Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvest, Sample Fixation, and Storage
2.2. Plate Tests
2.3. Flow Cytometry Analysis
2.4. 16S rRNA Gene Amplicon Sequencing
2.5. Statistics
3. Results
3.1. Agar-Plate Tests
3.2. FCM Analysis
3.3. 16S rRNA Gene Amplicon Sequencing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vu, C.H.T.; Lee, H.G.; Chang, Y.K.; Oh, H.M. Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnol. Adv. 2018, 36, 380–396. [Google Scholar] [CrossRef] [PubMed]
- Doppler, P.; Kriechbaum, R.; Singer, B.; Spadiut, O. Make microalgal cultures axenic again–a fast and simple workflow utilizing fluorescence-activated cell sorting. J. Microbiol. Methods 2021, 186, 106256. [Google Scholar] [CrossRef] [PubMed]
- Pinevich, A.V.; Andronov, E.E.; Pershina, E.V.; Pinevich, A.A.; Dmitrieva, H.Y. Testing culture purity in prokaryotes: Criteria and challenges. Antonie Leeuwenhoek 2018, 111, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Zhang, L.; Li, X.; He, Z.; Zhou, C.; Han, J. Screening of antibiotics to obtain axenic cell cultures of a marine microalga Chrysotila roscoffensis. Front. Bioeng. Biotechnol. 2023, 11, 1218031. [Google Scholar] [CrossRef]
- Grossart, H.P.; Simon, M. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 2007, 47, 163–176. [Google Scholar] [CrossRef]
- Nowruzi, B.; Shishir, M.A.; Porzani, S.J.; Ferdous, U.T. Exploring the Interactions Between Algae and Bacteria. Mini Rev. Med. Chem. 2022, 22, 2596–2607. [Google Scholar] [CrossRef]
- Correa, M.A.; Matusovsky, B.; Brackney, D.E.; Steven, B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat. Commun. 2018, 9, 4464. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Q.; Wang, D.; Wong, A.C.N.; Wang, G.-H. Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol. 2023, 31, 858–871. [Google Scholar] [CrossRef]
- Day, J.G.; Gong, Y.; Hu, Q. Microzooplanktonic grazers—A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017, 27, 356–365. [Google Scholar] [CrossRef]
- Zhang, A.; Wen, X.; Wang, K.; Huo, Y.; Geng, Y.; Ding, Y.; Li, Y. Using surfactants for controlling rotifer contamination in mass cultivation of Chlorella pyrenoidosa. Algal Res. 2021, 53, 102166. [Google Scholar] [CrossRef]
- Pokorny, L.; Hausmann, B.; Pjevac, P.; Schagerl, M. How to Verify Non-Presence—The Challenge of Axenic Algae Cultivation. Cells 2022, 11, 2594. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.-H.; Chan, P.-L.; Tam, N.F.-Y.; Xu, S.J.-L.; Lee, F.W.-F. Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Sci. Rep. 2021, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, J.W.; Skerman, V.B.D. Production of Axenic Cultures of Soil-borne and Endophytic Blue-green Algae. Microbiology 1968, 54, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, A.G.; Smith, R.V. The isolation and growth of axenic cultures of planktonic blue—Green algae. Br. Phycol. J. 1984, 19, 157–162. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Choi, J.-S.; Kong, I.-S.; Park, S.-I.; Kerr, R.G.; Hong, Y.-K. A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures. J. Appl. Phycol. 2002, 14, 385–390. [Google Scholar] [CrossRef]
- Fuchs, T.; Arnold, N.D.; Garbe, D.; Deimel, S.; Lorenzen, J.; Masri, M.; Mehlmer, N.; Weuster-Botz, D.; Brück, T.B. A Newly Designed Automatically Controlled, Sterilizable Flat Panel Photobioreactor for Axenic Algae Culture. Front. Bioeng. Biotechnol. 2021, 9, 697354. [Google Scholar] [CrossRef]
- Asatryan, A.; Gunasekaran, M.; Boussiba, S.; Zarka, A. Establishing and validating axenic cultures of the microalga Haematococcus lacustris (Chlorophyceae). Appl. Phycol. 2022, 3, 82–97. [Google Scholar] [CrossRef]
- Vázquez-Martínez, G.; Rodriguez, M.H.; Hernández-Hernández, F.; Ibarra, J.E. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. J. Microbiol. Methods 2004, 57, 115–121. [Google Scholar] [CrossRef]
- Sena, L.; Rojas, D.; Montiel, E.; González, H.; Moret, J.; Naranjo, L. A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World J. Microbiol. Biotechnol. 2011, 27, 1045–1053. [Google Scholar] [CrossRef]
- Choi, G.G.; Bae, M.S.; Ahn, C.Y.; Oh, H.M. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett. 2008, 30, 87–92. [Google Scholar] [CrossRef]
- Dextro, R.B.; Andreote, A.P.D.; Vaz, M.G.M.V.; Carvalho, C.R.; Fiore, M.F. The pros and cons of axenic cultures in cyanobacterial research. Algal Res. 2024, 78, 103415. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef]
