Pseudouridine Synthase 7 in Cancer: Functions, Mechanisms, and Therapeutic Potential
Abstract
1. Introduction
1.1. Importance of Post-Transcriptional RNA Modifications in Gene Regulation
1.2. Pseudouridine: The Most Abundant RNA Modification, Catalyzed by Pseudouridine Synthases
1.3. The Pseudouridine Synthase Family: Spotlight on PUS7
1.4. PUS7 as a Disease-Linked RNA Modifier: Basis for Focus
2. PUS7 Biology
2.1. Gene and Protein Structure
2.2. Substrate Specificity and Activity
2.2.1. Known RNA Substrates
2.2.2. Mechanisms of Site-Specific Pseudouridylation
2.3. Regulation of PUS7 Expression and Activity
3. Functional Role of PUS7 in Cancer Cell Biology
3.1. Cell Proliferation and Survival
3.2. Cell Cycle and Apoptosis
3.3. Invasion and Metastasis
3.4. Stress Response and Chemoresistance
3.5. The Impact of PUS7 on Signaling Pathways
3.6. The Contribution of PUS7 to Tumor Development in Animal Models
4. PUS7 as a Therapeutic Target
4.1. Current Inhibitors or Approaches Targeting PUS7
4.2. Therapeutic Potential and Challenges
4.3. Strategic Integration of Combination Therapies
4.4. Delivery Considerations for Targeting RNA-Modifying Enzymes
5. Future Directions
5.1. What Regulates PUS7 Activity and Localization?
5.2. Unidentified RNA Targets in Disease Contexts
5.3. Role of PUS7 in RNA Epitranscriptomics and Cellular Plasticity
5.4. Unraveling the Overlapping Functions of PUS in RNA Biology
5.5. Importance of in Vivo Models and Clinical Validation
5.6. Ψ as a Potential Biomarker
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; He, C. Dynamic RNA Modifications in Posttranscriptional Regulation. Mol. Cell 2014, 56, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science 2018, 361, 1346–1349. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, I.; Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 2020, 20, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Engel, M.; Eggert, C.; Kaplick, P.M.; Eder, M.; Röh, S.; Tietze, L.; Namendorf, C.; Arloth, J.; Weber, P.; Rex-Haffner, M.; et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron 2018, 99, 389–403.e9. [Google Scholar] [CrossRef]
- Meyer, K.D.; Jaffrey, S.R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 2014, 15, 313–326. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [Google Scholar] [CrossRef]
- Delaunay, S.; Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 2019, 21, 552–559. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2013, 505, 117–120. [Google Scholar] [CrossRef]
- Meyer, K.D.; Patil, D.P.; Zhou, J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian, S.-B.; Jaffrey, S.R. 5′ UTR m6A Promotes Cap-Independent Translation. Cell 2015, 163, 999–1010. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Weng, Y.-L.; Lu, Z.; Liu, Y.; Lu, Z.; Li, J.; Hao, P.; Zhang, Y.; Zhang, F.; et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 2018, 563, 249–253. [Google Scholar] [CrossRef]
- Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 2016, 7, 12626. [Google Scholar] [CrossRef]
- Karijolich, J.; Yu, Y.-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 2011, 474, 395–398. [Google Scholar] [CrossRef]
- Charette, M.; Gray, M.W. Pseudouridine in RNA: What, Where, How, and Why. IUBMB Life 2000, 49, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Ofenganda, J.; Bakin, A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 1997, 266, 246–268. [Google Scholar] [CrossRef]
- Rintala-Dempsey, A.C.; Kothe, U. Eukaryotic stand-alone pseudouridine synthases—RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 2017, 14, 1185–1196. [Google Scholar] [CrossRef]
- Ding, J.; Bansal, M.; Cao, Y.; Ye, B.; Mao, R.; Gupta, A.; Sudarshan, S.; Ding, H.-F. MYC Drives mRNA Pseudouridylation to Mitigate Proliferation-Induced Cellular Stress during Cancer Development. Cancer Res. 2024, 84, 4031–4048. [Google Scholar] [CrossRef]
- Zhang, M.; Song, J.; Yuan, W.; Zhang, W.; Sun, Z. Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Front. Immunol. 2021, 12, 641507. [Google Scholar] [CrossRef]
