Autophagy in Tissue Repair and Regeneration
Abstract
:1. Introduction
2. Molecular Machinery of Autophagy
3. Regeneration and Repair
4. Exploring a Possible Role of Autophagy in Sensing and Responding to Injury
4.1. Autophagy and DAMPs in Tissue Regeneration
4.2. ROS and Autophagy: A Possible Interaction in Tissue Regeneration
5. Functional Interplay Between Autophagy and Immune Defense Responses
The Crosstalk Between Autophagy and Inflammation During Skin Wound Healing
6. Autophagy and Its Role in Regulating Cell Proliferation During Regeneration: Stem Cell Proliferation or Cell Cycle Re-Entry
7. Autophagy Promotes Cellular Migration for Tissue Regeneration and Wound Repair
8. Autophagy in Tissue Remodeling and Scaling During Regeneration
9. Connecting Autophagy and Senescence During Regeneration
10. Autophagy and Lipid Metabolism During Tissue Regeneration
11. Autophagy as a Therapeutic Target for Tissue Repair and Regeneration
Autophagy as a Target for Mammalian Skin Wound Healing
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular Definitions of Autophagy and Related Processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Klionsky, D.J.; Shen, H.M. The Emerging Mechanisms and Functions of Microautophagy. Nat. Rev. Mol. Cell Biol. 2023, 24, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Cuervo, A.M. The Coming of Age of Chaperone-Mediated Autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Morishita, H.; Mizushima, N. Diverse Cellular Roles of Autophagy. Annu. Rev. Cell Dev. Biol. 2019, 35, 453–475. [Google Scholar] [CrossRef]
- Norberto Vargas, J.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The Mechanisms and Roles of Selective Autophagy. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy Genes in Biology and Disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; et al. Autophagy in Healthy Aging and Disease. Nat. Aging 2021, 1, 634–650. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef]
- Chang, N.C. Autophagy and Stem Cells: Self-Eating for Self-Renewal. Front. Cell Dev. Biol. 2020, 8, 138. [Google Scholar] [CrossRef]
- Song, Q.; Liu, H.; Zhen, H.; Zhao, B. Autophagy and Its Role in Regeneration and Remodeling within Invertebrate. Cell Biosci. 2020, 10, 111. [Google Scholar] [CrossRef]
- Seifert, A.W.; Duncan, E.M.; Zayas, R.M. Enduring Questions in Regenerative Biology and the Search for Answers. Commun. Biol. 2023, 6, 1139. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.A.; Poss, K.D. Gene Regulatory Programmes of Tissue Regeneration. Nat. Rev. Genet. 2020, 21, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Owlarn, S.; Klenner, F.; Schmidt, D.; Rabert, F.; Tomasso, A.; Reuter, H.; Mulaw, M.A.; Moritz, S.; Gentile, L.; Weidinger, G.; et al. Generic Wound Signals Initiate Regeneration in Missing-Tissue Contexts. Nat. Commun. 2017, 8, 2282. [Google Scholar] [CrossRef] [PubMed]
- Abnave, P.; Ghigo, E. Role of the Immune System in Regeneration and Its Dynamic Interplay with Adult Stem Cells. Semin. Cell Dev. Biol. 2019, 87, 160–168. [Google Scholar] [CrossRef]
- Peña, O.A.; Martin, P. Cellular and Molecular Mechanisms of Skin Wound Healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef]
- Ricci, L.; Srivastava, M. Wound-Induced Cell Proliferation during Animal Regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e321. [Google Scholar] [CrossRef]
- Aztekin, C. Mechanisms of regeneration: To what extent do they recapitulate development? Development 2024, 151, dev202541. [Google Scholar] [CrossRef]
- Cebrià, F.; Adell, T.; Saló, E. Rebuilding a Planarian: From Early Signaling to Final Shape. Int. J. Dev. Biol. 2018, 62, 537–550. [Google Scholar] [CrossRef]
- WalczyńSKa, K.S.; Zhu, L.; Liang, Y. Insights into the Role of the Wnt Signaling Pathway in the Regeneration of Animal Model Systems. Int. J. Dev. Biol. 2023, 67, 65–78. [Google Scholar] [CrossRef]
- Pellettieri, J. Regenerative Tissue Remodeling in Planarians – The Mysteries of Morphallaxis. Semin. Cell Dev. Biol. 2019, 87, 13–21. [Google Scholar] [CrossRef]
- Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; Quek, Y.; Fahmy, K.; Shevchenko, A.; Friedrich, B.M.; Jülicher, F.; et al. Body Size-Dependent Energy Storage Causes Kleiber’s Law Scaling of the Metabolic Rate in Planarians. eLife 2019, 4, e38187. [Google Scholar] [CrossRef] [PubMed]
- Felix, D.A.; Gutiérrez-Gutiérrez, Ó.; Espada, L.; Thems, A.; González-Estévez, C. It Is Not All about Regeneration: Planarians Striking Power to Stand Starvation. Semin. Cell Dev. Biol. 2019, 87, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Schad, E.G.; Petersen, C.P. STRIPAK Limits Stem Cell Differentiation of a WNT Signaling Center to Control Planarian Axis Scaling. Curr. Biol. 2020, 30, 254–263.e2. [Google Scholar] [CrossRef] [PubMed]