- Komárek, J.; Kaštovský, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Kaggwa, M.N.; Burian, A.; Oduor, S.O.; Schagerl, M. Ecomorphological variability of Arthrospira fusiformis (Cyanoprokaryota) in African soda lakes. Microbiologyopen 2013, 2, 881–891. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zhao, Y. Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): From linear to helical. J. Phycol. 2005, 41, 622–628. [Google Scholar] [CrossRef]
- Schagerl, M. Soda Lakes of East Africa, 1st ed.; Springer International: Cham, Switzerland, 2016; ISBN 978-3-319-28620-4. [Google Scholar]
- Zarrouk, C. Contribution a I’etude d’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques et la Photosynthese de Spirulina Maxima. Ph.D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Apprill, A.; Mcnally, S.; Parsons, R.; Weber, L. Minor Revision to V4 Region SSU RRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every Base Matters: Assessing Small Subunit RRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Pjevac, P.; Hausmann, B.; Schwarz, J.; Kohl, G.; Herbold, C.W.; Loy, A.; Berry, D. An Economical and Flexible Dual Barcoding, Two-Step PCR Approach for Highly Multiplexed Amplicon Sequencing. Front. Microbiol. 2021, 12, 669776. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Sankaran, K.; Fukuyama, J.A.; McMurdie, P.J.; Holmes, S.P. Bioconductor Workflow for Microbiome Data Analysis: From Raw Reads to Community Analyses. F1000Res. 2016, 5, 1492. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Staley, J.T.; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39, 321–346. [Google Scholar] [CrossRef]
- Milford, A.D.; Achenbach, L.A.; Jung, D.O.; Madigan, M.T. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch. Microbiol. 2000, 174, 18–27. [Google Scholar] [CrossRef]
- Krienitz, L.; Schagerl, M. Tiny and Tough: Microphytes of East African Soda Lakes. In Soda Lakes of East Africa; Schagerl, M., Ed.; Springer International: Cham, Switzerland, 2016; pp. 149–177. ISBN 978-3-319-28620-4. [Google Scholar]
- Sarethy, I.P.; Saxena, Y.; Kapoor, A.; Sharma, M.; Sharma, S.K.; Gupta, V.; Gupta, S. Alkaliphilic bacteria: Applications in industrial biotechnology. J. Ind. Microbiol. Biotechnol. 2011, 38, 769. [Google Scholar] [CrossRef]
- Borkar, S. Alkaliphilic Bacteria: Diversity, Physiology and Industrial Applications. In Bioprospects of Coastal Eubacteria: Ecosystems of Goa; Borkar, S., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 59–83. [Google Scholar]
- Littlechild, J.A. Enzymes from Extreme Environments and their Industrial Applications. Front. Bioeng. Biotechnol. 2015, 3, 161. [Google Scholar] [CrossRef]
- Khalikova, E.; Somersalo, S.; Korpela, T. Metabolites Produced by Alkaliphiles with Potential Biotechnological Applications. In Alkaliphiles in Biotechnology; Mamo, G., Mattiasson, B., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–193. [Google Scholar]
- Remmas, N.; Melidis, P.; Voltsi, C.; Athanasiou, D.; Ntougias, S. Novel hydrolytic extremely halotolerant alkaliphiles from mature landfill leachate with key involvement in maturation process. J. Environ. Sci. Health Part A 2017, 52, 64–73. [Google Scholar] [CrossRef]
- Azpiazu-Muniozguren, M.; García, M.; Laorden, L.; Martinez-Malaxetxebarria, I.; Seoane, S.; Bikandi, J.; Garaizar, J.; Martínez-Ballesteros, I. Anianabacter salinae gen. nov., sp. nov. ASV31T, a Facultative Alkaliphilic and Extremely Halotolerant Bacterium Isolated from Brine of a Millennial Continental Saltern. Diversity 2022, 14, 1009. [Google Scholar] [CrossRef]
- Brown, M.R.; Hands, C.L.; Coello-Garcia, T.; Sani, B.S.; Ott, A.I.G.; Smith, S.J.; Davenport, R.J. A flow cytometry method for bacterial quantification and biomass estimates in activated sludge. J. Microbiol. Methods 2019, 160, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sensen, C.W.; Heimann, K.; Mekonian, M. The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Eur. J. Phycol. 2007, 28, 93–97. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chen, W.; Shen, H.; Han, D.; Li, Y.; Jones, H.D.T.; Timlin, J.A.; Hu, Q. Basic Culturing and Analytical Measurement Techniques. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 37–68. ISBN 9781118567166. [Google Scholar]
