Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Low-Molecular-Weight Horse Meat Enzyme Hydrolysates (A4 < 3kDa)
2.2. Animals and Treatment
2.3. Measurement of Muscle Mass and Grip Strength of C57BL/6 Mice
2.4. Histological Analysis
2.5. Protein Extraction and Western Blot Analysis
2.6. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Body and Muscle Weight in Dexamethasone-Induced Muscle Atrophy in Mice
3.2. CSA of Muscle Fibers in Mice with Dexamethasone-Induced Muscle Atrophy
3.3. Effect of A4 < 3kDa on Proteins Through the AKT/mTOR/FoxO3a Pathway in Mice Experiencing Dexamethasone-Induced Muscle Atrophy
3.4. mRNA Expression Levels of Ubiquitin Proteasomes Associated with Muscle Atrophy in Dexamethasone-Treated Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- United States Census Bureau. Available online: https://www.census.gov/library/stories/2023/11/world-population-estimated-eight-billion.html (accessed on 2 April 2025).
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 4, 412–423. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Jones, E.J.; Bishop, P.A.; Woods, A.K.; Green, J.M. Cross-sectional area and muscular strength. Int. J. Sports Med. 2008, 38, 987–994. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 1994, 77, 493–501. [Google Scholar] [CrossRef]
- Evans, W.J.; Lexell, J. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 11–16. [Google Scholar] [CrossRef]
- Verdijk, L.B.; Snijders, T.; Beelen, M.; Savelberg, H.H.; Meijer, K.; Kuipers, H.; van Loon, L.J. Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J. Am. Geriatr. Soc. 2010, 58, 2069–2075. [Google Scholar] [CrossRef]
- Ayroldi, E.; Cannarile, L.; Adorisio, S.; Delfino, D.V.; Riccardi, C. Role of endogenous glucocorticoids in cancer in the elderly. Int. J. Mol. Sci. 2018, 19, 3774. [Google Scholar] [CrossRef]
- Seo, E.; Truong, C.S.; Jun, H.S. Psoralea corylifolia L. seed extract attenuates dexamethasone-induced muscle atrophy in mice by inhibition of oxidative stress and inflammation. J. Ethnopharmacol. 2022, 296, 115490. [Google Scholar] [CrossRef]
- Moynihan, P.J.; Teo, J.L. Exploring oral function, protein intake, and risk of sarcopenia: A scoping review. JDR Clin. Trans. Res. 2024, 1, 4–20. [Google Scholar] [CrossRef]
- Lee, J.; Oh, J.; Kang, J.; Yoon, Y. Effect of Goat Meat on Alleviating Muscle Atrophy Induced by Dexamethasone in Mice. Food Sci. Anim. Resour. 2024, in press. [CrossRef]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Meat Science and Nutrition, 1st ed.; Intechopen: London, UK, 2018; pp. 61–73. [Google Scholar] [CrossRef]
- Deldicque, L. Protein intake and exercise-induced skeletal muscle hypertrophy: An update. Nutrients 2020, 7, 2023. [Google Scholar] [CrossRef]
- Dobranić, V.; Njari, B.; Mioković, B.; Fleck, Ž.; Kadivc, M. Chemical composition of horse meat. Meso 2009, 11, 62–67. [Google Scholar]
- Beasley, J.M.; Shikany, J.M.; Thomson, C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr. Clin. Pract. 2013, 28, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Joo, N. Texture Characteristics of Horse Meat for the Elderly Based on the Enzyme Treatment. Food Sci. Anim. Resour. 2020, 40, 74–86. [Google Scholar] [CrossRef]
- Gesualdo, A.M.L.; Chan, E.C.Y.L. Functional properties of fish protein hydrolysate from herring (clupea harengus). J. Food Sci. 1999, 64, 1000–1004. [Google Scholar] [CrossRef]
- Islam, M.; Huang, Y.; Islam, S.; Fan, B.; Tong, L.; Wang, F. Influence of the degree of hydrolysis on functional properties and antioxidant activity of enzymatic soybean protein hydrolysates. Molecules 2022, 18, 6110. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, D.; Do, K.; Yang, C.B.; Jeon, S.W.; Jang, A. Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells. Food Sci. Anim. Resour. 2024, 44, 132–145. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, Y.T.; Jang, W.Y.; Kim, J.Y.; Heo, K.; Shim, J.J.; Lee, J.L.; Yang, D.C.; Kang, S.C. Effects of Lactobacillus curvatus HY7602-fermented antlers in dexamethasone-induced muscle atrophy. Fermentation 2022, 8, 454. [Google Scholar] [CrossRef]