- Fustin, J.-M.; Doi, M.; Yamaguchi, Y.; Hida, H.; Nishimura, S.; Yoshida, M.; Isagawa, T.; Morioka, M.S.; Kakeya, H.; Manabe, I.; et al. RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock. Cell 2013, 155, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Gu, X.; Nurzat, Y.; Xu, L.; Li, X.; Wu, L.; Jiao, H.; Gao, P.; Zhu, X.; Yan, D.; et al. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol. Cancer 2024, 23, 178. [Google Scholar] [CrossRef]
- Yang, Q.; Al-Hendy, A. The Functional Role and Regulatory Mechanism of FTO m6A RNA Demethylase in Human Uterine Leiomyosarcoma. Int. J. Mol. Sci. 2023, 24, 7957. [Google Scholar] [CrossRef] [PubMed]
- PerezGrovas-Saltijeral, A.; Stones, J.; Orji, O.C.; Shaker, H.; Knight, H.M. Modification of the RNA methylome in neurodevelopmental disorders. Curr. Opin. Genet. Dev. 2025, 92, 102330. [Google Scholar] [CrossRef]
- Yan, S.; Wen, W.; Mo, Z.; Gu, S.; Chen, Z. Epitranscriptomic Role of m6A in Obesity-Associated Disorders and Cancer Metabolic Reprogramming. Genes 2025, 16, 498. [Google Scholar] [CrossRef]
- Carlile, T.M.; Rojas-Duran, M.F.; Zinshteyn, B.; Shin, H.; Bartoli, K.M.; Gilbert, W.V. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014, 515, 143–146. [Google Scholar] [CrossRef]
- Borchardt, E.K.; Martinez, N.M.; Gilbert, W.V. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu. Rev. Genet. 2020, 54, 309–336. [Google Scholar] [CrossRef]
- Stockert, J.A.; Gupta, A.; Herzog, B.; Yadav, S.S.; Tewari, A.K.; Yadav, K.K. Predictive value of pseudouridine in prostate cancer. Am. J. Clin. Exp. Urol. 2019, 7, 262–272. [Google Scholar]
- Ge, J.; Yu, Y.-T. RNA pseudouridylation: New insights into an old modification. Trends Biochem. Sci. 2013, 38, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, P.; Ma, S.; Song, J.; Bai, J.; Sun, F.; Yi, C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 2015, 11, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kong, L.; Cheng, J.; Al Moussawi, K.; Chen, X.; Iqbal, A.; Wing, P.A.C.; Harris, J.M.; Tsukuda, S.; Embarc-Buh, A.; et al. Absolute quantitative and base-resolution sequencing reveals comprehensive landscape of pseudouridine across the human transcriptome. Nat. Methods 2024, 21, 2024–2033. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Stone, Y.; Glatt, S. Mechanistic insight into the pseudouridylation of RNA. RNA Biol. 2025, 22, 1–25. [Google Scholar] [CrossRef]
- Luo, N.; Huang, Q.; Zhang, M.; Yi, C. Functions and therapeutic applications of pseudouridylation. Nat. Rev. Mol. Cell Biol. 2025, 26, 691–705. [Google Scholar] [CrossRef]
- Suzuki, T.; Yashiro, Y.; Kikuchi, I.; Ishigami, Y.; Saito, H.; Matsuzawa, I.; Okada, S.; Mito, M.; Iwasaki, S.; Ma, D.; et al. Complete chemical structures of human mitochondrial tRNAs. Nat. Commun. 2020, 11, 4269. [Google Scholar] [CrossRef]
- Shaheen, R.; Han, L.; Faqeih, E.; Ewida, N.; Alobeid, E.; Phizicky, E.M.; Alkuraya, F.S. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum. Genet. 2016, 135, 707–713. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Kleemann, L.; Jeżowski, J.; Dobosz, D.; Rawski, M.; Indyka, P.; Ważny, G.; Mehta, R.; Chramiec-Głąbik, A.; Koziej, Ł.; et al. The molecular basis of tRNA selectivity by human pseudouridine synthase. Mol. Cell 2024, 84, 2472–2489.e8. [Google Scholar] [CrossRef]
- Shaheen, R.; Tasak, M.; Maddirevula, S.; Abdel-Salam, G.M.H.; Sayed, I.S.M.; Alazami, A.M.; Al-Sheddi, T.; Alobeid, E.; Phizicky, E.M.; Alkuraya, F.S. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum. Genet. 2019, 138, 231–239. [Google Scholar] [CrossRef]
- Jin, Z.; Song, M.; Wang, J.; Zhu, W.; Sun, D.; Liu, H.; Shi, G. Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma. Front. Genet. 2022, 13, 944681. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Deogharia, M.; Gupta, R. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. RNA 2020, 27, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Antonicka, H.; Choquet, K.; Lin, Z.Y.; Gingras, A.-C.; Kleinman, C.L.; Shoubridge, E.A. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 2017, 18, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Cerneckis, J.; Cui, Q.; He, C.; Yi, C.; Shi, Y. Decoding pseudouridine: An emerging target for therapeutic development. Trends Pharmacol. Sci. 2022, 43, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Nir, R.; Hoernes, T.P.; Muramatsu, H.; Faserl, K.; Karikó, K.; Erlacher, M.D.; Sas-Chen, A.; Schwartz, S. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res. 2022, 50, 4900–4916. [Google Scholar] [CrossRef]