- Dikic, I.; Elazar, Z. Mechanism and Medical Implications of Mammalian Autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Tooze, S.A. Autophagy Pathway: Cellular and Molecular Mechanisms. Autophagy 2018, 14, 207–215. [Google Scholar] [CrossRef]
- Lu, G.; Wang, Y.; Shi, Y.; Zhang, Z.; Huang, C.; He, W.; Wang, C.; Shen, H.M. Autophagy in Health and Disease: From Molecular Mechanisms to Therapeutic Target. MedComm 2022, 3, e150. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Srivastava, M. Beyond Casual Resemblance: Rigorous Frameworks for Comparing Regeneration Across Species. Annu. Rev. Cell Dev. Biol. 2021, 37, 415–440. [Google Scholar] [CrossRef]
- Poss, K.D.; Tanaka, E.M. Hallmarks of Regeneration. Cell Stem Cell 2024, 31, 1244–1261. [Google Scholar] [CrossRef]
- Vogg, M.C.; Galliot, B.; Tsiairis, C.D. Model Systems for Regeneration: Hydra. Development 2019, 146, dev177212. [Google Scholar] [CrossRef]
- Ivankovic, M.; Haneckova, R.; Thommen, A.; Grohme, M.A.; Vila-Farré, M.; Werner, S.; Rink, J.C. Model Systems for Regeneration: Planarians. Development 2019, 146, dev167684. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.J.; Lupi, E.; Mercader, N. Model Systems for Regeneration: Zebrafish. Development 2019, 146, dev167692. [Google Scholar] [CrossRef] [PubMed]
- Joven, A.; Elewa, A.; Simon, A. Model Systems for Regeneration: Salamanders. Development 2019, 146, dev167700. [Google Scholar] [CrossRef]
- Fox, D.T.; Cohen, E.; Smith-Bolton, R. Model Systems for Regeneration: Drosophila. Development 2020, 147, dev173781. [Google Scholar] [CrossRef]
- Cordeiro, J.V.; Jacinto, A. The Role of Transcription-Independent Damage Signals in the Initiation of Epithelial Wound Healing. Nat. Rev. Mol. Cell Biol. 2013, 14, 249–262. [Google Scholar] [CrossRef]
- Niethammer, P. The Early Wound Signals. Curr. Opin. Genet. Dev. 2016, 40, 17–22. [Google Scholar] [CrossRef]
- Vénéreau, E.; Ceriotti, C.; Bianchi, M.E. DAMPs from Cell Death to New Life. Front. Immunol. 2015, 6, 422. [Google Scholar] [CrossRef]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of Chromatin Protein HMGB1 by Necrotic Cells Triggers Inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Tamai, K.; Yamazaki, T.; Chino, T.; Ishii, M.; Otsuru, S.; Kikuchi, Y.; Iinuma, S.; Saga, K.; Nimura, K.; Shimbo, T.; et al. PDGFRα-Positive Cells in Bone Marrow Are Mobilized by High Mobility Group Box 1 (HMGB1) to Regenerate Injured Epithelia. Proc. Natl. Acad. Sci. USA 2011, 108, 6609–6614. [Google Scholar] [CrossRef]
- Nakagawa, S.; Omura, T.; Yonezawa, A.; Yano, I.; Nakagawa, T.; Matsubara, K. Extracellular Nucleotides from Dying Cells Act as Molecular Signals to Promote Wound Repair in Renal Tubular Injury. Am. J. Physiol. Ren. Physiol. 2014, 307, 1404–1411. [Google Scholar] [CrossRef]
- Weihs, A.M.; Fuchs, C.; Teuschl, A.H.; Hartinger, J.; Slezak, P.; Mittermayr, R.; Redl, H.; Junger, W.G.; Sitte, H.H.; Rünzler, D. Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-Coupled Extracellular Signal-Regulated Kinase (ERK) Activation. J. Biol. Chem. 2014, 289, 27090–27104. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, E.; Julien, B.; Serrière-Lanneau, V.; Nicou, A.; Doignon, I.; Lagoudakis, L.; Garcin, I.; Azoulay, D.; Duclos-Vallée, J.C.; Castaing, D.; et al. ATP Release after Partial Hepatectomy Regulates Liver Regeneration in the Rat. J. Hepatol. 2010, 52, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, J.; Horita, H.; Redzic, J.; Hansen, K.; Frankel, A.E.; Thorburn, A. Autophagy Regulates Selective HMGB1 Release in Tumor Cells That Are Destined to Die. Cell Death Differ. 2009, 16, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kwak, M.S.; Lee, B.; Shin, J.M.; Aum, S.; Park, I.H.; Lee, M.G.; Shin, J.S. Secretory Autophagy Machinery and Vesicular Trafficking Are Involved in HMGB1 Secretion. Autophagy 2021, 17, 2345–2362. [Google Scholar] [CrossRef]
- Ayna, G.; Krysko, D.V.; Kaczmarek, A.; Petrovski, G.; Vandenabeele, P.; Fésüs, L. ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages. PLoS ONE 2012, 7, e40069. [Google Scholar] [CrossRef]
- Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; et al. Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science (1979) 2011, 334, 1573–1577. [Google Scholar] [CrossRef]
