The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish
Abstract
1. Introduction
2. The Hypothalamic–Pituitary–Gonadal Axis
2.1. Gonadal Steroidogenesis
2.2. Gametogenesis
2.2.1. Oogenesis: An Overview with a Focus on Paracrine/Autocrine Factors
2.2.2. Spermatogenesis: An Overview with a Focus on Paracrine/Autocrine Factors
3. The Vasopressin/Oxytocin System
The Receptors
4. Autocrine/Paracrine Effect of Vasopressin and Oxytocin in the Gonads
4.1. In Mammals
4.2. In Fish
4.2.1. Bioinformatic Approach
4.2.2. Ovaries: Local Production of AVP/OXT in the Ovaries and Role in Oogenesis
4.2.3. Interaction of AVP/OXT with Ovarian Factors
4.2.4. Regulation of AVP/OXT Production in the Ovaries
4.3. Testes: Local Production of AVP/OXTin the Testes and Role in Spermatogenesis
Interaction of AVP/OXT with Testicular Factors
5. Knowledge Gaps and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, A.M.; Goodson, J.L. Behavioral relevance of species-specific vasotocin anatomy in gregarious finches. Front. Neurosci. 2013, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.L. Nonapeptides and the evolutionary patterning of sociality. Prog. Brain Res. 2008, 170, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, N.; Bass, A.H. Individual behavioral and neuronal phenotypes for arginine vasotocin mediated courtship and aggression in a territorial teleost. Brain Behav. Evol. 2010, 75, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Godwin, J.; Thompson, R. Nonapeptides and Social Behavior in Fishes. Horm. Behav. 2012, 61, 230–238. [Google Scholar] [CrossRef]
- Cardoso, S.C.; Paitio, J.R.; Oliveira, R.F.; Bshary, R.; Soares, M.C. Arginine vasotocin reduces levels of cooperative behaviour in a cleaner fish. Physiol. Behav. 2015, 139, 314–320. [Google Scholar] [CrossRef]
- Ramallo, M.R.; Grober, M.; Cánepa, M.M.; Morandini, L.; Pandolfi, M. Arginine-vasotocin expression and participation in reproduction and social behavior in males of the cichlid fish Cichlasoma dimerus. Gen. Comp. Endocrinol. 2012, 179, 221–231. [Google Scholar] [CrossRef]
- Joy, K.P.; Chaube, R. Vasotocin—A new player in the control of oocyte maturation and ovulation in fish. Gen. Comp. Endocrinol. 2015, 221, 54–63. [Google Scholar] [CrossRef]
- Zanardini, M.; Zhang, W.; Habibi, H.R. Arginine Vasotocin Directly Regulates Spermatogenesis in Adult Zebrafish (Danio rerio) Testes. Int. J. Mol. Sci. 2024, 25, 6564. [Google Scholar] [CrossRef]
- Singh, V.; Joy, K.P. Effects of hCG and ovarian steroid hormones on vasotocin levels in the female catfish Heteropneustes fossilis. Gen. Comp. Endocrinol. 2009, 162, 172–178. [Google Scholar] [CrossRef]
- Paullada-Salmerón, J.A.; Cowan, M.; Aliaga-Guerrero, M.; López-Olmeda, J.F.; Mañanós, E.L.; Zanuy, S.; Muñoz-Cueto, J.A. Testicular steroidogenesis and locomotor activity are regulated by gonadotropin-inhibitory hormone in male European sea bass. PLoS ONE 2016, 11, e0165494. [Google Scholar] [CrossRef]
- Takahashi, T.; Hagiwara, A.; Ogiwara, K. Follicle rupture during ovulation with an emphasis on recent progress in fish models. Reproduction 2018, 157, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- Altmieme, Z.; Jubouri, M.; Touma, K.; Coté, G.; Fonseca, M.; Julian, T.; Mennigen, J.A. A reproductive role for the nonapeptides vasotocin and isotocin in male zebrafish (Danio rerio). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2019, 238, 110333. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, D.; Sharma, K.; Saxena, V.; Nipu, N.; Rajapaksha, D.C.; Mennigen, J.A. Knock-out of vasotocin reduces reproductive success in female zebrafish, Danio rerio. Front. Endocrinol. 2023, 14, 1151299. [Google Scholar] [CrossRef] [PubMed]
- Mennigen, J.A.; Ramachandran, D.; Shaw, K.; Chaube, R.; Joy, K.P.; Trudeau, V.L. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front. Endocrinol. 2022, 13, 1005863. [Google Scholar] [CrossRef]
- Leung, P.C. Intracellular signaling in the gonads. Endocr. Rev. 1992, 13, 476–498. [Google Scholar] [CrossRef]
- Navarro, V.M.; Castellano, J.M.; McConkey, S.M.; Pineda, R.; Ruiz-Pino, F.; Pinilla, L.; Clifton, D.K.; Tena-Sempere, M.; Steiner, R.A. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am. J. Physiol. Metab. 2011, 300, E202–E210. [Google Scholar] [CrossRef]
- Goodman, R.L.; Lehman, M.N.; Smith, J.T.; Coolen, L.M.; de Oliveira, C.V.R.; Jafarzadehshirazi, M.R.; Pereira, A.; Iqbal, J.; Caraty, A.; Ciofi, P.; et al. Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B. Endocrinology 2007, 148, 5752–5760. [Google Scholar] [CrossRef]
- Castellano, J.M.; Navarro, V.M.; Fernández-Fernández, R.; Castaño, J.P.; Malagón, M.M.; Aguilar, E.; Dieguez, C.; Magni, P.; Pinilla, L.; Tena-Sempere, M. Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol. Cell. Endocrinol. 2006, 257–258, 75–83. [Google Scholar] [CrossRef]
- Messager, S.; Chatzidaki, E.E.; Ma, D.; Hendrick, A.G.; Zahn, D.; Dixon, J.; Thresher, R.R.; Malinge, I.; Lomet, D.; Carlton, M.B.L.; et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA 2005, 102, 1761–1766. [Google Scholar] [CrossRef]
