Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma
Abstract
1. Introduction
2. Materials and Methods
3. Standard Treatments
3.1. Surgical Treatment
3.2. Chemotherapy (CT)
4. Novel Therapeutic Approaches
4.1. Molecularly Targeted Treatment Strategies
4.1.1. HER2-Targeted Therapies
4.1.2. Direct KRASG12C Inhibitors
4.1.3. EGFR Inhibitors
4.1.4. Src Pathway
4.1.5. Farnesyltransferase Inhibitors (FTIs)
4.2. Immunotherapy
4.2.1. Checkpoint Inhibitors
4.2.2. Cancer Vaccines
4.2.3. Adoptive T-Cell Therapy: CAR-T Cells
4.2.4. Hormonal Therapy
4.2.5. Synthetic Lethality Strategies
4.2.6. PARP Inhibitors
4.2.7. ATR Inhibitors
4.2.8. Other Synthetic Lethality Strategies
4.2.9. Small Molecule Inhibitors for Wnt/β-Catenin Pathway and Other Deregulated Pathways
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOC | Mucinous Ovarian Carcinoma |
OC | Ovarian Cancer |
SOC | Serous Ovarian Carcinoma |
EOC | Epithelial Ovarian Cancer |
HGSOC | High-Grade Serous Ovarian Cancer |
CCOCs | Clear-Cell Ovarian Cancers |
ROC | Recurrent Ovarian Cancer |
TNBC | Triple-Negative Breast Cancer |
ERs | Estrogen Receptors |
PRs | Progesterone Receptors |
CT | Chemotherapy |
HR | Homologous Recombination |
MMR | Mismatch Repair |
HIPEC | Hyperthermic Intraperitoneal Chemotherapy |
MDR | Multidrug Resistance |
MRP | Multidrug Resistance-Associated Protein |
G6PD | Glucose-6-Phosphate Dehydrogenase |
P-gp | P-Glycoprotein |
ADCs | Antibody–Drug Conjugates |
T-DXd | Trastuzumab Deruxtecan |
NK cells | Natural Killer Cells |
CAR-Ts | Chimeric Antigen Receptor T-Cells |
ACT | Adoptive T-Cell Therapy |
IL-2 | Interleukin-2 |
PARP | Poly-ADP Ribose Polymerase |
NCCN | National Comprehensive Cancer Network |
DNMT | DNA Methyltransferase |
PDXs | Patient-Derived Xenografts |
CDK4/6 | Cyclin-Dependent Kinases 4/6 |
ATR | Ataxia Telangiectasia and Rad3-Related Protein |
ARID1A | AT-Rich Interactive Domain-Containing Protein 1A |
XRCC1 | X-ray Repair Cross Complementing 1 |
PLK1 | Polo-Like Kinase 1 |
TFF1 | Trefoil Factor 1 |
PPA1 | Pyrophosphatase 1 |
EMT | Epithelial–Mesenchymal Transition |
DKK1 | Dickkopf-Related Protein 1 |
TET1 | Ten-Eleven Translocation 1 |
LGR6 | Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 6 |
MARCH1 | Membrane-Associated RING-CH 1 |
References
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286–287, 18–24. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Zaino, R.J.; Brady, M.F.; Lele, S.M.; Michael, H.; Greer, B.; Bookman, M.A. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal: A Gynecologic Oncology Group study. Cancer 2011, 117, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Seidman, J.D.; Kurman, R.J.; Ronnett, B.M. Primary and metastatic mucinous adenocarcinomas in the ovaries: Incidence in routine practice with a new approach to improve intraoperative diagnosis. Am. J. Surg. Pathol. 2003, 27, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Karabuk, E.; Kose, M.F.; Hizli, D.; Taşkin, S.; Karadağ, B.; Turan, T.; Boran, N.; Ozfuttu, A.; Ortaç, U.F. Comparison of advanced stage mucinous epithelial ovarian cancer and serous epithelial ovarian cancer with regard to chemosensitivity and survival outcome: A matched case-control study. J. Gynecol. Oncol. 2013, 24, 160–166. [Google Scholar] [CrossRef]
- Morales-Vásquez, F.; Pedernera, E.; Reynaga-Obregón, J.; López-Basave, H.N.; Gómora, M.J.; Carlón, E.; Cárdenas, S.; Silva-Ayala, R.; Almaraz, M.; Méndez, C. High levels of pretreatment CA125 are associated to improved survival in high grade serous ovarian carcinoma. J. Ovarian Res. 2016, 9, 41. [Google Scholar] [CrossRef]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. Ca125 and ovarian cancer: A comprehensive review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef]
- Tamakoshi, K.; Kikkawa, F.; Shibata, K.; Tomoda, K.; Obata, N.H.; Wakahara, F.; Tokuhashi, Y.; Ishikawa, H.; Kawai, M.; Tomoda, Y. Clinical value of CA125, CA19-9, CEA, CA72-4, and TPA in borderline ovarian tumor. Gynecol. Oncol. 1996, 62, 67–72. [Google Scholar] [CrossRef]
