.C.; Deal, S.L.; Andrews, J.; Harnish, J.M.; Bhavana, V.H.; Graves, H.K.; Jangam, S.; Luo, X.; Liu, N.; Bei, D.; et al. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep. 2022, 38, 110517. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.Y.; Lam, M.M.; Johnson, M.B.; Dube, U.; Shim, S.; Rasin, M.R.; Sousa, A.M.; Fertuzinhos, S.; Chen, J.G.; Arellano, J.I.; et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012, 149, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.P.; Galdzicki, Z.; et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef]
- Tabbaa, M.; Knoll, A.; Levitt, P. Mouse population genetics phenocopies heterogeneity of human Chd8 haploinsufficiency. Neuron 2023, 111, 539–556 e535. [Google Scholar] [CrossRef]
- Veeraragavan, S.; Wan, Y.W.; Connolly, D.R.; Hamilton, S.M.; Ward, C.S.; Soriano, S.; Pitcher, M.R.; McGraw, C.M.; Huang, S.G.; Green, J.R.; et al. Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome. Hum. Mol. Genet. 2016, 25, 3284–3302. [Google Scholar] [CrossRef]
- Chen, R.Z.; Akbarian, S.; Tudor, M.; Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 2001, 27, 327–331. [Google Scholar] [CrossRef]
- Patterson, K.C.; Hawkins, V.E.; Arps, K.M.; Mulkey, D.K.; Olsen, M.L. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum. Mol. Genet. 2016, 25, 3303–3320. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Niu, Y.; Zhang, K.; Kang, Y.; Ge, W.; Liu, X.; Zhao, E.; Wang, C.; Lin, S.; et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14, 323–328. [Google Scholar] [CrossRef]
- Kinkade, J.A.; Singh, P.; Verma, M.; Khan, T.; Ezashi, T.; Bivens, N.J.; Roberts, R.M.; Joshi, T.; Rosenfeld, C.S. Small and Long Non-Coding RNA Analysis for Human Trophoblast-Derived Extracellular Vesicles and Their Effect on the Transcriptome Profile of Human Neural Progenitor Cells. Cells 2024, 13, 1867. [Google Scholar] [CrossRef]
- Pasca, S.P.; Arlotta, P.; Bateup, H.S.; Camp, J.G.; Cappello, S.; Gage, F.H.; Knoblich, J.A.; Kriegstein, A.R.; Lancaster, M.A.; Ming, G.L.; et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 2022, 609, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Pasca, S.P.; Arlotta, P.; Bateup, H.S.; Camp, J.G.; Cappello, S.; Gage, F.H.; Knoblich, J.A.; Kriegstein, A.R.; Lancaster, M.A.; Ming, G.L.; et al. A framework for neural organoids, assembloids and transplantation studies. Nature 2025, 639, 315–320. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, J.; Bhattacharya, A. The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells 2025, 14, 908. https://doi.org/10.3390/cells14120908
Ranjan J, Bhattacharya A. The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells. 2025; 14(12):908. https://doi.org/10.3390/cells14120908
Chicago/Turabian StyleRanjan, Jai, and Aniket Bhattacharya. 2025. "The Evolving Landscape of Functional Models of Autism Spectrum Disorder" Cells 14, no. 12: 908. https://doi.org/10.3390/cells14120908
APA StyleRanjan, J., & Bhattacharya, A. (2025). The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells, 14(12), 908. https://doi.org/10.3390/cells14120908