- Moore, A.M.; Coolen, L.M.; Lehman, M.N. In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proc. Natl. Acad. Sci. USA 2022, 119, e2117767119. [Google Scholar] [CrossRef]
- Somoza, G.M.; Miranda, L.A.; Strobl-Mazzulla, P.; Guilgur, L.G. Gonadotropin-releasing hormone (GnRH): From fish to mammalian brains. Cell. Mol. Neurobiol. 2002, 22, 589–609. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, V.L.; Somoza, G.M. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen. Comp. Endocrinol. 2020, 293, 113475. [Google Scholar] [CrossRef] [PubMed]
- Habibi, H.R. Homologous desensitization of gonadotropin-releasing hormone (GnRH) receptors in the goldfish pituitary: Effects of native GnRH peptides and a synthetic GnRH antagonist. Biol. Reprod. 1991, 44, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Zohar, Y.; Muñoz-Cueto, J.A.; Elizur, A.; Kah, O. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocrinol. 2010, 165, 438–455. [Google Scholar] [CrossRef]
- Li, J.; Ge, W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol. Cell. Endocrinol. 2020, 507, 110778. [Google Scholar] [CrossRef]
- Spicer, O.S.; Wong, T.-T.; Zmora, N.; Zohar, Y. Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on Reproductive Performance. PLoS ONE 2016, 11, e0158141. [Google Scholar] [CrossRef]
- Marvel, M.; Spicer, O.S.; Wong, T.T.; Zmora, N.; Zohar, Y. Knockout of the Gnrh genes in zebrafish: Effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol. Reprod. 2018, 99, 565–577. [Google Scholar] [CrossRef]
- Trudeau, V.L. Facing the challenges of neuropeptide gene knockouts: Why do they not inhibit reproduction in adult teleost fish? Front. Neurosci. 2018, 12, 302. [Google Scholar] [CrossRef]
- Zhao, E.; Basak, A.; Wong, A.O.L.; Ko, W.; Chen, A.; Lopez, G.C.; Grey, C.L.; Canosa, L.F.; Somoza, G.M.; Chang, J.P.; et al. The secretogranin II-derived peptide secretoneurin stimulates luteinizing hormone secretion from gonadotrophs. Endocrinology 2009, 150, 2273–2282. [Google Scholar] [CrossRef]
- Zhao, E.; Basak, A.; Trudeau, V.L. Secretoneurin stimulates goldfish pituitary luteinizing hormone production. Neuropeptides 2006, 40, 275–282. [Google Scholar] [CrossRef]
- Somoza, G.M.; Mechaly, A.S.; Trudeau, V.L. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen. Comp. Endocrinol. 2020, 298, 113568. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, V.L.; Shaw, K.; Spadacini, V.; Hu, W. Reproductive Neuroendocrinology in Teleost Fishes, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2024; Volume 1. [Google Scholar] [CrossRef]
- Zohar, Y. Fish reproductive biology—Reflecting on five decades of fundamental and translational research. Gen. Comp. Endocrinol. 2021, 300, 113544. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, A.; Senthilkumaran, B. Steroidogenesis and its regulation in teleost-a review. Fish Physiol. Biochem. 2020, 46, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Bose, H.S. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J. Lipid Res. 2011, 52, 2111–2135. [Google Scholar] [CrossRef]
- Zhou, L.; Li, M.; Wang, D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen. Comp. Endocrinol. 2021, 313, 113893. [Google Scholar] [CrossRef]
- Su, Y.; Wu, Y.; Ye, M.; Zhao, C.; Li, L.; Cai, J.; Chakraborty, T.; Yang, L.; Wang, D.; Zhou, L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. Part—B Biochem. Mol. Biol. 2024, 273, 110985. [Google Scholar] [CrossRef]
- Tenugu, S.; Pranoty, A.; Mamta, S.K.; Senthilkumaran, B. Development and organisation of gonadal steroidogenesis in bony fishes—A review. Aquac. Fish. 2020, 6, 223–246. [Google Scholar] [CrossRef]
- Kazeto, Y.; Ijiri, S.; Todo, T.; Adachi, S.; Yamauchi, K. Molecular cloning and characterization of Japanese eel ovarian P450c17 (CYP17) cDNA. Gen. Comp. Endocrinol. 2000, 118, 123–133. [Google Scholar] [CrossRef]
- Lin, C.-J.; Maugars, G.; Lafont, A.-G.; Jeng, S.-R.; Wu, G.-C.; Dufour, S.; Chang, C.-F. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Gen. Comp. Endocrinol. 2020, 291, 113395. [Google Scholar] [CrossRef]
- Di Nardo, G.; Zhang, C.; Marcelli, A.G.; Gilardi, G. Molecular and structural evolution of cytochrome p450 aromatase. Int. J. Mol. Sci. 2021, 22, 631. [Google Scholar] [CrossRef]
- Gohin, M.; Bodinier, P.; Fostier, A.; Chesnel, F.; Bobe, J. Aromatase is expressed and active in the rainbow trout oocyte during final oocyte maturation. Mol. Reprod. Dev. 2011, 78, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Yamauchi, K.; Takahashi, H.; Nagahama, Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. USA 1991, 88, 5774–5778. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.C.; de Waal, P.P.; García-López, Á.; Chen, S.X.; Bogerd, J.; Schulz, R.W. Zebrafish primary testis tissue culture: An approach to study testis function ex vivo. Gen. Comp. Endocrinol. 2009, 162, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Borg, B. Androgens in teleost fishes. Comp. Biochem. Physiol. Part C Comp. 1994, 109, 219–245. [Google Scholar] [CrossRef]
- Sambroni, E.; Lareyre, J.-J.; Le Gac, F. Fsh Controls Gene Expression in Fish both Independently of and through Steroid Mediation. PLoS ONE 2013, 8, e76684. [Google Scholar] [CrossRef]