- Ren, A.; Filippou, P.; Soosaipillai, A.; Dimitrakopoulos, L.; Korbakis, D.; Leung, F.; Kulasingam, V.; Bernardini, M.; Diamandis, E. Mucin 13 (MUC13) as a candidate biomarker for ovarian cancer detection: Potential to complement CA125 in detecting non-serous subtypes. Clin. Chem. Lab. Med. 2023, 61, 464–472. [Google Scholar] [CrossRef]
- Firat Cuylan, Z.; Karabuk, E.; Oz, M.; Turan, A.T.; Meydanli, M.M.; Taskin, S.; Sari, M.E.; Sahin, H.; Ulukent, S.C.; Akbayir, O. Comparison of stage III mucinous and serous ovarian cancer: A case-control study. J. Ovarian Res. 2018, 11, 91. [Google Scholar] [CrossRef]
- Alexandre, J.; Ray-Coquard, I.; Selle, F.; Floquet, A.; Cottu, P.; Weber, B.; Falandry, C.; Lebrun, D.; Pujade-Lauraine, E. Mucinous advanced epithelial ovarian carcinoma: Clinical presentation and sensitivity to platinum-paclitaxel-based chemotherapy, the GINECO experience. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2010, 21, 2377–2381. [Google Scholar] [CrossRef]
- Mackenzie, R.; Kommoss, S.; Winterhoff, B.J.; Kipp, B.R.; Garcia, J.J.; Voss, J.; Halling, K.; Karnezis, A.; Senz, J.; Yang, W. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer 2015, 15, 415. [Google Scholar] [CrossRef]
- Rechsteiner, M.; Zimmermann, A.K.; Wild, P.J.; Caduff, R.; von Teichman, A.; Fink, D.; Moch, H.; Noske, A. TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp. Mol. Pathol. 2013, 95, 235–241. [Google Scholar] [CrossRef]
- Anglesio, M.S.; Kommoss, S.; Tolcher, M.C.; Clarke, B.; Galletta, L.; Porter, H.; Damaraju, S.; Fereday, S.; Winterhoff, B.J.; Kalloger, S.E. Molecular characterization of mucinous ovarian tumours supports a stratified treatment approach with HER2 targeting in 19% of carcinomas. J. Pathol. 2013, 229, 111–120. [Google Scholar] [CrossRef]
- Dobrzycka, B.; Terlikowski, S.J.; Kinalski, M.; Kowalczuk, O.; Niklinska, W.; Chyczewski, L. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011, 22, 1133–1140. [Google Scholar] [CrossRef]
- Ratner, E.S.; Keane, F.K.; Lindner, R.; Tassi, R.A.; Paranjape, T.; Glasgow, M.; Nallur, S.; Deng, Y.; Lu, L.; Steele, L. A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene 2012, 31, 4559–4566. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Lee, M.-Y.; Ruan, A.; Chen, C.K.; Liu, H.P.; Wang, C.J.; Chao, W.R.; Han, C.P. Multipoint Kras oncogene mutations potentially indicate mucinous carcinoma on the entire spectrum of mucinous ovarian neoplasms. Oncotarget 2016, 7, 82097–82103. [Google Scholar] [CrossRef]
- Gorringe, K.L.; Cheasley, D.; Wakefield, M.J.; Ryland, G.L.; Allan, P.E.; Alsop, K.; Amarasinghe, K.C.; Ananda, S.; Bowtell, D.D.L.; Christie, M. Therapeutic options for mucinous ovarian carcinoma. Gynecol. Oncol. 2020, 156, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Chay, W.-Y.; Chew, S.-H.; Ong, W.-S.; Busmanis, I.; Li, X.; Thung, S.; Ngo, L.; Lim, S.L.; Lim, Y.K.; Chia, Y.N. HER2 amplification and clinicopathological characteristics in a large Asian cohort of rare mucinous ovarian cancer. PLoS ONE 2013, 8, e61565. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-L.; Lee, M.-Y.; Chao, W.-R.; Han, C.-P. The status of Her2 amplification and Kras mutations in mucinous ovarian carcinoma. Hum. Genom. 2016, 10, 40. [Google Scholar] [CrossRef]
- Ricci, F.; Affatato, R.; Carrassa, L.; Damia, G. Recent Insights into Mucinous Ovarian Carcinoma. Int. J. Mol. Sci. 2018, 19, 1569. [Google Scholar] [CrossRef]
- Witjes, V.M.; van Bommel, M.H.D.; Ligtenberg, M.J.L.; Vos, J.R.; Mourits, M.J.E.; Ausems, M.G.E.M.; de Hullu, J.A.; Bosse, T.; Hoogerbrugge, N. Probability of detecting germline BRCA1/2 pathogenic variants in histological subtypes of ovarian carcinoma. A meta-analysis. Gynecol. Oncol. 2022, 164, 221–230. [Google Scholar] [CrossRef]
- Craig, O.; Lee, S.; Pilcher, C.; Saoud, R.; Abdirahman, S.; Salazar, C.; Williams, N.; Ascher, D.B.; Vary, R.; Luu, J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom. Bioinform. 2024, 6, lqae096. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Kurnit, K.C.; Frumovitz, M. Primary mucinous ovarian cancer: Options for surgery and chemotherapy. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2022, 32, 1455–1462. [Google Scholar] [CrossRef]