- Li, Z.; Han, Q.; Shao, Y.; Huang, S.-B.; Wang, R.; Rong, X.-Z.; Wang, S.; Liu, Y. RPUSD1 enhances the expression of eIF4E through RluA catalytic domain, activates PI3K/AKT signaling pathway, and promotes the cell proliferation and invasion in non-small cell lung cancer. Int. J. Biol. Macromol. 2025, 306, 141410. [Google Scholar] [CrossRef]
- Spedaliere, C.J.; Mueller, E.G. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine. RNA 2004, 10, 192–199. [Google Scholar] [CrossRef]
- Wright, J.R.; Keffer-Wilkes, L.C.; Dobing, S.R.; Kothe, U. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis. RNA 2011, 17, 2074–2084. [Google Scholar] [CrossRef]
- Ofengand, J.; Malhotra, A.; Remme, J.; Gutgsell, N.; DEL Campo, M.; Jean-Charles, S.; Peil, L.; Kaya, Y. Pseudouridines and Pseudouridine Synthases of the Ribosome. Cold Spring Harb. Symp. Quant. Biol. 2001, 66, 147–160. [Google Scholar] [CrossRef]
- Hoang, C.; Ferré-D’AMaré, A.R. Cocrystal Structure of a tRNA Ψ55 Pseudouridine Synthase. Cell 2001, 107, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Hamma, T.; Ferré-D’AMaré, A.R. Pseudouridine Synthases. Chem. Biol. 2006, 13, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Penzo, M.; Guerrieri, A.N.; Zacchini, F.; Treré, D.; Montanaro, L. RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes 2017, 8, 301. [Google Scholar] [CrossRef]
- Zhao, X.; Patton, J.R.; Davis, S.L.; Florence, B.; Ames, S.J.; Spanjaard, R.A. Regulation of Nuclear Receptor Activity by a Pseudouridine Synthase through Posttranscriptional Modification of Steroid Receptor RNA Activator. Mol. Cell 2004, 15, 549–558. [Google Scholar] [CrossRef]
- Anantharaman, V.; Koonin, E.V.; Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002, 30, 1427–1464. [Google Scholar] [CrossRef] [PubMed]
- Behm-Ansmant, I.; Urban, A.; Ma, X.; Yu, Y.-T.; Motorin, Y.; Branlant, C. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite–multisubstrate RNA:Ψ-synthase also acting on tRNAs. RNA 2003, 9, 1371–1382. [Google Scholar] [CrossRef]
- Schwartz, S.; Bernstein, D.A.; Mumbach, M.R.; Jovanovic, M.; Herbst, R.H.; León-Ricardo, B.X.; Engreitz, J.M.; Guttman, M.; Satija, R.; Lander, E.S.; et al. Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell 2014, 159, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Yin, K.; Zhang, X.; Ye, P.; Chen, X.; Chao, J.; Meng, H.; Wei, J.; Roeth, D.; Li, L.; et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2021, 2, 932–949. [Google Scholar] [CrossRef]
- Guzzi, N.; Cieśla, M.; Ngoc, P.C.T.; Lang, S.; Arora, S.; Dimitriou, M.; Pimková, K.; Sommarin, M.N.; Munita, R.; Lubas, M.; et al. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell 2018, 173, 1204–1216.e26. [Google Scholar] [CrossRef]
- Guegueniat, J.; Halabelian, L.; Zeng, H.; Dong, A.; Li, Y.; Wu, H.; Arrowsmith, C.H.; Kothe, U. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res. 2021, 49, 11810–11822. [Google Scholar] [CrossRef]
- Martinez, N.M.; Su, A.; Burns, M.C.; Nussbacher, J.K.; Schaening, C.; Sathe, S.; Yeo, G.W.; Gilbert, W.V. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 2022, 82, 645–659.e9. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Zhang, L.-S.; Sun, H.-L.; Pajdzik, K.; Yang, L.; Ye, C.; Ju, C.-W.; Liu, S.; Wang, Y.; Zheng, Z.; et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 2022, 41, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jin, H.; Cui, Y.; Yang, F.; Chen, K.; Kuang, W.; Huo, C.; Xu, Z.; Li, Y.; Lin, A.; et al. PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. Clin. Transl. Med. 2024, 14, e1811. [Google Scholar] [CrossRef]