- Li, N.; Oakes, J.A.; Storbeck, K.H.; Cunliffe, V.T.; Krone, N.P. The P450 side-chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish. J. Endocrinol. 2020, 244, 309–321. [Google Scholar] [CrossRef]
- Zhai, G.; Shu, T.; Xia, Y.; Jin, X.; He, J.; Yin, Z. Androgen signaling regulates the transcription of anti-Müllerian hormone via synergy with SRY-related protein SOX9A. Sci. Bull. 2017, 62, 197–203. [Google Scholar] [CrossRef]
- Tosaka, R.; Todo, T.; Kazeto, Y.; Mark Lokman, P.; Ijiri, S.; Adachi, S.; Yamauchi, K. Expression of androgen receptor mRNA in the ovary of Japanese eel, Anguilla japonica, during artificially induced ovarian development. Gen. Comp. Endocrinol. 2010, 168, 424–430. [Google Scholar] [CrossRef]
- Monson, C.; Forsgren, K.; Goetz, G.; Harding, L.; Swanson, P.; Young, G. A teleost androgen promotes development of primary ovarian follicles in coho salmon and rapidly alters the ovarian transcriptome. Biol. Reprod. 2017, 97, 731–745. [Google Scholar] [CrossRef]
- Monson, C.; Goetz, G.; Forsgren, K.; Swanson, P.; Young, G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS ONE 2024, 19, e0311628. [Google Scholar] [CrossRef]
- Kortner, T.M.; Rocha, E.; Arukwe, A. Previtellogenic oocyte growth and transcriptional changes of steroidogenic enzyme genes in immature female Atlantic cod (Gadus morhua L.) after exposure to the androgens 11-ketotestosterone and testosterone. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 152, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Crowder, C.M.; Lassiter, C.S.; Gorelick, D.A. Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology 2018, 159, 980–993. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.-Å. What pharmacologists can learn from recent advances in estrogen signalling. Trends Pharmacol. Sci. 2003, 24, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; et al. Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef]
- Hess, R.A. Estrogen in the adult male reproductive tract: A review. Reprod. Biol. Endocrinol. 2003, 1, 52. [Google Scholar] [CrossRef]
- Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J.-Å. Mechanisms of Estrogen Action. Physiol. Rev. 2001, 81, 1535–1565. [Google Scholar] [CrossRef]
- Sundaray, J.K. Recent Updates in Molecular Endocrinology and Reproductive Physiology of Fish; Springer: Singapore, 2021. [Google Scholar]
- Lubzens, E.; Young, G.; Bobe, J.; Cerdà, J. Oogenesis in teleosts: How fish eggs are formed. Gen. Comp. Endocrinol. 2010, 165, 367–389. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, P.; Sham, K.W.Y.; Yuen, J.M.L.; Xie, C.; Zhang, Y.; Liu, Y.; Li, S.; Huang, X.; Cheng, C.H.K.; et al. Identification of a Membrane Estrogen Receptor in Zebrafish with Homology to Mammalian GPER and Its High Expression in Early Germ Cells of the Testis 1. Biol. Reprod. 2009, 1261, 1253–1261. [Google Scholar] [CrossRef]
- Liu, K.C.; Lau, S.W.; Ge, W. Spatiotemporal expression analysis of nuclear estrogen receptors in the zebrafish ovary and their regulation in vitro by endocrine hormones and paracrine factors. Gen. Comp. Endocrinol. 2017, 246, 218–225. [Google Scholar] [CrossRef]
- Lu, H.; Cui, Y.; Jiang, L.; Ge, W. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach. Endocrinology 2017, 158, 2292–2308. [Google Scholar] [CrossRef]
- Crowder, C.M.; Romano, S.N.; Gorelick, D.A. G Protein-Coupled Estrogen Receptor Is Not Required for Sex Determination or Ovary Function in Zebrafish. Endocrinology 2018, 159, 3515–3523. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Miura, C.; Ohta, T.; Nader, M.R.; Todo, T.; Yamauchi, K. Estradiol-17β Stimulates the Renewal of Spermatogonial Stem Cells in Males. Biochem. Biophys. Res. Commun. 1999, 264, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Bouma, J.; Nagler, J.J. Estrogen receptor-α protein localization in the testis of the rainbow trout (Oncorhynchus mykiss) during different stages of the reproductive cycle. Biol. Reprod. 2001, 65, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, Y.; Liu, Y.; Yin, Y.; Li, G.; Guo, Y.; Liu, X.; Lin, H. New Insights Into the Role of Estrogens in Male Fertility. Endocrinology 2017, 158, 3042–3054. [Google Scholar] [CrossRef]
- Idler, D.R.; Fagerlund, U.H.M.; Ronald, A.P. Isolation of pregn-4-ene-17a, 2ob-diol-3-one from the plasma of pacific salmon (Oncorhynchus nerka). Fish Biol. 2005, 2, 63–65. [Google Scholar]
- Nagahama, Y.; Yamashita, M. Regulation of oocyte maturation in fish. Dev. Growth Differ. 2008, 50, S195–S219. [Google Scholar] [CrossRef]
- Suwa, K.; Yamashita, M. Regulatory mechanisms of oocyte maturation and ovulation. In The Fish Oocyte: From Basic Studies to Biotechnological Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 323–347. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Li, J.; Yin, Y.; Li, G.; Chen, Y.; Li, S.; Zhang, Y.; Lin, H.; Liu, X.; et al. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci. Rep. 2016, 6, 28545. [Google Scholar] [CrossRef]