- Morice, P.; Gouy, S.; Leary, A. Mucinous Ovarian Carcinoma. N. Engl. J. Med. 2019, 380, 1256–1266. [Google Scholar] [CrossRef]
- Hoogendam, J.P.; Vlek, C.A.; Witteveen, P.O.; Verheijen, R.; Zweemer, R.P. Surgical lymph node assessment in mucinous ovarian carcinoma staging: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 370–378. [Google Scholar] [CrossRef]
- Cheng, A.; Li, M.; Kanis, M.J.; Xu, Y.; Zhang, Q.; Cui, B.; Jiang, J.; Zhang, Y.; Yang, X.; Kong, B. Is it necessary to perform routine appendectomy for mucinous ovarian neoplasms? A retrospective study and meta-analysis. Gynecol. Oncol. 2017, 144, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Garg, R.; Gandhi, G.; Goodman, A. Mucinous Ovarian Malignancy in a Young Woman: A Case Report. J. Nepal Med. Assoc. 2021, 63, 288. [Google Scholar]
- Kim, S.R.; Madariaga, A.; Hogen, L.; Vicus, D.; Covens, A.; Parra-Herran, C.; Lheureux, S.; Gien, L.T. Safety of fertility sparing management in invasive mucinous ovarian carcinoma. Gynecol. Oncol. 2023, 174, 129–132. [Google Scholar] [CrossRef]
- Conley, A.B.B.; Fournier, K.F.; Sood, A.K.; Frumovitz, M. Secondary Cytoreductive Surgery With Hyperthermic Intraperitoneal Chemotherapy for Advanced or Recurrent Mucinous Ovarian Cancer. Obstet. Gynecol. 2023, 141, 1019–1023. [Google Scholar] [CrossRef]
- Richardson, M.T.; Mysona, D.P.; Klein, D.A.; Mann, A.; Liao, C.I.; Diver, E.J.; Darcy, K.M.; Tian, C.; She, J.X.; Ghamande, S. Long term survival outcomes of stage I mucinous ovarian cancer-A clinical calculator predictive of chemotherapy benefit. Gynecol. Oncol. 2020, 159, 118–128. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.-J.; Li, Y.-Y.; Wang, X.; Liu, X.-X.; Mai, J. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). Oncol. Rep. 2022, 47, 82. [Google Scholar] [CrossRef]
- Suzuki, M.; Yagishita, S.; Sugihara, K.; Ogitani, Y.; Nishikawa, T.; Ohuchi, M.; Teishikata, T.; Jikoh, T.; Yatabe, Y.; Yonemori, K. Visualization of Intratumor Pharmacokinetics of [fam-] Trastuzumab Deruxtecan (DS-8201a) in HER2 Heterogeneous Model Using Phosphor-integrated Dots Imaging Analysis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 3970–3979. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Zagouri, F.; Goula, K.; Haidopoulos, D.; Thomakos, N.; Svarna, A.; Dimopoulos, M.A.; Michalis Liontos, M. Real-world evidence of Trastuzumab Deruxtecan (T-DXd) Efficacy in HER2-expressing gynecological malignancies. BMC Cancer 2024, 24, 1503. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Mutlu, L.; McNamara, B.; Bellone, S.; Manavella, D.D.; Demirkiran, C.; Greenman, M.; Verzosa, M.S.Z.; Buza, N.; Hui, P.; Hartwich, T.M.P.; et al. Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, demonstrates in vitro and in vivo antitumor activity against primary and metastatic ovarian tumors overexpressing HER2. Clin. Exp. Metastasis 2024, 41, 765–775. [Google Scholar] [CrossRef]
- Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Altwerger, G.; Masserdotti, A.; Pettinella, F.; Zammataro, L.; Buza, N.; Hui, P.; et al. SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows promising antitumor activity in epithelial ovarian carcinoma with HER2/Neu expression. Gynecol. Oncol. 2017, 146, 179–186. [Google Scholar] [CrossRef]
- Mahdi, H.; Schuster, S.R.; O’Malley, D.M.; McNamara, D.M.; Rangwala, R.A.; Liang, S.Y.; Jain, S.; Nicacio, L.; Chon, H.S. Phase 2 trial of tisotumab vedotin in platinum-resistant ovarian cancer (innovaTV 208). J. Clin. Oncol. 2019, 37. [Google Scholar] [CrossRef]
- Hong, S.D.; Katuwal, N.B.; Kang, M.S.; Ghosh, M.; Park, S.M.; Kim, T.H.; Baek, Y.S.; Lee, S.R.; Moon, Y.W. Trastuzumab-Mediated Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) Enhances Natural Killer Cell Cytotoxicity in HER2-Overexpressing Ovarian Cancer. Int. J. Mol. Sci. 2024, 25, 11733. [Google Scholar] [CrossRef]
- Neil, A.J.; Muto, M.G.; Kolin, D.L.; Konstantinopoulos, P.A. Durable remission in a patient with ERBB2-amplified recurrent mucinous ovarian carcinoma treated with Trastuzumab-Carboplatin-Paclitaxel. Gynecol. Oncol. Rep. 2023, 48, 101237. [Google Scholar] [CrossRef]