- Augusto, V.; Padovani, C.R.; Campos, G.E.R. Skeletal muscle fiber types in C57BL6J mice. J. Morphol. Sci. 2017, 21, 89–94. [Google Scholar]
- de Wilde, J.; Mohren, R.; van den Berg, S.; Boekschoten, M.; Dijk, K.W.V.; de Groot, P.; Müller, M.; Mariman, E.; Smit, E. Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genom. 2008, 32, 360–369. [Google Scholar] [CrossRef]
- Fappi, A.; de Carvalho Neves, J.; Sanches, L.N.; e Silva, P.V.M.; Sikusawa, G.Y.; Brandão, T.P.C.; Chadi, G.; Zanoteli, E. Skeletal Muscle Response to Deflazacort, Dexamethasone and Methylprednisolone. Cell J. 2019, 8, 406. [Google Scholar] [CrossRef]
- Jeon, S.H.; Choung, S.Y. Oyster hydrolysates attenuate muscle atrophy via regulating protein turnover and mitochondria biogenesis in C2C12 cell and immobilized mice. Nutrients 2021, 13, 4385. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kang, S.Y.; Kim, S.J.; Park, Y.K.; Jung, H.W. Monotropein improves dexamethasone-induced muscle atrophy via the AKT/mTOR/FOXO3a signaling pathways. Nutrients 2022, 14, 1859. [Google Scholar] [CrossRef]
- Oh, J.; Park, S.H.; Kim, D.S.; Choi, W.; Jang, J.; Rahmawati, L.; Jang, W.Y.; Lim, H.K.; Hwang, J.Y.; Gu, G.R.; et al. The Preventive Effect of Specific Collagen Peptides against Dexamethasone-Induced Muscle Atrophy in Mice. Molecules 2023, 28, 1950. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Pak, J.I.; Chae, H.S.; Kim, Y.B.; Jang, A. Antioxidation effect of leg bone extracts and enzyme hydrolysates from Jeju crossbred horses (Jeju native horse× Thoroughbred). J. Life Sci. 2013, 23, 1147–1154. [Google Scholar] [CrossRef]
- Lanza, M.B.; Martins-Costa, H.C.; De Souza, C.C.; Lima, F.V.; Diniz, R.C.; Chagas, M.H. Muscle volume vs. anatomical cross-sectional area: Different muscle assessment does not affect the muscle size-strength relationship. J. Biomech. 2022, 132, 110956. [Google Scholar] [CrossRef]
- Cho, A.; Christine, M.; Malicdan, V.; Miyakawa, M.; Nonaka, I.; Nishino, I.; Noguchi, S. Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum. Mol. Genet. 2017, 26, 3081–3093. [Google Scholar] [CrossRef]
- Iwata, Y.; Suzuki, O.; Wakabayashi, S. Decreased surface sialic acid content is a sensitive indicator of muscle damage. Muscle Nerve 2013, 47, 372–378. [Google Scholar] [CrossRef]
- Iijima, R.; Takahashi, H.; Namme, R.; Ikegami, S.; Yamazaki, M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004, 561, 163–166. [Google Scholar] [CrossRef]
- Jahan, M.; Thomson, P.C.; Wynn, P.C.; Wang, B. Red Meat Derived Glycan, N-acetylneuraminic Acid (Neu5Ac) Is a Major Sialic Acid in Different Skeletal Muscles and Organs of Nine Animal Species—A Guideline for Human Consumers. Foods 2023, 12, 337. [Google Scholar] [CrossRef]
- Nakata, D.; Münster, A.K.; Schahn, R.G.; Aoki, N.; Matsuda, T.; Kitajima, K. Molecular cloning of a unique CMP–sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as substrates. Glycobiology 2001, 11, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Hosokawa, M.; Miyashita, K.; Nishino, H.; Hashimoto, T. Effects of fucoxanthin on the inhibition of dexamethasone-induced skeletal muscle loss in mice. Nutrients 2021, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Parkington, J.D.; LeBrasseur, N.K.; Siebert, A.P.; Fielding, R.A. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J. Appl. Physiol. 2004, 97, 243–248. [Google Scholar] [CrossRef]
- Lee, M.K.; Jeong, H.H.; Kim, M.J.; Ryu, H.; Baek, J.; Lee, B. Nutrients against glucocorticoid-induced muscle atrophy. Foods 2022, 11, 687. [Google Scholar] [CrossRef]
- Seong, P.N.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Park, N.G.; Kim, J.H.; Ba, H.V. Comparative study of nutritional composition and color traits of meats obtained from the horses and Korean native black pigs raised in Jeju Island. Asian Australas. J. Anim. Sci. 2019, 32, 249–256. [Google Scholar] [CrossRef]
- Shin, J.E.; Park, S.J.; Ahn, S.I.; Choung, S.Y. Soluble whey protein hydrolysate ameliorates muscle atrophy induced by immobilization via regulating the PI3K/Akt pathway in C57BL/6 mice. Nutrients 2020, 12, 3362. [Google Scholar] [CrossRef]
- Jagoe, R.T.; Goldberg, A.L. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 183–190. [Google Scholar]