- Fader, C.M.; Aguilera, M.O.; Colombo, M.I. ATP Is Released from Autophagic Vesicles to the Extracellular Space in a VAMP7-Dependent Manner. Autophagy 2012, 8, 1741–1756. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J.; et al. Endogenous HMGB1 Regulates Autophagy. J. Cell Biol. 2010, 190, 881–892. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Livesey, K.M.; Zeh, H.J.; Lotze, M.T. High Mobility Group Box 1 (HMGB1) Activates an Autophagic Response to Oxidative Stress. Antioxid. Redox Signal 2011, 15, 2185–2195. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, F.; Cao, Y.; Ping, F.; Wang, W.; Li, Y. HMGB1 Mediates Lipopolysaccharide-Induced Macrophage Autophagy and Pyroptosis. BMC Mol. Cell Biol. 2023, 24, 2. [Google Scholar] [CrossRef]
- Biswas, D.; Qureshi, O.S.; Lee, W.Y.; Croudace, J.E.; Mura, M.; Lammas, D.A. ATP-Induced Autophagy Is Associated with Rapid Killing of Intracellular Mycobacteria within Human Monocytes/Macrophages. BMC Immunol. 2008, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Takenouchi, T.; Nakai, M.; Iwamaru, Y.; Sugama, S.; Tsukimoto, M.; Fujita, M.; Wei, J.; Sekigawa, A.; Sato, M.; Kojima, S.; et al. The Activation of P2X7 Receptor Impairs Lysosomal Functions and Stimulates the Release of Autophagolysosomes in Microglial Cells. J. Immunol. 2009, 182, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Love, N.R.; Chen, Y.; Ishibashi, S.; Kritsiligkou, P.; Lea, R.; Koh, Y.; Gallop, J.L.; Dorey, K.; Amaya, E. Amputation-Induced Reactive Oxygen Species Are Required for Successful Xenopus Tadpole Tail Regeneration. Nat. Cell Biol. 2013, 15, 222–228. [Google Scholar] [CrossRef]
- Gauron, C.; Rampon, C.; Bouzaffour, M.; Ipendey, E.; Teillon, J.; Volovitch, M.; Vriz, S. Sustained Production of ROS Triggers Compensatory Proliferation and Is Required for Regeneration to Proceed. Sci. Rep. 2013, 3, 2084. [Google Scholar] [CrossRef]
- Santabárbara-Ruiz, P.; López-Santillán, M.; Martínez-Rodríguez, I.; Binagui-Casas, A.; Pérez, L.; Milán, M.; Corominas, M.; Serras, F. ROS-Induced JNK and P38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration. PLoS Genet. 2015, 11, e1005595. [Google Scholar] [CrossRef]
- Pirotte, N.; Stevens, A.S.; Fraguas, S.; Plusquin, M.; Van Roten, A.; Van Belleghem, F.; Paesen, R.; Ameloot, M.; Cebrià, F.; Artois, T.; et al. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. Oxid. Med. Cell Longev. 2015, 2015, 92476. [Google Scholar] [CrossRef]
- Jaenen, V.; Fraguas, S.; Bijnens, K.; Heleven, M.; Artois, T.; Romero, R.; Smeets, K.; Cebrià, F. Reactive Oxygen Species Rescue Regeneration after Silencing the MAPK–ERK Signaling Pathway in Schmidtea Mediterranea. Sci. Rep. 2021, 11, 881. [Google Scholar] [CrossRef]
- Wang, G.; Yang, F.; Zhou, W.; Xiao, N.; Luo, M.; Tang, Z. The Initiation of Oxidative Stress and Therapeutic Strategies in Wound Healing. Biomed. Pharmacother. 2023, 157, 114004. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.Y.; Liu, Y.J.; Feng, J.; Wu, Y.; Shen, H.M.; Lu, G.D. Full-Coverage Regulations of Autophagy by ROS: From Induction to Maturation. Autophagy 2022, 18, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4. EMBO J. 2007, 26, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, J.W.; Banerjee, S.; Bae, H.; Friggeri, A.; Lazarowski, E.R.; Abraham, E. Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-Activated Protein Kinase. J. Biol. Chem. 2010, 285, 33154–33164. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y.C.; Fang, C.; Russell, R.C.; Kim, J.H.; Fan, W.; Liu, R.; Zhong, Q.; Guan, K.L. Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell 2013, 152, 290–303. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Xu, D.; Ma, Q.; Chen, Y.; Xu, S.; Xia, Q.; Zhang, Y.; Prehn, J.H.M.; Wang, G.; et al. Oxidation of Multiple MiT/TFE Transcription Factors Links Oxidative Stress to Transcriptional Control of Autophagy and Lysosome Biogenesis. Autophagy 2020, 16, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Schofield, J.H.; Schafer, Z.T. Mitochondrial Reactive Oxygen Species and Mitophagy: A Complex and Nuanced Relationship. Antioxid. Redox Signal 2021, 34, 517–530. [Google Scholar] [CrossRef]
- Jiang, T.; Harder, B.; Rojo De La Vega, M.; Wong, P.K.; Chapman, E.; Zhang, D.D. P62 Links Autophagy and Nrf2 Signaling. Free Radic. Biol. Med. 2015, 88, 199–204. [Google Scholar] [CrossRef]
- Asano, J.; Sato, T.; Ichinose, S.; Kajita, M.; Onai, N.; Shimizu, S.; Ohteki, T. Intrinsic Autophagy Is Required for the Maintenance of Intestinal Stem Cells and for Irradiation-Induced Intestinal Regeneration. Cell Rep. 2017, 20, 1050–1060. [Google Scholar] [CrossRef]
- Nichenko, A.S.; Southern, W.M.; Atuan, M.; Luan, J.; Peissig, K.B.; Foltz, S.J.; Beedle, A.M.; Warren, G.L.; Call, J.A. Mitochondrial Maintenance via Autophagy Contributes to Functional Skeletal Muscle Regeneration and Remodeling. Am. J. Physiol. Cell Physiol. 2016, 311, 190–200. [Google Scholar] [CrossRef]