- Fang, X.; Mou, H.; Ying, X.; Hou, X.; Wang, L.; Wu, Y.; Yan, N.; Guo, L.; Liao, Q. Case report: Long-term clinical benefit of pyrotinib therapy following trastuzumab resistance in HER2-amplification recurrent mucinous ovarian carcinoma. Front. Oncol. 2022, 12, 1024677. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.J.; Wang, J. P64-4 HER2-directed therapies beyond progression in a patient with recurrent HER2-positive mucinous ovarian carcinoma. Ann. Oncol. 2023, 34, S1464. [Google Scholar] [CrossRef]
- Jain, A.; Ryan, P.D.; Seiden, M.V. Metastatic mucinous ovarian cancer and treatment decisions based on histology and molecular markers rather than the primary location. J. Natl. Compr. Cancer Netw. 2012, 10, 1076–1080. [Google Scholar] [CrossRef]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2022, 29, 875–878. [Google Scholar] [CrossRef]
- Lito, P.; Solomon, M.; Li, L.-S.; Hansen, R.; Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 2016, 351, 604–608. [Google Scholar] [CrossRef]
- Ou, S.H.I.; Jänne, P.A.; Leal, T.A.; Rybkin, I.I.; Sabari, J.K.; Barve, M.A.; Bazhenova, L.; Johnson, M.L.; Velastegui, K.L.; Cilliers, C.; et al. First–in–Human Phase I/IB Dose–Finding Study of Adagrasib (MRTX849) in Patients With Advanced KRAS(G12C) Solid Tumors (KRYSTAL–1). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 2530–2538. [Google Scholar] [CrossRef]
- Perren, T.J. Mucinous epithelial ovarian carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 27, i53–i57. [Google Scholar] [CrossRef] [PubMed]
- Saga, Y.; Sato, N.; Mizukami, H.; Wang, D.; Fujiwara, H.; Takei, Y.; Machida, S.; Ozawa, K.; Suzuki, M. Cetuximab inhibits the growth of mucinous ovarian carcinoma tumor cells lacking KRAS gene mutations. Oncol. Rep. 2012, 27, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Nishimura, M.; Bottsford-Miller, J.N.; Huang, J.; Komurov, K.; Armaiz-Pena, G.N.; Shahzad, M.M.; Stone, R.L.; Roh, J.W.; Sanguino, A.M.; et al. Targeting SRC in mucinous ovarian carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 5367–5378. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, W.; Dalton, H.J.; Choi, H.J.; Huang, J.; Kang, Y.; Pradeep, S.; Miyake, T.; Song, J.H.; Wen, Y.; et al. Targeting SRC and tubulin in mucinous ovarian carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 6532–6543. [Google Scholar] [CrossRef]
- Klochkov, S.G.; Neganova, M.E.; Yarla, N.S.; Parvathaneni, M.; Sharma, B.; Tarasov, V.V.; Barreto, G.; Bachurin, S.O.; Ashraf, G.M.; Aliev, G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin. Cancer Biol. 2019, 56, 128–134. [Google Scholar] [CrossRef]
- Odeniyide, P.; Yohe, M.E.; Pollard, K.; Vaseva, A.V.; Calizo, A.; Zhang, L.; Rodriguez, F.J.; Gross, J.M.; Allen, A.N.; Wan, X.; et al. Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma. Oncogene 2022, 41, 2973–2983. [Google Scholar] [CrossRef]
- Moise, I.M.; Bîcu, E.; Farce, A.; Dubois, J.; Ghinet, A. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorganic Chem. 2020, 103, 104184. [Google Scholar] [CrossRef]
- Meier, W.; du Bois, A.; Rau, J.; Gropp-Meier, M.; Baumann, K.; Huober, J.; Wollschlaeger, K.; Kreienberg, R.; Canzler, U.; Schmalfeldt, B.; et al. Randomized phase II trial of carboplatin and paclitaxel with or without lonafarnib in first-line treatment of epithelial ovarian cancer stage IIB-IV. Gynecol. Oncol. 2012, 126, 236–240. [Google Scholar] [CrossRef]
- Nugawela, D.; Gorringe, K.L. Targeted therapy for mucinous ovarian carcinoma: Evidence from clinical trials. Int. J. Gynecol. Cancer 2022, 33, 102–108. [Google Scholar] [CrossRef]
- Meagher, N.S.; Hamilton, P.; Milne, K.; Thornton, S.; Harris, B.; Weir, A.; Alsop, J.; Bisinoto, C.; Brenton, J.D.; Brooks-Wilson, A.; et al. Profiling the immune landscape in mucinous ovarian carcinoma. Gynecol. Oncol. 2023, 168, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Aleem, A.; Shah, H. Atezolizumab. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Moore, K.N.; Bookman, M.; Sehouli, J.; Miller, A.; Anderson, C.; Scambia, G.; Myers, T.; Taskiran, C.; Robison, K.; Mäenpää, J.; et al. Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage III or IV Ovarian Cancer: Placebo-Controlled Randomized Phase III Trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 1842–1855. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Shapira-Frommer, R.; Santin, A.D.; Lisyanskaya, A.S.; Pignata, S.; Vergote, I.; Raspagliesi, F.; Sonke, G.S.; Birrer, M.; Provencher, D.M.; et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the phase II KEYNOTE-100 study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yan, L.; Wang, Q. Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: A single-arm meta-analysis. J. Ovarian Res. 2021, 14, 112. [Google Scholar] [CrossRef]