- Kubota, K.; Cui, W.; Dhakal, P.; Wolfe, M.W.; Rumi, M.A.K.; Vivian, J.L.; Roby, K.F.; Soares, M.J. Rethinking progesterone regulation of female reproductive cyclicity. Proc. Natl. Acad. Sci. USA 2016, 113, 4212–4217. [Google Scholar] [CrossRef]
- Chen, S.X.; Bogerd, J.; Schoonen, N.E.; Martijn, J.; De Waal, P.P.; Schulz, R.W. A progestin (17a,20b-dihydroxy-4-pregnen-3-one) stimulates early stages of spermatogenesis. Gen. Comp. Endocrinol. 2013, 185, 1–9. [Google Scholar] [CrossRef]
- Miura, T.; Miura, C. Japanese Eel: A Model for Analysis of Spermatogenesis. Zoolog. Sci. 2001, 18, 1055–1063. [Google Scholar] [CrossRef]
- Scott, A.P.; Sumpter, J.P.; Stacey, N. The role of the maturation-inducing steroid, 17,20β-dihydroxypregn-4-en-3-one, in male fishes: A review. J. Fish Biol. 2010, 76, 183–224. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wu, L.; Yang, L.; Song, L.; Cai, J.; Luo, F.; Wei, J.; Zhou, L.; Wang, D. Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J. Steroid Biochem. Mol. Biol. 2018, 182, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Shu, T.; Yu, G.; Tang, H.; Shi, C.; Jia, J.; Lou, Q.; Dai, X.; Jin, X.; He, J.; et al. Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling. Elife 2022, 11, e66118. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, O.; Cionna, C.; Tosti, L.; Cerdà, J.; Gioacchini, G. Changes in cathepsin gene expression and relative enzymatic activity during gilthead sea bream oogenesis. Mol. Reprod. Dev. 2008, 75, 97–104. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Ge, W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biol. Reprod. 2017, 96, 401–413. [Google Scholar] [CrossRef]
- Rodríguez-Marí, A.; Yan, Y.-L.; BreMiller, R.A.; Wilson, C.; Cañestro, C.; Postlethwait, J.H. Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 2005, 5, 655–667. [Google Scholar] [CrossRef]
- Senthilkumaran, B.; Yoshikuni, M.; Nagahama, Y. A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol. Cell. Endocrinol. 2004, 215, 11–18. [Google Scholar] [CrossRef]
- Clelland, E.S.; Tan, Q.; Balofsky, A.; Lacivita, R.; Peng, C. Inhibition of premature oocyte maturation: A role for bone morphogenetic protein 15 in zebrafish ovarian follicles. Endocrinology 2007, 148, 5451–5458. [Google Scholar] [CrossRef]
- Clelland, E.; Peng, C. Endocrine/paracrine control of zebrafish ovarian development. Mol. Cell. Endocrinol. 2009, 312, 42–52. [Google Scholar] [CrossRef]
- Ge, W. Gonadotropins and their paracrine signaling network in the zebrafish ovary. Fish Physiol. Biochem. 2005, 31, 209–214. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, W. Developmental Profiles of Activin βA, βB, and Follistatin Expression in the Zebrafish Ovary: Evidence for Their Differential Roles During Sexual Maturation and Ovulatory Cycle1. Biol. Reprod. 2004, 71, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge, W. Cloning of epidermal growth factor (EGF) and EGF receptor from the zebrafish ovary: Evidence for EGF as a potential paracrine factor from the oocyte to regulate activin/follistatin system in the follicle cells. Biol. Reprod. 2004, 71, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.R.; Sumpter, J.P. Oocyte growth and development in teleosts. Fishes 1996, 6, 287–318. [Google Scholar] [CrossRef]
- Berishvili, G.; D’Cotta, H.; Baroiller, J.; Segner, H.; Reinecke, M. Differential expression of IGF-I mRNA and peptide in the male and female gonad during early development of a bony fish, the tilapia Oreochromis niloticus. Gen. Comp. Endocrinol. 2006, 146, 204–210. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Kang, T.; Li, M.; Wang, D.; Cheng, C.H.K. Igf3: A novel player in fish reproduction. Biol. Reprod. 2021, 104, 1194–1204. [Google Scholar] [CrossRef]
- Li, J.; Chu, L.; Sun, X.; Liu, Y.; Cheng, C.H.K. IGFS mediate the action of LH on oocyte maturation in zebrafish. Mol. Endocrinol. 2015, 29, 373–383. [Google Scholar] [CrossRef]
- Fallah, H.P.; Habibi, H.R. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen. Comp. Endocrinol. 2020, 299, 113619. [Google Scholar] [CrossRef]
- Pati, D.; Habibi, H.R. Direct action of GnRH variants on goldfish oocyte meiosis and follicular steroidogenesis. Mol. Cell. Endocrinol. 2000, 160, 75–88. [Google Scholar] [CrossRef]
- Miura, T.; Miura, C.I. Molecular control mechanisms of fish spermatogenesis. Fish Physiol. Biochem. 2003, 28, 181–186. [Google Scholar] [CrossRef]
- Schulz, R.W.; Miura, T. Spermatogenesis and its endocrine regulation. Fish Physiol. Biochem. 2002, 26, 43–56. [Google Scholar] [CrossRef]
- Xie, X.; Nóbrega, R.; Pšenička, M. Spermatogonial stem cells in fish: Characterization, isolation, enrichment, and recent advances of in vitro culture systems. Biomolecules 2020, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Tovo-Neto, A.; Martinez, E.R.M.; Melo, A.G.; Doretto, L.B.; Butzge, A.J.; Rodrigues, M.S.; Nakajima, R.T.; Habibi, H.R.; Nóbrega, R.H. Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants. Biomolecules 2020, 10, 429. [Google Scholar] [CrossRef]