- Bai, H.; Fang, C.W.; Shi, Y.; Zhai, S.; Jiang, A.; Li, Y.N.; Wang, L.; Liu, Q.L.; Zhou, G.Y.; Cao, J.H.; et al. Mitochondria-Derived H2O2 Triggers Liver Regeneration via FoxO3a Signaling Pathway after Partial Hepatectomy in Mice. Cell Death Dis. 2023, 14, 216. [Google Scholar] [CrossRef]
- Forbes, S.J.; Rosenthal, N. Preparing the Ground for Tissue Regeneration: From Mechanism to Therapy. Nat. Med. 2014, 20, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Aurora, A.B.; Olson, E.N. Immune Modulation of Stem Cells and Regeneration. Cell Stem Cell 2014, 15, 14–25. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Julier, Z.; Park, A.J.; Briquez, P.S.; Martino, M.M. Promoting Tissue Regeneration by Modulating the Immune System. Acta Biomater. 2017, 53, 13–28. [Google Scholar] [CrossRef]
- Caballero-Sánchez, N.; Alonso-Alonso, S.; Nagy, L. Regenerative Inflammation: When Immune Cells Help to Re-Build Tissues. FEBS J. 2024, 291, 1597–1614. [Google Scholar] [CrossRef]
- Shi, C.S.; Kehrl, J.H. TRAF6 and A20 Regulate Lysine 63-Linked Ubiquitination of Beclin-1 to Control TLR4-Induced Autophagy. Sci. Signal 2010, 3, ra42. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Yang, C.H.; Chou, C.C.; Chiang, Y.P.; Chuang, T.H.; Hsu, L.C. TLR-Induced PAI-2 Expression Suppresses IL-1β Processing via Increasing Autophagy and NLRP3 Degradation. Proc. Natl. Acad. Sci. USA 2013, 110, 16079–16084. [Google Scholar] [CrossRef]
- Travassos, L.H.; Carneiro, L.A.M.; Ramjeet, M.; Hussey, S.; Kim, Y.G.; Magalhes, J.G.; Yuan, L.; Soares, F.; Chea, E.; Le Bourhis, L.; et al. Nod1 and Nod2 Direct Autophagy by Recruiting ATG16L1 to the Plasma Membrane at the Site of Bacterial Entry. Nat. Immunol. 2010, 11, 55–62. [Google Scholar] [CrossRef]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Lee, H.-M.; Shin, D.-M.; Yuk, J.-M.; Shi, G.; Choi, D.-K.; Lee, S.-H.; Huang, S.M.; Kim, J.-M.; Kim, C.D.; Lee, J.-H.; et al. Autophagy Negatively Regulates Keratinocyte Inflammatory Responses via Scaffolding Protein P62/SQSTM1. J. Immunol. 2011, 186, 1248–1258. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, X.; Li, Q.; Zhang, J.; Lai, H.; Gan, H.; Du, X.; Li, M. TLR2 Protects Cisplatin-Induced Acute Kidney Injury Associated with Autophagy via PI3K/Akt Signaling Pathway. J. Cell Biochem. 2019, 120, 4366–4374. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Yang, S.; Cui, Y.H.; He, Y.Y. Keratinocyte Autophagy Enables the Activation of Keratinocytes and Fibroblasts and Facilitates Wound Healing. Autophagy 2021, 17, 2128–2143. [Google Scholar] [CrossRef] [PubMed]
- Das, L.M.; Binko, A.M.; Traylor, Z.P.; Peng, H.; Lu, K.Q. Vitamin D Improves Sunburns by Increasing Autophagy in M2 Macrophages. Autophagy 2019, 15, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, T.T.; Lin, H.; Zhang, M.; Wei, J.; Luo, W.W.; Hu, Y.H.; Zhong, B.; Hu, M.M.; Shu, H.B. TRIM32-TAX1BP1-Dependent Selective Autophagic Degradation of TRIF Negatively Regulates TLR3/4-Mediated Innate Immune Responses. PLoS Pathog. 2017, 13, e1006600. [Google Scholar] [CrossRef] [PubMed]
- Samie, M.; Lim, J.; Verschueren, E.; Baughman, J.M.; Peng, I.; Wong, A.; Kwon, Y.; Senbabaoglu, Y.; Hackney, J.A.; Keir, M.; et al. Selective Autophagy of the Adaptor TRIF Regulates Innate Inflammatory Signaling Article. Nat. Immunol. 2018, 19, 246–254. [Google Scholar] [CrossRef]
- Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of Autophagy by Inflammatory Signals Limits IL-1β Production by Targeting Ubiquitinated Inflammasomes for Destruction. Nat. Immunol. 2012, 13, 255–263. [Google Scholar] [CrossRef]
- Zhong, Z.; Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; et al. NF-ΚB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 2016, 164, 896–910. [Google Scholar] [CrossRef]
- Harris, J.; Hartman, M.; Roche, C.; Zeng, S.G.; O’Shea, A.; Sharp, F.A.; Lambe, E.M.; Creagh, E.M.; Golenbock, D.T.; Tschopp, J.; et al. Autophagy Controls IL-1β Secretion by Targeting Pro-IL-1β for Degradation. J. Biol. Chem. 2011, 286, 9587–9597. [Google Scholar] [CrossRef]
- Eming, S.A.; Wynn, T.A.; Martin, P. Inflammation and Metabolism in Tissue Repair and Regeneration. Science 2017, 356, 1026–1030. [Google Scholar] [CrossRef]