- Yamashita, H.; Nakayama, K.; Ishikawa, M.; Ishibashi, T.; Nakamura, K.; Sawada, K.; Yoshimura, Y.; Tatsumi, N.; Kurose, S.; Minamoto, T.; et al. Relationship between Microsatellite Instability, Immune Cells Infiltration, and Expression of Immune Checkpoint Molecules in Ovarian Carcinoma: Immunotherapeutic Strategies for the Future. Int. J. Mol. Sci. 2019, 20, 5129. [Google Scholar] [CrossRef]
- Liu, H.; Dilger, J.P. Different strategies for cancer treatment: Targeting cancer cells or their neighbors? Chin. J. Cancer Res. 2025, 37, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Wainberg, Z.A.; Weekes, C.D.; Furqan, M.; Kasi, P.M.; Devoe, C.E.; Leal, A.D.; Chung, V.; Basturk, O.; VanWyk, H.; et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: The phase 1 AMPLIFY-201 trial. Nat. Med. 2024, 30, 531–542. [Google Scholar] [CrossRef]
- Aalipour, S.; Zoghi, S.; Khalili, N.; Hirbod-Mobarakeh, A.; A Emens, L.; Rezaei, N. Specific immunotherapy in ovarian cancer: A systematic review. Immunotherapy 2016, 8, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Hou, Q.; Fang, F.; Wang, H. The antibody-based CA125-targeted maintenance therapy for the epithelial ovarian cancer: A meta-analysis. Eur. J. Gynaecol. Oncol. 2016, 37, 455–460. [Google Scholar]
- Battaglia, A.; Fossati, M.; Buzzonetti, A.; Scambia, G.; Fattorossi, A. A robust immune system conditions the response to abagovomab (anti-idiotypic monoclonal antibody mimicking the CA125 protein) vaccination in ovarian cancer patients. Immunol. Lett. 2017, 191, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Dijkgraaf, E.M.; Santegoets, S.J.A.M.; Reyners, A.K.L.; Goedemans, R.; Nijman, H.W.; van Poelgeest, M.I.; van Erkel, A.R.; Smit, V.T.; Daemen, T.A.; van der Hoeven, J.J.; et al. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 2015, 6, 32228–32243. [Google Scholar] [CrossRef] [PubMed]
- Pasqui, D.M.; Latorraca, C.D.O.C.; Pacheco, R.L.; Riera, R. CAR-T cell therapy for patients with hematological malignancies. A systematic review. Eur. J. Haematol. 2022, 109, 601–618. [Google Scholar] [CrossRef]
- Son, J.; George, G.C.; Nardo, M.; Krause, K.J.; Jazaeri, A.A.; Biter, A.B.; Hong, D.S. Adoptive cell therapy in gynecologic cancers: A systematic review and meta-analysis. Gynecol. Oncol. 2022, 165, 664–670. [Google Scholar] [CrossRef]
- Shen, F.; Zhang, X.; Zhang, Y.; Ding, J.; Chen, Q. Hormone receptors expression in ovarian cancer taking into account menopausal status: A retrospective study in Chinese population. Oncotarget 2017, 8, 84019–84027. [Google Scholar] [CrossRef]
- Ajani, M.A.; Salami, A.; Awolude, O.A.; Oluwasola, A.O. Hormone-receptor expression status of epithelial ovarian cancer in Ibadan, South-western Nigeria. Pan Afr. Med. J. 2017, 27, 259. [Google Scholar] [CrossRef]
- Gómora, M.J.; Morales-Vásquez, F.; Pedernera, E.; Perez-Montiel, D.; López-Basave, H.; Villa, A.R.; Hernández-Martínez, A.; Mena, E.; Mendez, C. Sexual steroid hormone receptors profiles of ovarian carcinoma in Mexican women. Endocr. Connect. 2018, 7, 1006–1012. [Google Scholar] [CrossRef]
- Vang, R.; Gown, A.M.; Barry, T.S.; Wheeler, D.T.; Ronnett, B.M. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: An analysis of 124 cases. Mod. Pathol. 2006, 19, 97–105. [Google Scholar] [CrossRef]
- Smyth, J.F.; Gourley, C.; Walker, G.; MacKean, M.J.; Stevenson, A.; Williams, A.R.; Nafussi, A.A.; Rye, T.; Rye, R.; Stewart, M.; et al. Antiestrogen therapy is active in selected ovarian cancer cases: The use of letrozole in estrogen receptor–positive patients. Clin. Cancer Res. 2007, 13, 3617–3622. [Google Scholar] [CrossRef]