- Bansal, M.; Kundu, A.; Gupta, A.; Ding, J.; Gibson, A.; RudraRaju, S.V.; Sudarshan, S.; Ding, H.-F. Integrative analysis of nanopore direct RNA sequencing data reveals a role of PUS7-dependent pseudouridylation in regulation of m6 A and m5 C modifications. bioRxiv 2024. [Google Scholar] [CrossRef]
- Purchal, M.K.; Eyler, D.E.; Tardu, M.; Franco, M.K.; Korn, M.M.; Khan, T.; McNassor, R.; Giles, R.; Lev, K.; Sharma, H.; et al. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc. Natl. Acad. Sci. USA 2022, 119, e2109708119. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, Q.; Zhang, Y.; Zhong, J. PUS7 promotes the progression of pancreatic cancer by interacting ANLN to activate MYC pathway. Mol. Cell Biochem. 2025, 480, 4401–4415. [Google Scholar] [CrossRef]
- Zhang, Q.; Fei, S.; Zhao, Y.; Liu, S.; Wu, X.; Lu, L.; Chen, W. PUS7 promotes the proliferation of colorectal cancer cells by directly stabilizing SIRT1 to activate the Wnt/β-catenin pathway. Mol. Carcinog. 2022, 62, 160–173. [Google Scholar] [CrossRef]
- Song, D.; Guo, M.; Xu, S.; Song, X.; Bai, B.; Li, Z.; Chen, J.; An, Y.; Nie, Y.; Wu, K.; et al. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. J. Exp. Clin. Cancer Res. 2021, 40, 170. [Google Scholar] [CrossRef]
- Du, J.; Gong, A.; Zhao, X.; Wang, G. Pseudouridylate Synthase 7 Promotes Cell Proliferation and Invasion in Colon Cancer Through Activating PI3K/AKT/mTOR Signaling Pathway. Dig. Dis. Sci. 2021, 67, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Mohl, D.A.; Lagies, S.; Zodel, K.; Zumkeller, M.; Peighambari, A.; Ganner, A.; Plattner, D.A.; Neumann-Haefelin, E.; Adlesic, M.; Frew, I.J.; et al. Integrated Metabolomic and Transcriptomic Analysis of Modified Nucleosides for Biomarker Discovery in Clear Cell Renal Cell Carcinoma. Cells 2023, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, Q.; Chen, L. Integration of Bulk and Single-Cell RNA Sequencing to Identify RNA Modifications-Related Prognostic Signature in Ovarian Cancer. Int. J. Gen. Med. 2025, 18, 2629–2647. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, T.; Hohmann, U.; Dehghani, F.; Grisk, O.; Jasinski-Bergner, S. Identification and Characterization of the RNA Modifying Factors PUS7 and WTAP as Key Components for the Control of Tumor Biological Processes in Renal Cell Carcinomas. Curr. Issues Mol. Biol. 2025, 47, 266. [Google Scholar] [CrossRef]
- Li, D.; Wu, L.; Qi, L.; Yu, Q. Pseudouridine synthase 7 (PUS7) affects the prognosis and immune modulation of patients with bladder cancer. Asian, J. Surg. 2024, 48, 2787–2789. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Pu, W.; Zeng, Z.; Xu, N.; Luo, X.; Tang, D.; Dai, Y. Dysregulation of pseudouridylation in small RNAs contributes to papillary thyroid carcinoma metastasis. Cancer Cell Int. 2024, 24, 337. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, Y.; Tan, Y.; Chen, B.; Shan, S.; Zhang, G.; Lu, J. Higher expression of pseudouridine synthase 7 promotes non-small cell lung cancer progression and suggests a poor prognosis. J. Cardiothorac. Surg. 2023, 18, 222. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Han, Y.; Zhang, F.; Wang, Y.; Han, Y.; Wang, Y.; Wang, Q.; Guo, X. The Identification of RNA Modification Gene PUS7 as a Potential Biomarker of Ovarian Cancer. Biology. 2021, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, G.; Hartmuth, K.; Lührmann, R. Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 2004, 10, 1925–1933. [Google Scholar] [CrossRef]
- van der Feltz, C.; Hoskins, A.A. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 443–465. [Google Scholar] [CrossRef]
- Yu, Y.; Shu, M.; Steitz, J.A. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 1998, 17, 5783–5795. [Google Scholar] [CrossRef]
- Karijolich, J.; Yi, C.; Yu, Y.-T. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 2015, 16, 581–585. [Google Scholar] [CrossRef]
- Song, J.; Dong, L.; Sun, H.; Luo, N.; Huang, Q.; Li, K.; Shen, X.; Jiang, Z.; Lv, Z.; Peng, L.; et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 2022, 83, 139–155.e9. [Google Scholar] [CrossRef]
- Adachi, H.; Pan, Y.; He, X.; Chen, J.L.; Klein, B.; Platenburg, G.; Morais, P.; Boutz, P.; Yu, Y.-T. Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes. Mol. Cell 2023, 83, 637–651.e9. [Google Scholar] [CrossRef]