- Schulz, R.W.; de França, L.R.; Lareyre, J.-J.; LeGac, F.; Chiarini-Garcia, H.; Nobrega, R.H.; Miura, T. Spermatogenesis in fish. Gen. Comp. Endocrinol. 2010, 165, 390–411. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, S.M.S.N.; Martinez, E.R.M.; Mura, I.L.D.D.; Doretto, L.B.; Costa, G.M.J.; Silva, M.A.; Digmayer, M.; Nóbrega, R.H.; França, L.R. Duration of spermatogenesis and identification of spermatogonial stem cell markers in a Neotropical catfish, Jundiá (Rhamdia quelen). Gen. Comp. Endocrinol. 2019, 273, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, R.H.; Greebe, C.D.; van de Kant, H.; Bogerd, J.; de França, L.R.; Schulz, R.W. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS ONE 2010, 5, e12808. [Google Scholar] [CrossRef]
- De Rooij, D.G. The spermatogonial stem cell niche. Microsc. Res. Tech. 2009, 72, 580–585. [Google Scholar] [CrossRef]
- de Rooij, D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 2001, 121, 347–354. [Google Scholar] [CrossRef]
- de Siqueira-Silva, D.H.; da Silva Rodrigues, M.; Nóbrega, R.H. Testis structure, spermatogonial niche and Sertoli cell efficiency in Neotropical fish. Gen. Comp. Endocrinol. 2019, 273, 218–226. [Google Scholar] [CrossRef]
- Levavi-Sivan, B.; Bogerd, J.; Mañanós, E.L.; Gómez, A.; Lareyre, J.J. Perspectives on fish gonadotropins and their receptors. Gen. Comp. Endocrinol. 2010, 165, 412–437. [Google Scholar] [CrossRef]
- Komiya, Y.; Habas, R. Wnt Secretion and Extra-Cellular Regulators. Dev. Cell. 2008, 4, 68–75. [Google Scholar]
- Safian, D.; Bogerd, J.; Schulz, R.W. Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. J. Endocrinol. 2018, 238, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Safian, D.; Bogerd, J.; Schulz, R.W. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen. Comp. Endocrinol. 2019, 284, 113244. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Liu, Y.X. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2015, 149, R159–R167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Z.; Wang, Y.; Luo, Y.; Da, F.; Tao, W.; Zhou, L.; Wang, D.; Wei, J. Both Gfrα1a and Gfrα1b Are Involved in the Self-Renewal and Maintenance of Spermatogonial Stem Cells in Medaka. Stem Cells Dev. 2018, 27, 1658–1670. [Google Scholar] [CrossRef]
- Doretto, L.B.; Butzge, A.J.; Nakajima, R.T.; Martinez, E.R.M.; de Souza, B.M.; Rodrigues, M.D.S.; Rosa, I.F.; Ricci, J.M.B.; Tovo-Neto, A.; Costa, D.F.; et al. Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners. Cells 2022, 11, 1295. [Google Scholar] [CrossRef]
- Schulz, R.W.; Nóbrega, R.H.; Morais, R.D.V.S.; De Waal, P.P.; França, L.R.; Bogerd, J. Endocrine and paracrine regulation of zebrafish spermatogenesis: The Sertoli cell perspective. Anim. Reprod. 2015, 12, 81–87. [Google Scholar]
- Nóbrega, R.H.; De Souza Morais, R.D.V.; Crespo, D.; De Waal, P.P.; De França, L.R.; Schulz, R.W.; Bogerd, J. Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology 2015, 156, 3804–3817. [Google Scholar] [CrossRef]
- Wang, D.S.; Jiao, B.; Hu, C.; Huang, X.; Liu, Z.; Cheng, C.H.K. Discovery of a gonad-specific IGF subtype in teleost. Biochem. Biophys. Res. Commun. 2008, 367, 336–341. [Google Scholar] [CrossRef]
- Skaar, K.S.; Nóbrega, R.H.; Magaraki, A.; Olsen, L.C.; Schulz, R.W.; Male, R. Proteolytically activated, recombinant anti-Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology 2011, 152, 3527–3540. [Google Scholar] [CrossRef]
- Rocha, A.; Zanuy, S.; Gómez, A. Conserved anti-müllerian hormone: Anti-müllerian hormone type-2 receptor specific interaction and intracellular signaling in teleosts. Biol. Reprod. 2016, 94, 141. [Google Scholar] [CrossRef]
- Crespo, D.; Lemos, M.S.; Zhang, Y.T.; Safian, D.; Norberg, B.; Bogerd, J.; Schulz, R.W. PGE2 inhibits spermatogonia differentiation in zebrafish: Interaction with Fsh and an androgen. J. Endocrinol. 2020, 244, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Morais, R.D.V.S.; Crespo, D.; Nóbrega, R.H.; Lemos, M.S.; van de Kant, H.J.G.; de França, L.R.; Male, R.; Bogerd, J.; Schulz, R.W. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol. Cell. Endocrinol. 2017, 454, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Crespo, D.; Assis, L.H.C.; Furmanek, T.; Bogerd, J.; Schulz, R.W. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Mol. Cell. Endocrinol. 2016, 437, 237–251. [Google Scholar] [CrossRef]
- Crespo, D.; Assis, L.H.C.; Zhang, Y.T.; Safian, D.; Furmanek, T.; Skaftnesmo, K.O.; Norberg, B.; Ge, W.; Choi, Y.-C.; den Broeder, M.J.; et al. Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Commun. Biol. 2021, 4, 204. [Google Scholar] [CrossRef]
- Schulz, R.W.; Menting, S.; Bogerd, J.; França, L.R.; Vilela, D.A.R.; Godinho, H.P. Sertoli cell proliferation in the adult testis—Evidence from two fish species belonging to different orders. Biol. Reprod. 2005, 73, 891–898. [Google Scholar] [CrossRef]
- Crespo, D.; Assis, L.H.C.; van de Kant, H.J.G.; de Waard, S.; Safian, D.; Lemos, M.S.; Bogerd, J.; Schulz, R.W. Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: Follicle-stimulating hormone, retinoic acid and androgens. Development 2019, 146, dev178665. [Google Scholar] [CrossRef]