- Karin, M.; Clevers, H. Reparative Inflammation Takes Charge of Tissue Regeneration. Nature 2016, 529, 307–315. [Google Scholar] [CrossRef]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from Inflammation to Proliferation: A Critical Step during Wound Healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.H.; Li, D.Y.; Liang, S.; Yang, C.; Tang, J.X.; Liu, H.F. Macrophage Autophagy in Macrophage Polarization, Chronic Inflammation and Organ Fibrosis. Front. Immunol. 2022, 13, 946832. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ji, Y.; Zhang, C.; Jin, T.; Li, J.; Guo, J. CCL6 Promotes M2 Polarization and Inhibits Macrophage Autophagy by Activating PI3-Kinase/Akt Signalling Pathway during Skin Wound Healing. Exp. Dermatol. 2023, 32, 403–412. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–325. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, C.; Rui, T.; Fan, Y.; Yao, Y.; Shen, H.; Gao, C.; Wang, T.; Wang, H.; Chen, X.; et al. Autophagy Inhibition Facilitates Wound Closure Partially Dependent on the YAP/IL-33 Signaling in a Mouse Model of Skin Wound Healing. FASEB J. 2021, 35, e21920. [Google Scholar] [CrossRef]
- Dupont, N.; Jiang, S.; Pilli, M.; Ornatowski, W.; Bhattacharya, D.; Deretic, V. Autophagy-Based Unconventional Secretory Pathway for Extracellular Delivery of IL-1β. EMBO J. 2011, 30, 4701–4711. [Google Scholar] [CrossRef]
- Zhang, M.; Kenny, S.J.; Ge, L.; Xu, K.; Schekman, R. Translocation of Interleukin-1β into a Vesicle Intermediate in Autophagy- Mediated Secretion. eLife 2015, 4, e11205. [Google Scholar] [CrossRef]
- Passamaneck, Y.J.; Martindale, M.Q. Cell Proliferation Is Necessary for the Regeneration of Oral Structures in the Anthozoan Cnidarian Nematostella Vectensis. BMC Dev. Biol. 2012, 12, 34. [Google Scholar] [CrossRef]
- Srivastava, M.; Mazza-Curll, K.L.; Van Wolfswinkel, J.C.; Reddien, P.W. Whole-Body Acoel Regeneration Is Controlled by Wnt and Bmp-Admp Signaling. Curr. Biol. 2014, 24, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Wenemoser, D.; Reddien, P.W. Planarian Regeneration Involves Distinct Stem Cell Responses to Wounds and Tissue Absence. Dev. Biol. 2010, 344, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Baguñà, J.; Serras, F. Origin and Proliferation of Blastema Cells during Regeneration of Drosophila Wing Imaginal Discs. Int. J. Dev. Biol. 2008, 52, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Nechiporuk, A.; Keating, M.T. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 2002, 129, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- McCusker, C.D.; Athippozhy, A.; Diaz-Castillo, C.; Fowlkes, C.; Gardiner, D.M.; Voss, S.R. Positional Plasticity in Regenerating Amybstoma Mexicanum Limbs Is Associated with Cell Proliferation and Pathways of Cellular Differentiation Regeneration and Repair. BMC Dev. Biol. 2015, 15, 45. [Google Scholar] [CrossRef]
- Mathiassen, S.G.; De Zio, D.; Cecconi, F. Autophagy and the Cell Cycle: A Complex Landscape. Front. Oncol. 2017, 7, 51. [Google Scholar] [CrossRef]
- Ziegler, D.V.; Huber, K.; Fajas, L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers 2022, 14, 153. [Google Scholar] [CrossRef]
- Boya, P.; Codogno, P.; Rodriguez-Muela, N. Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming. Developemnt 2018, 145, dev146506. [Google Scholar] [CrossRef]
- García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy Maintains Stemness by Preventing Senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef]
- Tang, A.H.; Rando, T.A. Induction of Autophagy Supports the Bioenergetic Demands of Quiescent Muscle Stem Cell Activation. EMBO J. 2014, 33, 2782–2797. [Google Scholar] [CrossRef]
- Varga, M.; Sass, M.; Papp, D.; Takács-Vellai, K.; Kobolak, J.; Dinnyés, A.; Klionsky, D.J.; Vellai, T. Autophagy Is Required for Zebrafish Caudal Fin Regeneration. Cell Death Differ. 2014, 21, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.; Sándor, G.O.; Juhász, G. Autophagy Maintains Stem Cells and Intestinal Homeostasis in Drosophila. Sci. Rep. 2018, 8, 4644. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, W.; Song, Y.; Zhang, Y.; Dong, C.; Xiong, S.; Huang, Z.; Wang, T.; Ding, J.; He, Q.; et al. Activating Autophagy Promotes Skin Regeneration Induced by Mechanical Stretch during Tissue Expansion. Burn. Trauma. 2024, 12, tkad057. [Google Scholar] [CrossRef]
- Jopling, C.; Boue, S.; Belmonte, J.C.I. Dedifferentiation, Transdifferentiation and Reprogramming: Three Routes to Regeneration. Nat. Rev. Mol. Cell Biol. 2011, 12, 79–89. [Google Scholar] [CrossRef]
- Jopling, C.; Sleep, E.; Raya, M.; Martí, M.; Raya, A.; Belmonte, J.C.I. Zebrafish Heart Regeneration Occurs by Cardiomyocyte Dedifferentiation and Proliferation. Nature 2010, 464, 606–609. [Google Scholar] [CrossRef]
- Lin, T.Y.; Gerber, T.; Taniguchi-Sugiura, Y.; Murawala, P.; Hermann, S.; Grosser, L.; Shibata, E.; Treutlein, B.; Tanaka, E.M. Fibroblast Dedifferentiation as a Determinant of Successful Regeneration. Dev. Cell 2021, 56, 1541–1551.e6. [Google Scholar] [CrossRef]
- Gerber, T.; Murawala, P.; Knapp, D.; Masselink, W.; Schuez, M.; Hermann, S.; Gac-Santel, M.; Nowoshilow, S.; Kageyama, J.; Khattak, S.; et al. Single-Cell Analysis Uncovers Convergence of Cell Identities during Axolotl Limb Regeneration. Science 2018, 362, eaaq0681. [Google Scholar] [CrossRef]