- Guillard, R.L. Purification Methods for Microalgae. In Algal Culturing Techniques, 1st ed.; Andersen, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2004; pp. 117–132. ISBN 9780080456508. [Google Scholar]
- Whitelam, G.C.; Lanaras, T.; Codd, G.A. Rapid separation of microalgae by density gradient centrifugation in Percoll. Br. J. Psychol. 1983, 18, 23–28. [Google Scholar] [CrossRef]
- Rippka, R. [1] Isolation and purification of cyanobacteria. In Cyanobacteria; Packer, L., Glazer, A.N., Eds.; Academic Press: Cambridge, MA, USA, 1988; pp. 3–27. ISBN 0121820688. [Google Scholar]
- Li, R.; Tun, H.M.; Jahan, M.; Zhang, Z.; Kumar, A.; Fernando, W.G.D.; Farenhorst, A.; Khafipour, E. Comparison of DNA-, PMA-, and RNA-Based 16S rRNA Illumina Sequencing for Detection of Live Bacteria in Water. Sci. Rep. 2017, 7, 5752. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tong, Y.W. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 2014, 26, 1483–1492. [Google Scholar] [CrossRef]
- Lian, J.; Wijffels, R.H.; Smidt, H.; Sipkema, D. The effect of the algal microbiome on industrial production of microalgae. Microb. Biotechnol. 2018, 11, 806–818. [Google Scholar] [CrossRef]
- Santos, C.A.; Reis, A. Microalgal symbiosis in biotechnology. Appl. Microbiol. Biotechnol. 2014, 98, 5839–5846. [Google Scholar] [CrossRef]
- Ramanan, R.; Byung-Hyuk, K.; Dae-Hyun, C.; Hee-Mock, O.; Hee-Sik, K. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef]
- Azam, F.; Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 2007, 5, 782–791. [Google Scholar] [CrossRef]
- Mayali, X. Editorial: Metabolic Interactions Between Bacteria and Phytoplankton. Front. Microbiol. 2018, 9, 727. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Lyu, S.; An, Y.; Lu, J.; Gjermansen, C.; Schramm, A. Microalgae–bacteria symbiosis in microalgal growth and biofuel production: A review. J. Appl. Microbiol. 2019, 126, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Mamo, G.; Mattiasson, B. Alkaliphiles: The Versatile Tools in Biotechnology. In Alkaliphiles in Biotechnology; Mamo, G., Mattiasson, B., Eds.; Springer International: Cham, Switzerland, 2020; Volume 172, pp. 1–51. ISBN 978-3-030-49736-1. [Google Scholar]
- Haines, M.; Khot, V.; Strous, M. The Vigor, Futility, and Application of Microbial Element Cycles in Alkaline Soda Lakes. Elements 2023, 19, 30–36. [Google Scholar] [CrossRef]
- Uma, G.; Babu, M.M.; Prakash, V.S.G.; Nisha, S.J.; Citarasu, T. Nature and bioprospecting of haloalkaliphilics: A review. World J. Microbiol. Biotechnol. 2020, 36, 66. [Google Scholar] [CrossRef] [PubMed]
Standard Treatment (ST) | ST + Ultrasonication | ST + Chloramphenicol |
---|---|---|
Washing on filter | Washing on filter | Washing on filter |
pH 12 for 72 h Antibiotics for 48 h
| pH 12 for 72 h Ultrasonication Antibiotics for 48 h
| pH 12 for 72 h Antibiotics for 48 h
|
LB | R2A | Zarrouk | |
---|---|---|---|
C | - | White lawn + red lawn after 1 week | A lot of white colonies + red lawn after some time |
ST | - | White colonies after some weeks | Few white colonies, grew after some time |
ST + CHL | - | After some weeks “paw-shaped” colonies | Few white colonies, grew after some time + big red colonies after 2 weeks |
ST + U | - | After some weeks “paw-shaped” colonies + big red and round colonies | Few white colonies, grew after some time + big red colonies after 2 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schagerl, M.; Kaptejna, A.; Polz, F.; Ali, S.S.; Huo, S.; Seneca, J.; Pjevac, P.; Hechtl, V. Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments. Cells 2025, 14, 136. https://doi.org/10.3390/cells14020136
Schagerl M, Kaptejna A, Polz F, Ali SS, Huo S, Seneca J, Pjevac P, Hechtl V. Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments. Cells. 2025; 14(2):136. https://doi.org/10.3390/cells14020136
Chicago/Turabian StyleSchagerl, Michael, Alexander Kaptejna, Fabian Polz, Sameh S. Ali, Shuhao Huo, Joana Seneca, Petra Pjevac, and Vera Hechtl. 2025. "Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments" Cells 14, no. 2: 136. https://doi.org/10.3390/cells14020136
APA StyleSchagerl, M., Kaptejna, A., Polz, F., Ali, S. S., Huo, S., Seneca, J., Pjevac, P., & Hechtl, V. (2025). Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments. Cells, 14(2), 136. https://doi.org/10.3390/cells14020136