- Pati, D.; Habibi, H.R. Gonadotropin-releasing hormone (GnRH) binding characteristics in the testis of goldfish (Carassius auratus). J. Exp. Zool. 1993, 267, 155–163. [Google Scholar] [CrossRef]
- Fallah, H.P.; Rodrigues, M.S.; Corchuelo, S.; Nóbrega, R.; Habibi, H. Role of GnRH isoforms in paracrine/autocrine control of zebrafish (Danio rerio) spermatogenesis. Endocrinology 2020, 161, bqaa004. [Google Scholar] [CrossRef]
- Andreu-Vieyra, C.V.; Buret, A.G.; Habibi, H.R. Gronadotropin-releasing hormone induction of apoptosis in the testes of goldfish (Caraasius auratus). Endocrinology 2005, 146, 1588–1596. [Google Scholar] [CrossRef]
- Qi, X.; Zhou, W.; Lu, D.; Wang, Q.; Zhang, H.; Li, S.; Liu, X.; Zhang, Y.; Lin, H. Sexual Dimorphism of Steroidogenesis Regulated by GnIH in the Goldfish, Carassius auratus. Biol. Reprod. 2013, 88, 89. [Google Scholar] [CrossRef]
- Fallah, H.P.; Tovo-Neto, A.; Yeung, E.C.; Nóbrega, R.H.; Habibi, H.R. Paracrine/autocrine control of spermatogenesis by gonadotropin-inhibitory hormone. Mol. Cell. Endocrinol. 2019, 492, 110440. [Google Scholar] [CrossRef] [PubMed]
- Fallah, H.P.; Rodrigues, M.S.; Zanardini, M.; Nóbrega, R.H.; Habibi, H.R. Effects of gonadotropin-inhibitory hormone on early and late stages of spermatogenesis in ex-vivo culture of zebrafish testis. Mol. Cell. Endocrinol. 2021, 520, 111087. [Google Scholar] [CrossRef] [PubMed]
- Habibi, H.R.; Raine, J.C. Thyroid Hormone and Reproduction in Fishes, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2024; Volume 1. [Google Scholar] [CrossRef]
- Morais, R.D.V.S.; Nóbrega, R.H.; Gómez-González, N.E.; Schmidt, R.; Bogerd, J.; França, L.R.; Schulz, R.W. Thyroid hormone stimulates the proliferation of sertoli cells and single type A spermatogonia in adult zebrafish (Danio rerio) testis. Endocrinology 2013, 154, 4365–4376. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.S.; Fallah, H.P.; Zanardini, M.; Malafaia, G.; Habibi, H.; Nóbrega, R. Interaction between thyroid hormones and gonadotropin inhibitory hormone in ex vivo culture of zebrafish testis: An approach to study multifactorial control of spermatogenesis. Mol. Cell. Endocrinol. 2021, 532, 111331. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Tovo-Neto, A.; Rosa, I.F.; Doretto, L.; Fallah, H.P.; Habibi, H.; Nóbrega, R. Thyroid Hormones Deficiency Impairs Male Germ Cell Development: A Cross Talk Between Hypothalamic-Pituitary-Thyroid, and—Gonadal Axes in Zebrafish. Front. Cell Dev. Biol. 2022, 10, 865948. [Google Scholar] [CrossRef]
- Balment, R.J.; Lu, W.; Weybourne, E.; Warne, J.M. Arginine vasotocin a key hormone in fish physiology and behaviour: A review with insights from mammalian models. Gen. Comp. Endocrinol. 2006, 147, 9–16. [Google Scholar] [CrossRef]
- Unger, J.L.; Glasgow, E.; Jennifer, L.; Unger, E.G. Expression of isotocin-neurophysin mRNA in developing zebrafish. Gene Expr. Patterns 2003, 3, 105–108. [Google Scholar] [CrossRef]
- Mayasich, S.A.; Clarke, B.L. Vasotocin and the origins of the vasopressin/oxytocin receptor gene family. In Vitamins and Hormones; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 113, pp. 1–27. [Google Scholar] [CrossRef]
- Steinke, D.; Hoegg, S.; Brinkmann, H.; Meyer, A. Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol. 2006, 4, 16. [Google Scholar] [CrossRef]
- Acher, R. Molecular Evolution of Fish Neurohypophysial Hormones: Neutral and Selective Evolutionary Mechanisms. Gen. Comp. Endocrinol. 1996, 102, 157–172. [Google Scholar] [CrossRef]
- Follett, B.Y.B.K.; Heller, H. The Neurohypophysial Hormones of Bony Fishes and Cyclostomes. J. Physiol. 1964, 172, 74–91. [Google Scholar] [CrossRef]
- Acher, R.; Chauvet, J.; Chauvet, M.T.; Crepy, D. Les hormones neurohypophysaires des poissons: Isolement d’une vasotocine du tacaud (Gadus luscus L.). Biochim. Biophys. Acta 1961, 51, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Acher, R.; Chauvet, J. Structure, processing and evolution of the neurohypophysial hormone-neurophysin precursors. Biochimie 1988, 70, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.F., Jr.; Lima Alfonso, M.Q.; de Carvalho Azevedo, V.A.; Lemos, M. Bioinformatics and Artificial Intelligence Approaches for Unraveling Evolutionary Mechanisms in Taxonomic Groups of Neurohypophysial Hormones Family International Journal of Swarm Intelligence. Int. J. Swarm Intell. Evol. Comput. 2021, 10, 1000211. [Google Scholar]
- Caldwell, H.K.; Smith, D.A.; Albers, H.E. Photoperiodic mechanisms controlling scent marking: Interactions of vasopressin and gonadal steroids. Eur. J. Neurosci. 2008, 27, 1189–1196. [Google Scholar] [CrossRef]
- Lema, S.C. Identification of multiple vasotocin receptor cDNAs in teleost fish: Sequences, phylogenetic analysis, sites of expression, and regulation in the hypothalamus and gill in response to hyperosmotic challenge. Mol. Cell. Endocrinol. 2010, 321, 215–230. [Google Scholar] [CrossRef]
- Ocampo Daza, D.; Lewicka, M.; Larhammar, D. The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes. Gen. Comp. Endocrinol. 2012, 175, 135–143. [Google Scholar] [CrossRef]