- Chen, Z.L.; Yu, W.M.; Strickland, S. Peripheral Regeneration. Annu. Rev. Neurosci. 2007, 30, 209–233. [Google Scholar] [CrossRef]
- Willet, S.G.; Lewis, M.A.; Miao, Z.; Liu, D.; Radyk, M.D.; Cunningham, R.L.; Burclaff, J.; Sibbel, G.; Lo, H.G.; Blanc, V.; et al. Regenerative Proliferation of Differentiated Cells by MTORC 1-dependent Paligenosis. EMBO J. 2018, 37, e98311. [Google Scholar] [CrossRef]
- Messal, H.A.; Cremona, C.A.; Lan, L.; Behrens, A. Paligenosis: Prepare to regenerate! EMBO J. 2018, 37, e99206. [Google Scholar] [CrossRef]
- Miao, Z.F.; Lewis, M.A.; Cho, C.J.; Adkins-Threats, M.; Park, D.; Brown, J.W.; Sun, J.X.; Burclaff, J.R.; Kennedy, S.; Lu, J.; et al. A Dedicated Evolutionarily Conserved Molecular Network Licenses Differentiated Cells to Return to the Cell Cycle. Dev. Cell 2020, 55, 178–194.e7. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.; Cho, C.J.; Mills, J.C. Paligenosis: Cellular Remodeling During Tissue Repair. Annu. Rev. Physiol. 2022, 84, 461–483. [Google Scholar] [CrossRef] [PubMed]
- Saera-Vila, A.; Kish, P.E.; Louie, K.W.; Grzegorski, S.J.; Klionsky, D.J.; Kahana, A. Autophagy Regulates Cytoplasmic Remodeling during Cell Reprogramming in a Zebrafish Model of Muscle Regeneration. Autophagy 2016, 12, 1864–1875. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xia, P.; Ye, B.; Huang, G.; Liu, J.; Fan, Z. Transient Activation of Autophagy via Sox2-Mediated Suppression of MTOR Is an Important Early Step in Reprogramming to Pluripotency. Cell Stem Cell 2013, 13, 617–625. [Google Scholar] [CrossRef]
- Gomez-Sanchez, J.A.; Carty, L.; Iruarrizaga-Lejarreta, M.; Palomo-Irigoyen, M.; Varela-Rey, M.; Griffith, M.; Hantke, J.; Macias-Camara, N.; Azkargorta, M.; Aurrekoetxea, I.; et al. Schwann Cell Autophagy, Myelinophagy, Initiates Myelin Clearance from Injured Nerves. J. Cell Biol. 2015, 210, 153–168. [Google Scholar] [CrossRef]
- Mirsky, R.; Woodhoo, A.; Parkinson, D.B.; Arthur-Farraj, P.; Bhaskaran, A.; Jessen, K.R. Novel Signals Controlling Embryonic Schwann Cell Development, Myelination and Dedifferentiation. J. Peripher. Nerv. Syst. 2008, 13, 122–135. [Google Scholar] [CrossRef]
- Pennock, R.; Bray, E.; Pryor, P.; James, S.; McKeegan, P.; Sturmey, R.; Genever, P. Human Cell Dedifferentiation in Mesenchymal Condensates through Controlled Autophagy. Sci. Rep. 2015, 5, 13113. [Google Scholar] [CrossRef]
- Sahu, S.; Sridhar, D.; Abnave, P.; Kosaka, N.; Dattani, A.; Thompson, J.M.; Hill, M.A.; Aboobaker, A. Ongoing Repair of Migration-Coupled Dna Damage Allows Planarian Adult Stem Cells to Reach Wound Sites. eLife 2021, 10, e63779. [Google Scholar] [CrossRef]
- Kaveh, A.; Bruton, F.A.; Buckley, C.; Oremek, M.E.M.; Tucker, C.S.; Mullins, J.J.; Taylor, J.M.; Rossi, A.G.; Denvir, M.A. Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-Stage Model of Neutrophil and Macrophage Migration. Front. Cell Dev. Biol. 2020, 8, 579943. [Google Scholar] [CrossRef]
- Petrie, T.A.; Strand, N.S.; Yang, C.-T.; Rabinowitz, J.S.; Moon, R.T. Macrophages Modulate Adult Zebrafish Tail Fin Regeneration. Development 2015, 142, 406. [Google Scholar] [CrossRef]
- Hu, D.J.K.; Yun, J.; Elstrott, J.; Jasper, H. Non-Canonical Wnt Signaling Promotes Directed Migration of Intestinal Stem Cells to Sites of Injury. Nat. Commun. 2021, 12, 7150. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Gonzalez, D.G.; Guirao, B.; Boucher, J.D.; Cockburn, K.; Marsh, E.D.; Mesa, K.R.; Brown, S.; Rompolas, P.; Haberman, A.M.; et al. Tissue-Scale Coordination of Cellular Behaviour Promotes Epidermal Wound Repair in Live Mice. Nat. Cell Biol. 2017, 19, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kenific, C.M.; Wittmann, T.; Debnath, J. Autophagy in Adhesion and Migration. J. Cell Sci. 2016, 129, 3685–3693. [Google Scholar] [CrossRef]
- Coly, P.M.; Gandolfo, P.; Castel, H.; Morin, F. The Autophagy Machinery: A New Player in Chemotactic Cell Migration. Front. Neurosci. 2017, 11, 78. [Google Scholar] [CrossRef]
- Kenific, C.M.; Stehbens, S.J.; Goldsmith, J.; Leidal, A.M.; Faure, N.; Ye, J.; Wittmann, T.; Debnath, J. NBR 1 Enables Autophagy-Dependent Focal Adhesion Turnover. J. Cell Biol. 2016, 212, 577–590. [Google Scholar] [CrossRef]
- Zhan, Z.; Xie, X.; Cao, H.; Zhou, X.; Zhang, X.D.; Fan, H.; Liu, Z. Autophagy Facilitates TLR4- and TLR3-Triggered Migration and Invasion of Lung Cancer Cells through the Promotion of TRAF6 Ubiquitination. Autophagy 2014, 10, 257–268. [Google Scholar] [CrossRef]
- García-Miranda, A.; Montes-Alvarado, J.B.; Sarmiento-Salinas, F.L.; Vallejo-Ruiz, V.; Castañeda-Saucedo, E.; Navarro-Tito, N.; Maycotte, P. Regulation of Mitochondrial Metabolism by Autophagy Supports Leptin-Induced Cell Migration. Sci. Rep. 2024, 14, 1408. [Google Scholar] [CrossRef]