- Song, B.; Tang, Y.; Wei, Z.; Liu, G.; Su, J.; Meng, J.; Chen, K. PIANO: A Web Server for Pseudouridine-Site (Ψ) Identification and Functional Annotation. Front. Genet. 2020, 11, 88. [Google Scholar] [CrossRef]
- Lovejoy, A.F.; Riordan, D.P.; Brown, P.O.; Preiss, T. Transcriptome-Wide Mapping of Pseudouridines: Pseudouridine Synthases Modify Specific mRNAs in S. cerevisiae. PLoS ONE 2014, 9, e110799. [Google Scholar] [CrossRef] [PubMed]
- Fanari, O.; Meseonznik, M.; Bloch, D.; Rouhanifard, S.H. Protocol for differential analysis of pseudouridine modifications using nanopore DRS and unmodified transcriptome control. STAR Protoc. 2025, 6, 103948. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.A.; Akeson, S.; Tavakoli, S.; Bloch, D.; Klink, I.N.; Jain, M.; Rouhanifard, S.H. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis. Gigabyte 2024, 2024, gigabyte129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Ye, C.; Ju, C.-W.; Gao, B.; Feng, X.; Sun, H.-L.; Wei, J.; Yang, F.; Dai, Q.; He, C. BID-seq for transcriptome-wide quantitative sequencing of mRNA pseudouridine at base resolution. Nat. Protoc. 2023, 19, 517–538. [Google Scholar] [CrossRef]
- Zhang, L.-S.; Dai, Q.; He, C. Base-Resolution Sequencing Methods for Whole-Transcriptome Quantification of mRNA Modifications. Acc. Chem. Res. 2023, 57, 47–58. [Google Scholar] [CrossRef]
- Zhang, L.-S.; Dai, Q.; He, C. Quantitative base-resolution sequencing technology for mapping pseudouridines in mammalian mRNA. Methods Enzymol. 2023, 692, 23–38. [Google Scholar] [CrossRef]
- Muda, A.; Malerba, L.; Giordano, L.; Fazzi, E.; Accorsi, P. A PUS7 gene pathogenic variant causing self-injurious behavior, sleep disturbances, and developmental delay: A case report. Am. J. Med. Genet. Part A 2023, 191, 1953–1958. [Google Scholar] [CrossRef]
- Dong, B.; Wang, B.; Fan, M.; Zhang, J.; Zhao, Z. Comprehensive analysis to identify PUS7 as a prognostic biomarker from pan-cancer analysis to osteosarcoma validation. Aging 2024, 16, 9188–9203. [Google Scholar] [CrossRef] [PubMed]
- Dave, N.; Guaita-Esteruelas, S.; Gutarra, S.; Frias, À.; Beltran, M.; Peiró, S.; de Herreros, A.G. Functional Cooperation between Snail1 and Twist in the Regulation of ZEB1 Expression during Epithelial to Mesenchymal Transition. J. Biol. Chem. 2011, 286, 12024–12032. [Google Scholar] [CrossRef]
- Ichikawa, M.K.; Endo, K.; Itoh, Y.; Osada, A.H.; Kimura, Y.; Ueki, K.; Yoshizawa, K.; Miyazawa, K.; Saitoh, M. Ets family proteins regulate the EMT transcription factors Snail and ZEB in cancer cells. FEBS Open Bio. 2022, 12, 1353–1364. [Google Scholar] [CrossRef]
- de Brouwer, A.P.; Jamra, R.A.; Körtel, N.; Soyris, C.; Polla, D.L.; Safra, M.; Zisso, A.; Powell, C.A.; Rebelo-Guiomar, P.; Dinges, N.; et al. Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior. Am. J. Hum. Genet. 2018, 103, 1045–1052. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Z.; Huang, H.; Yu, Y.; Rao, B.; Kuang, X.; Zeng, J.; Zhao, E.; Chen, Y.; Lu, J.; et al. ZFHX2-AS1 interacts with DKC1 to regulate ARHGAP5 pseudouridylation and suppress ovarian cancer progression. Cell. Signal. 2024, 124, 111441. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Q.; Chen, X.; Bao, H.; Wu, W.; Shen, F.; Lu, B.; Jiang, R.; Zong, Z.; Zhao, Y. SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. J. Cell. Mol. Med. 2022, 26, 5150–5164. [Google Scholar] [CrossRef]
- Dulong, S.; Huang, Q.; Innominato, P.F.; Karaboue, A.; Bouchahda, M.; Pruvost, A.; Théodoro, F.; Agrofoglio, L.A.; Adam, R.; Finkenstädt, B.; et al. Circadian and chemotherapy-related changes in urinary modified nucleosides excretion in patients with metastatic colorectal cancer. Sci. Rep. 2021, 11, 24015. [Google Scholar] [CrossRef]
- Tamura, S.; Fujioka, H.; Nakano, T.; Hada, T.; Higashino, K. Serum pseudouridine as a biochemical marker in small-cell lung-cancer. Cancer Res. 1987, 47, 6138–6141. [Google Scholar]
- Lu, J.Y.; Lai, R.S.; Liang, L.L.; Wang, H.C.; I Lin, T. Evaluation of urinary pseudouridine as a tumor marker in lung cancer. J. Formos. Med. Assoc. 1994, 93, 25–29. [Google Scholar]