- Iglehart, J.D.; Silver, D.P. Synthetic Lethality—A New Direction in Cancer-Drug Development. N. Engl. J. Med. 2009, 361, 189–191. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef]
- Li, S.; Topatana, W.; Juengpanich, S.; Cao, J.; Hu, J.; Zhang, B.; Ma, D.; Cai, X.; Chen, M. Development of synthetic lethality in cancer: Molecular and cellular classification. Sig. Transduct. Target. Ther. 2020, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Setton, J.; Zinda, M.; Riaz, N.; Durocher, D.; Zimmermann, M.; Koehler, M.; Reis-Filho, J.S.; Powell, S.N. Synthetic Lethality in Cancer Therapeutics: The Next Generation. Cancer Discov. 2021, 11, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Coward, J.I.; Middleton, K.; Murphy, F. New perspectives on targeted therapy in ovarian cancer. Int. J. Womens Health 2015, 7, 189–203. [Google Scholar] [CrossRef]
- Costa-Cabral, S.; Brough, R.; Konde, A.; Aarts, M.; Campbell, J.; Marinari, E.; Riffell, J.; Bardelli, A.; Torrance, C.; Lord, C.J. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours. PLoS ONE 2016, 11, e0149099. [Google Scholar] [CrossRef]
- Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Chen, L.M.; Cristea, M.; DeRosa, M.; Eisenhauer, E.L.; et al. Ovarian Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 191–226. [Google Scholar] [CrossRef]
- Miller, R.E.; El-Shakankery, K.H.; Lee, J.-Y. PARP inhibitors in ovarian cancer: Overcoming resistance with combination strategies. J. Gynecol. Oncol. 2022, 33, e44. [Google Scholar] [CrossRef]
- Stojanovic, L. DNA Methyltransferase Inhibitors in Combination with PARP inhibitors Generate Synthetic Lethality in BRCA-proficient Ovarian Cancer. Master’s Thesis, University of Maryland Baltimore, Baltimore, MD, USA, 2018. Available online: http://hdl.handle.net/10713/8032.
- Huntoon, C.J.; Flatten, K.S.; Hendrickson, A.E.W.; Huehls, A.M.; Sutor, S.L.; Kaufmann, S.H.; Karnitz, L.M. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res. 2013, 73, 3683–3691. [Google Scholar] [CrossRef]
- Kim, H.; Xu, H.; George, E.; Hallberg, D.; Kumar, S.; Jagannathan, V.; Medvedev, S.; Kinose, Y.; Devins, K.; Verma, P.; et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 2020, 11, 3726. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Feng, Y.; Li, J.; Deng, T.; Yin, A.; Yan, L.; Zheng, M.; Xiong, Y.; Li, J.; Huang, Y.; et al. A novel combination of niraparib and anlotinib in platinum-resistant ovarian cancer: Efficacy and safety results from the phase II, multi-center ANNIE study. eClinicalMedicine 2022, 54, 101767. [Google Scholar] [CrossRef]
- Jovanović, L.; Janković, R.; Ćirković, A.; Jović, M.; Janjić, T.; Djuričić, S.; Milenković, S. PD-L1 Expression in Different Segments and Histological Types of Ovarian Cancer According to Lymphocytic Infiltrate. Med. Kaunas. Lith. 2021, 57, 1309. [Google Scholar] [CrossRef]
- Xue, C.; Xu, Y.; Ye, W.; Xie, Q.; Gao, H.; Xu, B.; Zhang, D.; Jiang, J. Expression of PD-L1 in ovarian cancer and its synergistic antitumor effect with PARP inhibitor. Gynecol. Oncol. 2020, 157, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Konstantinopoulos, P.A.; Waggoner, S.; Vidal, G.A.; Mita, M.; Moroney, J.W.; Holloway, R.; Van Le, L.; Sachdev, J.C.; Chapman-Davis, E.; Colon-Otero, G.; et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma. JAMA Oncol. 2019, 5, 1141–1149. [Google Scholar] [CrossRef]
- Brandt, S.; Samartzis, E.P.; Zimmermann, A.-K.; Fink, D.; Moch, H.; Noske, A.; Dedes, K.J. Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer 2017, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Liu, C.; Tao, Z.; Wang, M.; Jia, Y.; Sang, X.; Shen, L.; Xue, Y.; Jiang, K.; Luo, F.; et al. MYC status as a determinant of synergistic response to Olaparib and Palbociclib in ovarian cancer. eBioMedicine 2019, 43, 225–237. [Google Scholar] [CrossRef]
- Chen, C.H.; Shen, J.; Lee, W.J.; Chow, S.N. Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2005, 15, 878–883. [Google Scholar] [CrossRef]
- Krajewska, M.; Fehrmann, R.S.N.; Schoonen, P.M.; Labib, S.; de Vries, E.G.; Franke, L.; van Vugt, M.A. ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 2015, 34, 3474–3481. [Google Scholar] [CrossRef]
- Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 2016, 7, 13837. [Google Scholar] [CrossRef]
- Sultana, R.; Abdel-Fatah, T.; Perry, C.; Moseley, P.; Albarakti, N.; Mohan, V.; Seedhouse, C.; Chan, S.; Madhusudan, S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS ONE 2013, 8, e57098. [Google Scholar] [CrossRef] [PubMed]
- Petrella, S.; Colombo, M.; Marabese, M.; Grasselli, C.; Panfili, A.; Craparotta, I.; Barbera, M.B.; Cassanmagnago, G.A.; Bolis, M.; Damia, G. The identification of new therapeutic targets in mucinous ovarian carcinoma. Cancer Res. 2024, 84, 4685. [Google Scholar] [CrossRef]
- Affatato, R.; Carrassa, L.; Chilà, R.; Lupi, M.; Restelli, V.; Damia, G. Identification of PLK1 as a New Therapeutic Target in Mucinous Ovarian Carcinoma. Cancers 2020, 12, 672. [Google Scholar] [CrossRef]
- Xiao, X. Investigation of the Impact of HNPCC Gene Deficiency on Outcome in Epithelial Ovarian Cancer. Master’s Thesis, The University of Edinburgh, Edinburgh, UK, 2015. Available online: http://hdl.handle.net/1842/19546.
- Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; et al. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 730–738. [Google Scholar] [CrossRef]
- Spreafico, A.; Oza, A.M.; Clarke, B.A.; Mackay, H.J.; Shaw, P.; Butler, M.; Dhani, N.C.; Lheureux, S.; Wilson, M.K.; Welch, S.; et al. Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecol. Oncol. 2017, 144, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Inaba, K.; Oda, K.; Aoki, K.; Sone, K.; Ikeda, Y.; Miyasaka, A.; Kashiyama, T.; Fukuda, T.; Makii, C.; Arimoto, T.; et al. Synergistic antitumor effects of combination PI3K/mTOR and MEK inhibition (SAR245409 and pimasertib) in mucinous ovarian carcinoma cells by fluorescence resonance energy transfer imaging. Oncotarget 2016, 7, 29577–29591. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ma, Y.; Huang, X. Trefoil factor 1 elevates the malignant phenotype of mucinous ovarian cancer cell through Wnt/β-catenin signaling. Int. J. Clin. Exp. Pathol. 2015, 8, 10412–10419. [Google Scholar] [PubMed]
- Niu, H.; Zhou, W.; Xu, Y.; Yin, Z.; Shen, W.; Ye, Z.; Liu, Y.; Chen, Y.; Yang, S.; Xiang, R.; et al. Silencing PPA1 inhibits human epithelial ovarian cancer metastasis by suppressing the Wnt/β-catenin signaling pathway. Oncotarget 2017, 8, 76266–76278. [Google Scholar] [CrossRef] [PubMed]
- Niiro, E.; Morioka, S.; Iwai, K.; Yamada, Y.; Ogawa, K.; Kawahara, N.; Kobayashi, H. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. Biomed. Rep. 2018, 8, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Betella, I.; Turbitt, W.J.; Szul, T.; Wu, B.; Martinez, A.; Katre, A.; Wall, J.A.; Norian, L.; Birrer, M.J.; Arend, R. Wnt signaling modulator DKK1 as an immunotherapeutic target in ovarian cancer. Gynecol. Oncol. 2020, 157, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yan, Z.; Chen, W.; Wu, Y.; Han, J.; Guo, H.; Qiao, J. TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol. Oncol. 2017, 147, 408–417. [Google Scholar] [CrossRef]
- Ruan, X.; Liu, A.; Zhong, M.; Wei, J.; Zhang, W.; Rong, Y.; Liu, W.; Li, M.; Qing, X.; Chen, G.; et al. Silencing LGR6 Attenuates Stemness and Chemoresistance via Inhibiting Wnt/β-Catenin Signaling in Ovarian Cancer. Mol. Ther. Oncol. 2019, 14, 94–106. [Google Scholar] [CrossRef]
- Meng, Y.; Hu, J.; Chen, Y.; Yu, T.; Hu, L. Silencing MARCH1 suppresses proliferation, migration and invasion of ovarian cancer SKOV3 cells via downregulation of NF-κB and Wnt/β-catenin pathways. Oncol. Rep. 2016, 36, 2463–2470. [Google Scholar] [CrossRef]
- Joshi, R.M.; Telang, B.; Soni, G.; Khalife, A. Overview of perspectives on cancer, newer therapies, and future directions. Endosc. Ultrasound 2024, 10, 105–109. [Google Scholar]
- Wang, R.; Duan, X.; Li, J.; Zhang, C.; Shen, L. Emerging Strategies of Cell and Gene Therapy Targeting Tumor Immune Microenvironment. Clin. Cancer Res. 2025, 31, 2294–2308. [Google Scholar] [CrossRef]
Therapeutic Strategy | Mechanism/Targets | Therapies/Agents | Clinical Evidence/Trials | Remarks and Limitations |
---|---|---|---|---|
Standard therapies | ||||