- García-Miranda, A.; Solano-Alcalá, K.A.; Montes-Alvarado, J.B.; Rosas-Cruz, A.; Reyes-Leyva, J.; Navarro-Tito, N.; Maycotte, P.; Castañeda-Saucedo, E. Autophagy Mediates Leptin-Induced Migration and ERK Activation in Breast Cancer Cells. Front. Cell Dev. Biol. 2021, 9, 644851. [Google Scholar] [CrossRef]
- Galavotti, S.; Bartesaghi, S.; Faccenda, D.; Shaked-Rabi, M.; Sanzone, S.; McEvoy, A.; Dinsdale, D.; Condorelli, F.; Brandner, S.; Campanella, M.; et al. The Autophagy-Associated Factors DRAM1 and P62 Regulate Cell Migration and Invasion in Glioblastoma Stem Cells. Oncogene 2013, 32, 699–712. [Google Scholar] [CrossRef]
- Chen, X.; Tong, G.; Fan, J.; Shen, Y.; Wang, N.; Gong, W.; Hu, Z.; Zhu, K.; Li, X.; Jin, L.; et al. FGF21 Promotes Migration and Differentiation of Epidermal Cells during Wound Healing via SIRT1-Dependent Autophagy. Br. J. Pharmacol. 2022, 179, 1102–1121. [Google Scholar] [CrossRef]
- Kadandale, P.; Stender, J.D.; Glass, C.K.; Kiger, A.A. Conserved Role for Autophagy in Rho1-Mediated Cortical Remodeling and Blood Cell Recruitment. Proc. Natl. Acad. Sci. USA 2010, 107, 10502–10507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, S.; Gao, J.; Hu, Y.; Chen, S.; Luo, X.; Zhang, H.; Luo, Z.; Huang, J. Epothilone B Facilitates Peripheral Nerve Regeneration by Promoting Autophagy and Migration in Schwann Cells. Front. Cell Neurosci. 2020, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Tang, T.; Zhu, J.; Tang, Y.; Sun, H.; Li, S. CXCL12 Has Therapeutic Value in Facial Nerve Injury and Promotes Schwann Cells Autophagy and Migration via PI3K-AKT-MTOR Signal Pathway. Int. J. Biol. Macromol. 2019, 124, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Zhang, Y.F.; Wan, C.Y.; Sun, Z.Y.; Nie, S.; Jian, S.J.; Zhang, L.; Song, G.T.; Chen, Z. Autophagy in SDF-1α-Mediated DPSC Migration and Pulp Regeneration. Biomaterials 2015, 44, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Agata, K.; Saito, Y.; Nakajima, E. Unifying Principles of Regeneration I: Epimorphosis versus Morphallaxis. Dev. Growth Differ. 2007, 49, 73–78. [Google Scholar] [CrossRef]
- Pellettieri, J.; Fitzgerald, P.; Watanabe, S.; Mancuso, J.; Green, D.R.; Sánchez Alvarado, A. Cell Death and Tissue Remodeling in Planarian Regeneration. Dev. Biol. 2010, 338, 76–85. [Google Scholar] [CrossRef]
- Chera, S.; Ghila, L.; Dobretz, K.; Wenger, Y.; Bauer, C.; Buzgariu, W.; Martinou, J.C.; Galliot, B. Apoptotic Cells Provide an Unexpected Source of Wnt3 Signaling to Drive Hydra Head Regeneration. Dev. Cell 2009, 17, 279–289. [Google Scholar] [CrossRef]
- Guerin, D.J.; Kha, C.X.; Tseng, K.A.S. From Cell Death to Regeneration: Rebuilding After Injury. Front. Cell Dev. Biol. 2021, 9, 109–122. [Google Scholar] [CrossRef]
- Hill, E.M.; Petersen, C.P. Wnt/Notum Spatial Feedback Inhibition Controls Neoblast Differentiation to Regulate Reversible Growth of the Planarian Brain. Development 2015, 142, 4217–4229. [Google Scholar] [CrossRef]
- Godwin, J.; Kuraitis, D.; Rosenthal, N. Extracellular Matrix Considerations for Scar-Free Repair and Regeneration: Insights from Regenerative Diversity among Vertebrates. Int. J. Biochem. Cell Biol. 2014, 56, 47–55. [Google Scholar] [CrossRef]
- Chen, W.C.W.; Wang, Z.; Missinato, M.A.; Park, D.W.; Long, D.W.; Liu, H.-J.; Zeng, X.; Yates, N.A.; Kim, K.; Wang, Y. Decellularized Zebrafish Cardiac Extracellular Matrix Induces Mammalian Heart Regeneration. Sci. Adv. 2016, 2, e1600844. [Google Scholar] [CrossRef] [PubMed]
- Cote, L.E.; Simental, E.; Reddien, P.W. Muscle Functions as a Connective Tissue and Source of Extracellular Matrix in Planarians. Nat. Commun. 2019, 10, 1592. [Google Scholar] [CrossRef] [PubMed]
- Adell, T.; Cebrià, F.; Saló, E. Gradients in Planarian Regeneration and Homeostasis. Cold Spring Harb. Perspect. Biol. 2010, 2, a000505. [Google Scholar] [CrossRef] [PubMed]
- Witchley, J.N.; Mayer, M.; Wagner, D.E.; Owen, J.H.; Reddien, P.W. Muscle Cells Provide Instructions for Planarian Regeneration. Cell Rep. 2013, 4, 633–641. [Google Scholar] [CrossRef]
- Owlarn, S.; Bartscherer, K. Go Ahead, Grow a Head! A Planarian’s Guide to Anterior Regeneration. Regeneration 2016, 3, 139–155. [Google Scholar] [CrossRef]
- De Sousa, N.; Rodríguez-Esteban, G.; Rojo-Laguna, J.I.; Saló, E.; Adell, T. Hippo Signaling Controls Cell Cycle and Restricts Cell Plasticity in Planarians. PLoS Biol. 2018, 16, e2002399. [Google Scholar] [CrossRef]
- Liu, S.Z.; Yao, S.J.; Yang, H.; Liu, S.J.; Wang, Y.J. Autophagy: Regulator of Cell Death. Cell Death Dis. 2023, 14, 648. [Google Scholar] [CrossRef]