- Tamura, S.; Fujioka, H.; Nakano, T.; Amuro, Y.; Hada, T.; Nakao, N.; Higashino, K. Urinary pseudouridine as a biochemical marker in the diagnosis and monitoring of primary hepatocellular-carcinoma. Am. J. Gastroenterol. 1988, 83, 841–845. [Google Scholar]
- Tormey, D.C.; Waalkes, T.P.; Gehrke, C.W. Biological markers in breast carcinoma—Clinical correlations with pseudouridine, n2,N2-dimethylguanosine, and 1-methylinosine. J. Surg. Oncol. 1980, 14, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zeleznik, O.A.; Eliassen, A.H.; Kraft, P.; Poole, E.M.; Rosner, B.A.; Jeanfavre, S.; Deik, A.A.; Bullock, K.; Hitchcock, D.S.; Avila-Pacheco, J.; et al. A Prospective Analysis of Circulating Plasma Metabolites Associated with Ovarian Cancer Risk. Cancer Res. 2020, 80, 1357–1367. [Google Scholar] [CrossRef]
- Rasmuson, T.; Björk, G.R. Pseudouridine: A prognostic marker in non-Hodgkin’s lymphomas. Cancer Detect. Prev. 1985, 8, 287–290. [Google Scholar] [PubMed]
- Levine, L.; Waalkes, T.P.; Stolbach, L. Brief Communication: Serum Levels of N2, N2-Dimethylguanosine and Pseudouridine as Determined by Radioimmunoassay for Patients with Malignancy. JNCI J. Natl. Cancer Inst. 1975, 54, 341–343. [Google Scholar] [CrossRef]
- He, R.; Qiao, J.; Wang, X.; Chen, W.; Yin, T. A new quantitative method for pseudouridine and uridine in human serum and its clinical application in acute myeloid leukemia. J. Pharm. Biomed. Anal. 2022, 219, 114934. [Google Scholar] [CrossRef] [PubMed]
- Addepalli, B.; Limbach, P.A. Mass Spectrometry-Based Quantification of Pseudouridine in RNA. J. Am. Soc. Mass Spectrom. 2011, 22, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Amalric, A.; Bastide, A.; Attina, A.; Choquet, A.; Vialaret, J.; Lehmann, S.; David, A.; Hirtz, C. Quantifying RNA modifications by mass spectrometry: A novel source of biomarkers in oncology. Crit. Rev. Clin. Lab. Sci. 2021, 59, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, T.P.; Dinsmere, S.R.; Mrochek, J.E. Urinary Excretion by Cancer Patients of the Nucleosides N2,N2-Dimethylguanosine, 1-Methylinosine, and Pseudouridine 2. JNCI J. Natl. Cancer Inst. 1973, 51, 271–274. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Known RNA Targets | Cellular Localization | Regulatory Conditions | Associated Functions | Ref. |
---|---|---|---|---|---|
PUS1 | tRNA, snRNA, mRNA | Nucleus, Mitochondria | Stress response, metabolic cues | Mitochondrial translation, RNA stability, splicing regulation | [4,26,30,31,32,33] |
PUS3 | tRNA (anticodon stem–loop) | Nucleus, Cytoplasm | Developmental regulation, neuronal contexts | Essential for tRNA modification; mutations linked to intellectual disability and neurodevelopmental disorders | [31,34,35] |
PUS7 | tRNA, snRNA, mRNA | Nucleus, Cytoplasm | Nutrient availability, stress signals | Translational control, stem cell differentiation, stress adaptation, splicing regulation, neurodevelopmental disorder | [30,31,32,36] |
PUS7L | mRNA | Nucleus | Not well characterized | RNA pseudouridylation in transcripts | [37] |
PUSL1 | Mitochondrial tRNA | Mitochondria | Oxidative stress, mitochondrial function | Regulation of mitochondrial translation and RNA modification | [26,37] |
PUS10 | tRNA (Ψ at position 54, 55), snRNA | Cytoplasm, Nucleus, and Mitochondria | Apoptotic signals, immune activation | Apoptosis regulation, innate immune function | [26,31] |
TRUB1 | tRNA (Ψ55), mRNA | Nucleus, Cytoplasm | Growth conditions, differentiation cues | Translation fidelity, RNA structural stability | [26,30,38] |
TRUB2 | tRNA (mitochondrial), mRNA | Mitochondria | Mitochondrial stress, oxidative stress | Mitochondrial translation, respiratory function | [26,32,39] |
DKC1 | rRNA (28S, 18S), snRNA (H/ACA snoRNP-associated) | Nucleolus, Cajal bodies | Cell cycle, telomere maintenance | Ribosome biogenesis, telomerase RNA stabilization, splicing regulation, DKC-1 mutation related diseases | [26,31,40,41] |