Surgery | Cytoreduction | Debulking surgery, fertility-sparing surgery | Established clinical practice (e.g., NCT05123807) | Critical for staging; controversial role of lymphadenectomy and appendectomy. |
Chemotherapy | DNA damage | Platinum (cisplatin) + Taxanes (paclitaxel) | Standard practice; resistance is common | Frequent multidrug resistance (MDR) due to P-gp, MRP, and low BRCA mutation rate |
Targeted therapies | ||||
HER2-targeted therapies | HER2 overexpression | Trastuzumab deruxtecan, trastuzumab emtansine, pyrotinib | Clinical trials ongoing; promising initial results in HER2+ cases (NCT04482309, NCT04639219) | Particularly effective for HER2-overexpressing tumors; resistance may develop. |
KRASG12C inhibitors | KRAS mutations | Adagrasib, ARS853 | Early clinical trials (e.g., KRYSTAL-10); no specific trials yet for MOC | Promising in KRASG12C mutant cancers; further MOC studies needed. |
Src pathway inhibitors | Src kinase activity | Dasatinib (+oxaliplatin) | Preclinical studies | High activity observed; limited clinical evidence |
EGFR inhibitors | EGFR signaling | Cetuximab | Limited in vivo studies | Mixed results; further clinical validation required. |
Immunotherapy | ||||
Checkpoint inhibitors | PD-L1 expression | Pembrolizumab, Atezolizumab | Modest clinical response; limited benefit in MOC | Best results in combination therapy due to immunosuppressive environment. |
Cancer vaccines | KRAS-specific immunity | mKRAS vaccine, oregovomab, abagovomab | Limited clinical efficacy; early trials promising in related cancers | Vaccine development promising due to high KRAS mutation rates. |
Adoptive T-cell therapy (ACT) | Antigen-specific immune response | CAR-T cells | Limited ovarian cancer data; promising results with lymphodepletion | General evidence encouraging; requires MOC-specific antigens. |
Hormonal Therapy | ER/PR receptor expression | Letrozole | Limited applicability due to low ER/PR expression | Rarely effective due to infrequent hormone receptor positivity in MOC. |
Synthetic Lethality Strategies | ||||
PARP inhibitor combinations | DNA repair pathways | PARP inhibitors (niraparib, olaparib) + DNMT, ATR inhibitors, CDK4/6 inhibitors, anti-PD-1 antibodies | Preclinical studies; clinical trials required | Monotherapy is limited due to HR proficiency; combinations are promising. |
ATR inhibitors | HR deficiency | ATR inhibitors | Synthetic lethality in ARID1A/XRCC1 mutations | Potential for specific genetic profiles in MOC. |
PLK1 inhibitors | Cell cycle regulation | Onvansertib, Volasertib | Synthetic lethality with MMR deficiency; preclinical studies encouraging | Effective in MMR-deficient subgroups; clinical evidence needed |
MEK inhibitors | KRAS/NRAS pathway | Trametinib, Pimasertib | Effective in combination with PI3K/mTOR inhibitors in preclinical studies | Encouraging results; applicable in KRAS-mutant MOC. |
Wnt/β-catenin inhibitors | Pathway deregulation | Targeting TFF1, PPA1, DKK1, LGR6, MARCH1; modulating TET1 | Preclinical evidence; significant association with chemoresistance | Potentially valuable in overcoming resistance, but further clinical validation is required. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przywara, G.; Biegańska, O.; Biczak, E.; Białoń, A.; Fidorowicz, D.; Dankowska, A.; Łapińska, Z.; Kulbacka, J. Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma. Cells 2025, 14, 1232. https://doi.org/10.3390/cells14161232
Przywara G, Biegańska O, Biczak E, Białoń A, Fidorowicz D, Dankowska A, Łapińska Z, Kulbacka J. Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma. Cells. 2025; 14(16):1232. https://doi.org/10.3390/cells14161232
Chicago/Turabian StylePrzywara, Grzegorz, Oliwia Biegańska, Emilia Biczak, Aleksander Białoń, Dominik Fidorowicz, Alicja Dankowska, Zofia Łapińska, and Julita Kulbacka. 2025. "Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma" Cells 14, no. 16: 1232. https://doi.org/10.3390/cells14161232
APA StylePrzywara, G., Biegańska, O., Biczak, E., Białoń, A., Fidorowicz, D., Dankowska, A., Łapińska, Z., & Kulbacka, J. (2025). Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma. Cells, 14(16), 1232. https://doi.org/10.3390/cells14161232