- Ocampo Daza, D.; Bergqvist, C.A.; Larhammar, D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front. Endocrinol. 2022, 12, 792644. [Google Scholar] [CrossRef]
- Theofanopoulou, C.; Gedman, G.; Cahill, J.A.; Boeckx, C.; Jarvis, E.D. Universal nomenclature for oxytocin–vasotocin ligand and receptor families. Nature 2021, 592, 747–755. [Google Scholar] [CrossRef]
- Tong, S.-K.; Lee, H.-L.; Lee, Y.-C.; Wu, L.-C.; Tsou, Y.-L.; Lu, S.-W.; Shih, S.-W.; Hwang, P.-P.; Chou, M.-Y. Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H+-ATPase Rich Ionocytes. Int. J. Mol. Sci. 2020, 21, 3957. [Google Scholar] [CrossRef]
- Hausmann, H.; Richters, A.; Kreienkamp, H.; Meyerhoft, W.; Matrest, H.; Lederis, K.; Zwiers, H.; Richter, D. Mutational analysis and molecular modeling of the nonapeptide hormone binding domains of the [Arg8]vasotocin receptor. Proc. Natl. Acad. Sci. USA 1996, 93, 6907–6912. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, H.; Meyerhof, W.; Zwiers, H.; Lederis, K.; Richter, D. Teleost isotocin receptor: Structure, functional expression, mRNA distribution and phylogeny. FEBS Lett. 1995, 370, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Landin, J.; Hovey, D.; Xu, B.; Lagman, D.; Zettergren, A.; Larhammar, D.; Kettunen, P.; Westberg, L. Oxytocin Receptors Regulate Social Preference in Zebrafish. Sci. Rep. 2020, 10, 5435. [Google Scholar] [CrossRef]
- Song, Z.; Albers, H.E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front. Neuroendocrinol. 2018, 51, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Stadler, B.; Whittaker, M.R.; Exintaris, B.; Middendorff, R. Oxytocin in the Male Reproductive Tract; The Therapeutic Potential of Oxytocin-Agonists and-Antagonists. Front. Endocrinol. 2020, 11, 565731. [Google Scholar] [CrossRef]
- Assinder, S.J.J.; Carey, M.; Parkinson, T.; Nicholson, H.D.D. Oxytocin and vasopressin expression in the ovine testis and epididymis: Changes with the onset of spermatogenesis. Biol. Reprod. 2000, 63, 448–456. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakano, Y.; Iwata, N.; Soejima, Y.; Suyama, A.; Hasegawa, T.; Otsuka, F. Stimulatory effects of vasopressin on progesterone production and BMP signaling by ovarian granulosa cells. Biochem. Biophys. Res. Commun. 2023, 667, 132–137. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Nitray, J. The interrelationships between nonapeptide and steroid hormones secretion by bovine granulosa cells in vitro. J. Steroid Biochem. Mol. Biol. 1992, 43, 529–534. [Google Scholar] [CrossRef]
- Frayne, J.; Nicholson, H.D. Localization of oxytocin receptors in the human and macaque monkey male reproductive tracts: Evidence for a physiological role of oxytocin in the male. Mol. Hum. Reprod. 1998, 4, 527–532. [Google Scholar] [CrossRef]
- Howl, J.; Rudge, S.A.; Lavis, R.A.; Davies, A.R.L.; Parslow, R.A.; Hughes, P.J.; Kirk, C.J.; Michell, R.H.; Wheatley, M. Rat testicular myoid cells express vasopressin receptors: Receptor structure, signal transduction, and developmental regulation. Endocrinology 1995, 136, 2206–2213. [Google Scholar] [CrossRef]
- Whittington, K.; Assinder, S.J.; Parkinson, T.; Lapwood, K.R.; Nicholson, H.D. Function and localization of oxytocin receptors in the reproductive tissue of rams. Reproduction 2001, 122, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Assinder, S.J.; Rezvani, A.; Nicholson, H.D. Oxytocin promotes spermiation and sperm transfer in the mouse. Int. J. Androl. 2002, 25, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, H.D.; Guldenaar, S.E.F.; Boer, G.J.; Pickering, B.T. Testicular oxytocin: Effects of intratesticular oxytocin in the rat. J. Endocrinol. 1991, 130, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Anuradha, A.; Krishna, A. A possible direct action of oxytocin on spermatogenesis and steroidogenesis in pre-pubertal mouse. Andrologia 2018, 50, e12958. [Google Scholar] [CrossRef]
- Frayne, J.; Nicholson, H.D. Effect of Oxytocin on Testosterone Production by Isolated Rat Leydig Cells is Mediated Via a Specific Oxytocin Receptor1. Biol. Reprod. 1995, 52, 1268–1273. [Google Scholar] [CrossRef]
- Frayne, J.; Nicholson, H.D. Regulation of oxytocin production by purified adult rat Leydig cells in vitro: Effects of LH, testosterone and lipoproteins. J. Endocrinol. 1994, 143, 325–332. [Google Scholar] [CrossRef]
- Gerendai, I.; Csaba, Z.; Csernus, V. Effect of intratesticular administration of somatostatin on testicular function in immature and adult rats. Life Sci. 1996, 59, 859–866. [Google Scholar] [CrossRef]
- Kwon, W.S.; Park, Y.J.; Kim, Y.H.; You, Y.A.; Kim, I.C.; Pang, M.G. Vasopressin Effectively Suppresses Male Fertility. PLoS ONE 2013, 8, 4–11. [Google Scholar] [CrossRef]
- Sharpe, R.M.; Cooper, I. Comparison of the effects on purified Leydig cells of four hormones (oxytocin, vasopressin, opiates and LHRH) with suggested paracrine roles in the testis. J. Endocrinol. 1987, 113, 89–96. [Google Scholar] [CrossRef]
- Einspanier, A.; Jarry, H.; Pitzel, L.; Holtz, W.; Wuttke, W. Determination of secretion rates of estradiol, progesterone, oxytocin, and angiotensin II from tertiary follicles and freshly formed corpora lutea in freely moving sows. Endocrinology 1991, 129, 3403–3409. [Google Scholar] [CrossRef]