RPUSD1 | rRNAs (mitochondrial), mRNA | Mitochondria, Cytoplasm | Energy demand and metabolic regulation | Maintains mitochondrial ribosome function and respiratory capacity, stabilize elF4E mRNA via its RluA domain | [42] |
RPUSD2 | rRNA, mRNA | Nucleolus, Mitochondria | Developmental regulation | Ribosome assembly, mitochondrial gene expression | [26,31] |
RPUSD3 | rRNAs, mRNA (mitochondrial) | Mitochondria | OXPHOS regulation | Contributes to mitochondrial ribosome biogenesis and translation | [26,31,32,39] |
RPUSD4 | rRNAs (mitochondrial) | Mitochondria, Nucleus | Metabolic stress, hypoxia | Ensures proper mitochondrial ribosome assembly and function, splicing regulation | [26,31,32] |
Aspect | Description | Biological Context (Cancer/Model) | Ref. |
---|---|---|---|
Functional Role | |||
Pseudouridylation of tRNAs | Modifies specific uridines to stabilize tRNA structure and maintain translation fidelity | General cellular function; disrupted in cancer | [53,54,55] |
Pseudouridylation of mRNAs | Modifies specific uridines on mRNA | Dynamic modification affects pre-mRNA splicing efficiency, mRNA stability, translation efficiency, and stress response | [56,57,58,59] |
Regulation of translational reprogramming and efficiency | Influences selective translation of stress- and proliferation-related transcripts | Promote cancer progress across multiple cancer types | [18,53,54,58] |
Regulatory Role | |||
Expression regulation | Transcriptionally upregulated in proliferative, metastasis, and stress contexts | Pre-mRNA splicing, RNA stability, Translation | [52,59] |
Impact on stem cell maintenance | Supports pluripotency via modulation of translation | Developmental biology, cancer stem cells, self-renewal | [53,54] |
Subcellular localization | Shuttles between nucleus and cytoplasm for substrate access | Cellular stress that triggers cytoplasmic relocation | [60] |
Interaction with cofactors | Bind with cofactors, such as SIRT1, HSP90, and ANLN | Modulation of substrate specificity and the functions of downstream regulatory effectors | [61,62,63] |
Response to environmental stimuli | Alter the PUS7-mediated Ψ modifications | Modulation of transcript stability of stress-response genes to promote stress adaption | [18,52] |
Pathways | Wnt/β-catenin, PI3K/AKT/mTOR, IFN pathway, MYCN/MYC | Promoting cancer progression in NB, PC, GSC, and CRC | [18,53,61,62,64] |
Cellular processes | Cell proliferation, glycolysis, invasion, apoptosis | Promoting cancer progression across multiple cancer types | [18,53,61,62] |
Therapeutic implications | |||
Target for small-molecule inhibition | Preclinical PUS7 inhibitors | Suppressing cancer cell proliferation in NB and GBM cell-based models as well as in a GBM xenograft model | [18,53] |
Biomarker potential | The amount of secreted Ψ correlates with upregulation of PUS members, including PUS7 | Predictive and diagnosis value | [65] |
Diseases | Human Sample Types | Up/Down | Main Approaches | Contexts | Time | Ref. |
---|---|---|---|---|---|---|
Pancreatic cancer | PC tissues and cells | Increase in PC | Cellular, molecular, and animal model | Accelerates proliferation, motility, and glycolysis, and inhibits apoptosis through interaction with ANLN; promotes PC progression by activating the MYC pathway | 2025 Jul | [61] |
Ovarian cancer | OC tissues | Increase in OC | Transcriptome and qPCR | Prognostic signature | 2025 May | [66] |
Renal cell carcinoma | RCC tumors | Increase in RCC | TCGA, GEO, and GENT2 databases and bioinformatic analysis | Correlated with proliferation, prognosis markers, and overall survival | 2025 Apr | [67] |
Bladder cancer | BC tissues | Increased in BC | TCGA database and bioinformatic analysis | Poor survival outcome, positively correlated with Th2 infiltration, negatively associated with pDC and NK cell infiltration | 2025 Apr | [68] |
Neuroblastoma | NB tissue and cells | Increased in NB tissues and MYCN-overexpressed NB cells | Functional assays, xenograft model, ChIP-qPCR, microarray, proteomics, Nanopore direct RNA-seq, amino acid deprivation, | PUS7 is regulated by MYCN and is involved in NB proliferation, tumorigenicity, amino acid biosynthesis and transport, and is associated with poor prognosis in NB; the PUS7 inhibitor suppresses tumor growth | 2024 Dec | [18,59] |