- Clavel, S.; Coldefy, A.S.; Kurkdjian, E.; Salles, J.; Margaritis, I.; Derijard, B. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 2006, 127, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, K.S.; Jeong, J.H.; Yoon, J.S.; Hwang, S.H.; Kim, S.Y.; Yeon, S.H.; Ryu, J.H. Extract of Alnus japonica prevents dexamethasone-induced muscle atrophy in mice. J. Funct. Foods 2023, 101, 105419. [Google Scholar] [CrossRef]
- Han, M.J.; Park, S.J.; Lee, S.J.; Choung, S.Y. The Panax ginseng Berry extract and soluble whey protein hydrolysate mixture ameliorates sarcopenia-related muscular deterioration in aged mice. Nutrients 2022, 14, 799. [Google Scholar] [CrossRef]
- Sacheck, J.M.; Ohtsuka, A.; McLary, S.C.; Goldberg, A.L. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E591–E601. [Google Scholar] [CrossRef] [PubMed]
- Musaro, A.; McCullagh, K.; Paul, A.; Houghton, L.; Dobrowolny, G.; Molinaro, M.; Barton, E.R.; Sweeney, H.L.; Rosenthal, N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 2001, 27, 195–200. [Google Scholar] [CrossRef]
- Mavalli, M.D.; DiGirolamo, D.J.; Fan, Y.; Riddle, R.C.; Campbell, K.S.; van Groen, T.; Frank, S.J.; Sperling, M.A.; Esser, K.A.; Bamman, M.M.; et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Investig. 2010, 120, 4007–4020. [Google Scholar] [CrossRef]
- Gumucio, J.P.; Mendias, C.L. Atrogin-1, MuRF-1, and sarcopenia. Endocr. J. 2013, 43, 12–21. [Google Scholar] [CrossRef]
- Vu, J.P.; Luong, L.; Parsons, W.F.; Oh, S.; Sanford, D.; Gabalski, A.; John, R.B.L.; Joseph, P.; Germano, P.M. Long-term intake of a high-protein diet affects body phenotype, metabolism, and plasma hormones in mice. J. Nutr. 2017, 12, 2243–2251. [Google Scholar] [CrossRef]
- Ha, Y.J.; Kim, J.S.; Yoo, S.K. Biological characteristics of protein hydrolysates derived from Yoensan ogae meat by various commercial proteases. J. Korean Soc. Appl. Sci. Technol. 2019, 36, 1018–1027. [Google Scholar] [CrossRef]
- Jang, A.; Jo, C.; Kang, K.S.; Lee, M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 2008, 107, 327–336. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Z.; Li, M.; Zhou, M.; Sun, X. Peptide profiles and allergy-reactivity of extensive hydrolysates of milk protein. Food Chem. 2023, 411, 135544. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Primer Sequences | Annealing Temperature | |
---|---|---|---|
Atrogin-1 | Forward | 5′-CGACCTGCCTGTGTGCTTA-3′ | 60 °C |
Reverse | 5′-GTCCACGTCAGCAATCATCC-3′ | ||
MuRF-1 | Forward | 5′-TGCCTACTTGCTCCTTGTGC-3′ | |
Reverse | 5′-CACCAGCATGGAGATGCAGT-3′ | ||
β-actin | Forward | 5′-AGACTTCGAGCAGGAGATGG-3′ | |
Reverse | 5′-ACCGCTCGTTGCCAATAGT-3′ |
Experimental Days | Body Weight (g) | |||||
---|---|---|---|---|---|---|
CON | DEX | DL | DH | HL | HH | |
1 | 21.60 ± 0.37 | 21.87 ± 0.47 | 21.47 ± 0.50 | 21.10 ± 0.42 | 20.92 ± 0.27 | 21.63 ± 0.25 |
7 | 22.10 ± 0.40 | 22.40 ± 0.72 | 21.83 ± 0.42 | 21.60 ± 0.38 | 21.77 ± 0.30 | 22.25 ± 0.48 |
14 | 22.25 ± 0.36 | 22.28 ± 0.69 | 22.10 ± 0.40 | 21.82 ± 0.31 | 21.89 ± 0.27 | 22.25 ± 0.48 |
21 | 22.77 ± 0.36 | 22.73 ± 0.59 | 22.55 ± 0.38 | 22.35 ± 0.43 | 22.37 ± 0.38 | 22.52 ± 0.68 |
28 | 23.68 ± 0.41 A | 21.90 ± 0.49 B | 23.00 ± 0.41 A | 22.97 ± 0.59 A | 23.05 ± 0.45 A | 23.10 ± 0.50 A |
35 | 24.58 ± 0.70 A | 22.20 ± 0.36 C | 23.32 ± 0.33 BC | 23.23 ± 0.62 BC | 23.58 ± 0.55 AB | 23.62 ± 0.71 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Kim, D.; Jung, Y.; Oh, S.; Kim, C.H.; Jang, A. Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway. Cells 2025, 14, 1050. https://doi.org/10.3390/cells14141050
Lee H-J, Kim D, Jung Y, Oh S, Kim CH, Jang A. Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway. Cells. 2025; 14(14):1050. https://doi.org/10.3390/cells14141050
Chicago/Turabian StyleLee, Hee-Jeong, Dongwook Kim, Yousung Jung, Soomin Oh, Cho Hee Kim, and Aera Jang. 2025. "Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway" Cells 14, no. 14: 1050. https://doi.org/10.3390/cells14141050
APA StyleLee, H.-J., Kim, D., Jung, Y., Oh, S., Kim, C. H., & Jang, A. (2025). Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway. Cells, 14(14), 1050. https://doi.org/10.3390/cells14141050