- Webley, G.E.; Hearn, J.P. Local production of progesterone by the corpus luteum of the marmoset monkey in response to perfusion with chorionic gonadotrophin and melatonin in vivo. J. Endocrinol. 1987, 112, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Roca, R.A.; Garofalo, E.G.; Piriz, H.; Martino, I.; Rieppi, G. Influence of the estrous cycle on the action of oxytocin on rat ovarian contractility in vivo. Fertil. Steril. 1977, 28, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Semsar, K.; Kandel, F.L.M.; Godwin, J. Manipulations of the AVT System Shift Social Status and Related Courtship and Aggressive Behavior in the Bluehead Wrasse. Horm. Behav. 2001, 40, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Lema, S.C.; Sanders, K.E.; Walti, K.A. Arginine Vasotocin, Isotocin and Nonapeptide Receptor Gene Expression Link to Social Status and Aggression in Sex-Dependent Patterns Neuroendocrinology. J. Neuroendocrinol. 2015, 27, 142–157. [Google Scholar] [CrossRef]
- Sokołowska, E.; Gozdowska, M.; Kulczykowska, E. Nonapeptides Arginine Vasotocin and Isotocin in Fishes: Advantage of Bioactive Molecules Measurement. Front. Mar. Sci. 2020, 7, 610. [Google Scholar] [CrossRef]
- Qian, P.; Kang, J.; Liu, D.; Xie, G. Single Cell Transcriptome Sequencing of Zebrafish Testis Revealed Novel Spermatogenesis Marker Genes and Stronger Leydig-Germ Cell Paracrine Interactions. Front. Genet. 2022, 13, 851719. [Google Scholar] [CrossRef]
- Liu, Y.; Kossack, M.E.; McFaul, M.E.; Christensen, L.N.; Siebert, S.; Wyatt, S.R.; Kamei, C.N.; Horst, S.; Arroyo, N.; Drummond, I.A.; et al. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. Elife 2022, 11, e76014. [Google Scholar] [CrossRef]
- Kinnear, H.M.; Tomaszewski, C.E.; Chang, F.L.; Moravek, M.B.; Xu, M.; Padmanabhan, V.; Shikanov, A. The ovarian stroma as a new frontier. Reproduction 2020, 160, R25–R39. [Google Scholar] [CrossRef]
- Singh, V.; Joy, K.P. Immunocytochemical localization, HPLC characterization, and seasonal dynamics of vasotocin in the brain, blood plasma and gonads of the catfish Heteropneustes fossilis. Gen. Comp. Endocrinol. 2008, 159, 214–225. [Google Scholar] [CrossRef]
- Ferré, A.; Chauvigné, F.; Gozdowska, M.; Kulczykowska, E.; Finn, R.N.; Cerdà, J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front. Endocrinol. 2023, 14, 1222724. [Google Scholar] [CrossRef]
- Joy, K.P.; Singh, V. Functional interactions between vasotocin and prostaglandins during final oocyte maturation and ovulation in the catfish Heteropneustes fossilis. Gen. Comp. Endocrinol. 2013, 186, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Chaube, R.; Joy, K.P. In situ localization of vasotocin receptor gene transcripts in the brain-pituitary-gonadal axis of the catfish Heteropneustes fossilis: A morpho-functional study. Fish Physiol. Biochem. 2019, 45, 885–905. [Google Scholar] [CrossRef] [PubMed]
- Lema, S.C.; Slane, M.A.; Salvesen, K.E.; Godwin, J. Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (Thalassoma bifasciatum). Gen. Comp. Endocrinol. 2012, 179, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, D.; Zhu, J.; Zou, Z.; Xiao, W.; Chen, B.; Yang, H. Effects of Different Oxytocin and Temperature on Reproductive Activity in Nile tilapia (Oreochromis niloticus): Based on Sex Steroid Hormone and GtHR Gene Expression. Fishes 2022, 7, 316. [Google Scholar] [CrossRef]
- Singh, V.; Joy, K.P. Relative in vitro seasonal effects of vasotocin and isotocin on ovarian steroid hormone levels in the catfish Heteropneustes fossilis. Gen. Comp. Endocrinol. 2009, 162, 257–264. [Google Scholar] [CrossRef]
- Rodríguez, M.; Specker, J.L. In vitro effects of arginine vasotocin on testosterone production by testes of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 1991, 83, 249–257. [Google Scholar] [CrossRef]
- Acharjee, A.; Chaube, R.; Joy, K.P. Reproductive stage- and sex-dependant effects of neurohypophyseal nonapeptides on gonadotropin subunit mRNA expression in the catfish Heteropneustes fossilis: An in vitro study. Gen. Comp. Endocrinol. 2018, 260, 80–89. [Google Scholar] [CrossRef]
- Singh, V.; Joy, K.P. An involvement of vasotocin in oocyte hydration in the catfish Heteropneustes fossilis: A comparison with effects of isotocin and hCG. Gen. Comp. Endocrinol. 2010, 166, 504–512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanardini, M.; Habibi, H.R. The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish. Cells 2025, 14, 1061. https://doi.org/10.3390/cells14141061
Zanardini M, Habibi HR. The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish. Cells. 2025; 14(14):1061. https://doi.org/10.3390/cells14141061
Chicago/Turabian StyleZanardini, Maya, and Hamid R. Habibi. 2025. "The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish" Cells 14, no. 14: 1061. https://doi.org/10.3390/cells14141061
APA StyleZanardini, M., & Habibi, H. R. (2025). The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish. Cells, 14(14), 1061. https://doi.org/10.3390/cells14141061