Lymphoma | Burkitt Lymphoma cell line | Increased in lymphoma cell line | Burkitt lymphoma model cell line with Inducible MYC expression | MYC upregulates PUS7 | 2024 Dec | [18] |
Papillary thyroid carcinoma | Metastatic and non-metastatic PTC | Decreased in PTC | Small RNA Ψ modification microarray (TCGA, GEO database), qPCR | miR-8082, tumor progression and metastasis | 2024 Oct | [69] |
Cervical carcinoma | HeLa cells | ND | PUS7 KO, BACS | Ψ changes in tRNA and mRNA | 2024 Sep | [30] |
Gastric cancer | GC tissues | Decreased in GC tissues | Ψ detection assay, polysome profiling assays, xenograft model | Inhibits gastric cancer (GC) cell proliferation and tumor growth, and enhances the translation efficiency of ALKBH3 through pseudouridylation | 2024 Aug | [58] |
Non-small cell lung cancer | NSCLC tissues and cell lines | Increased in NSCLC tissues and cell lines | qPCR, immunoblot, CCK8, migration and invasion assay, flow cytometry, IHC | Promotes NSCLC cell proliferation, migration, and invasion; associated with poor prognosis | 2023 Jul | [70] |
Clear cell renal cell carcinoma | VPR ccRCC cell lines | Increased in murine ccRCC model | VPR: murine model with the tubule-specific deletion of Vhl, Trp53, and Rb1, LC-MS, RNA-seq | Higher expression and more Ψ nucleosides excreted in VPR cells | 2023 Apr | [65] |
Cervical carcinoma | HeLa cells | ND | PUS7 KD, BID-seq | Identifies PUS7-mediated pseudouridine sites on mRNA | 2023 Mar | [57] |
Colorectal cancer | CRC tissues and cells | Increased in CRC tissues and cell lines | IHC, CCK-8 assay, KD experiments, Co-IP, xenograft | Promotes cell proliferation by interacting with SIRT1 and activating the Wnt/β-catenin signaling pathway | 2023 Feb | [62] |
Hepatocellular carcinoma | HCC tissues and cell lines | Increased in HCC tissues | Bioinformatic analysis of GSCA, q-PCR | Upregulation of PUS7 associated with poor survival | 2022 Nov | [37] |
Colon cancer | CC tissue and cell line | Increased in CC tissue and cell lines | Cell proliferation and invasion assays, Functional assays of PUS7 KD and overexpression | Promotes proliferation and invasion and suppresses apoptosis of colon cancer cells by activating the PI3K/AKT/mTOR signaling pathway; associated with poor survival rates. | 2022 Apr | [64] |
Ovarian cancer | OC tissues | Increased in OC tissues | Bioinformatics analysis from TCGA and GEO, IHC staining and tissue array | Potential diagnostic marker and therapeutic target | 2021 Nov | [71] |
Glioblastoma | GBM and GSC | Increased in GBM | GBM GlioVis portal analysis, IHC, cellular function assays, GSC transplantation and inhibitor treatment, LC-MS, Small RNA DM-Ψ-seq, transcriptome-wide Ψ sequencing | Regulates GSC growth, self-renewal, tRNA pseudouridylation, and translation; the PUS7 inhibitor suppresses tumor growth | 2021 Sep | [53] |
Colorectal cancer | CRC tissues and cells | Increased in CRC | Functional assay of PUS7 KD, migration and invasion assays, in vivo metastatic model, Co-IP RNA-seq and proteome profiling | Promotes CRC cell metastasis in vitro and in vivo; activation of the HSP90/PUS7/LASP1 axis is associated with poor prognosis | 2021 May | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Boyer, T.G.; Al-Hendy, A. Pseudouridine Synthase 7 in Cancer: Functions, Mechanisms, and Therapeutic Potential. Cells 2025, 14, 1380. https://doi.org/10.3390/cells14171380
Yang Q, Boyer TG, Al-Hendy A. Pseudouridine Synthase 7 in Cancer: Functions, Mechanisms, and Therapeutic Potential. Cells. 2025; 14(17):1380. https://doi.org/10.3390/cells14171380
Chicago/Turabian StyleYang, Qiwei, Thomas G. Boyer, and Ayman Al-Hendy. 2025. "Pseudouridine Synthase 7 in Cancer: Functions, Mechanisms, and Therapeutic Potential" Cells 14, no. 17: 1380. https://doi.org/10.3390/cells14171380
APA StyleYang, Q., Boyer, T. G., & Al-Hendy, A. (2025). Pseudouridine Synthase 7 in Cancer: Functions, Mechanisms, and Therapeutic Potential. Cells, 14(17), 1380. https://doi.org/10.3390/cells14171380