- Sylakowski, K.; Wells, A. ECM-Regulation of Autophagy: The Yin and the Yang of Autophagy during Wound Healing. Matrix Biol. 2021, 100–101, 197–206. [Google Scholar] [CrossRef]
- Kempuraj, D.; Mohan, R.R. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines 2022, 10, 339. [Google Scholar] [CrossRef]
- Tang, F.; Christofori, G. The Cross-Talk between the Hippo Signaling Pathway and Autophagy: Implications on Physiology and Cancer. Cell Cycle 2020, 19, 2563–2572. [Google Scholar] [CrossRef]
- Lorzadeh, S.; Kohan, L.; Ghavami, S.; Azarpira, N. Autophagy and the Wnt Signaling Pathway: A Focus on Wnt/β-Catenin Signaling. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Dong, Z.; Wang, J.; Chen, G.; Liu, D. Autophagy-Related Djatg8 Is Required for Remodeling in Planarian Dugesia Japonica. Biol. Open 2019, 8, bio045013. [Google Scholar] [CrossRef] [PubMed]
- González-Estévez, C.; Felix, D.A.; Aboobaker, A.A.; Saló, E. Gtdap-1 Promotes Autophagy and Is Required for Planarian Remodeling during Regeneration and Starvation. Proc. Natl. Acad. Sci. USA 2007, 104, 13373–13378. [Google Scholar] [CrossRef]
- González-Estévez, C.; Felix, D.A.; Aboobaker, A.A.; Saló, E. Gtdap-1 and the Role of Autophagy During Planarian Regeneration and Starvation. Autophagy 2007, 3, 640–642. [Google Scholar] [CrossRef]
- Jin, B.; Ren, J.; Chen, J.; Dong, Z.; Chen, G.; Liu, D. Autophagy-Related DjAtg1-1 Plays Critical Role in Planarian Regeneration by Regulating Proliferation and Cell Death. Cell Tissue Res. 2022, 388, 273–286. [Google Scholar] [CrossRef]
- Chera, S.; de Rosa, R.; Miljlovic-Licina, M.; Dobretz, K.; Ghila, L.; Kaloulis, K.; Galliot, B. Silencing of the Hydra Serine Protease Inhibitor Kazal1 Gene Mimics the Human SPINK1 Pacnreatic Phenotype. J. Cell Sci. 2006, 119, 846–857. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Carlos Acosta, J.; Adams, P.D.; d’Adda di Fagagna, F.; Baker, D.J.; Bishop, C.L.; Chandra, T.; Collado, M.; Gil, J.; Gorgoulis, V.; et al. Guidelines for Minimal Information on Cellular Senescence Experimentation in Vivo. Cell 2024, 187, 4150–4175. [Google Scholar] [CrossRef] [PubMed]
- De Magalhães, J.P. Cellular Senescence in Normal Physiology. Science 2024, 384, 1300–1301. [Google Scholar] [CrossRef]
- Salinas-Saavedra, M.; Febrimarsa; Krasovec, G.; Horkan, H.R.; Baxevanis, A.D.; Frank, U. Senescence-Induced Cellular Reprogramming Drives Cnidarian Whole-Body Regeneration. Cell Rep. 2023, 42, 112687. [Google Scholar] [CrossRef]
- Da Silva-Álvarez, S.; Guerra-Varela, J.; Sobrido-Cameán, D.; Quelle, A.; Barreiro-Iglesias, A.; Sánchez, L.; Collado, M. Cell Senescence Contributes to Tissue Regeneration in Zebrafish. Aging Cell 2020, 19, e13052. [Google Scholar] [CrossRef]
- Yun, M.H.; Davaapil, H.; Brockes, J.P. Recurrent Turnover of Senescent Cells during Regeneration of a Complex Structure. eLife 2015, 4, e05505. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Walters, H.E.; Pasquini, G.; Pal Singh, S.; Lachnit, M.; Oliveira, C.R.; León-Periñán, D.; Petzold, A.; Kesavan, P.; Subiran Adrados, C.; et al. Cellular Senescence Promotes Progenitor Cell Expansion during Axolotl Limb Regeneration. Dev. Cell 2023, 58, 2416–2427.e7. [Google Scholar] [CrossRef] [PubMed]
- Walters, H.E.; Troyanovskiy, K.E.; Graf, A.M.; Yun, M.H. Senescent Cells Enhance Newt Limb Regeneration by Promoting Muscle Dedifferentiation. Aging Cell 2023, 22, e13826. [Google Scholar] [CrossRef]
- Demaria, M.; Ohtani, N.; Youssef, S.A.; Rodier, F.; Toussaint, W.; Mitchell, J.R.; Laberge, R.M.; Vijg, J.; VanSteeg, H.; Dollé, M.E.T.; et al. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Dev. Cell 2014, 31, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Ring, N.A.R.; Dworak, H.; Bachmann, B.; Schädl, B.; Valdivieso, K.; Rozmaric, T.; Heimel, P.; Fischer, I.; Klinaki, E.; Gutasi, A.; et al. The P-RpS6-Zone Delineates Wounding Responses and the Healing Process. Dev. Cell 2023, 58, 981–992.e6. [Google Scholar] [CrossRef]
- Kang, C.; Elledge, S.J. How Autophagy Both Activates and Inhibits Cellular Senescence. Autophagy 2016, 12, 898–899. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef]
- Kang, C.; Xu, Q.; Martin, T.D.; Li, M.Z.; Demaria, M.; Aron, L.; Lu, T.; Yankner, B.A.; Campisi, J.; Elledge, S.J. The DNA Damage Response Induces Inflammation and Senescence by Inhibiting Autophagy of GATA4. Science 2015, 349, aaa5612. [Google Scholar] [CrossRef]
- Dou, Z.; Xu, C.; Donahue, G.; Shimi, T.; Pan, J.A.; Zhu, J.; Ivanov, A.; Capell, B.C.; Drake, A.M.; Shah, P.P.; et al. Autophagy Mediates Degradation of Nuclear Lamina. Nature 2015, 527, 105–109. [Google Scholar] [CrossRef]
- Lenain, C.; Gusyatiner, O.; Douma, S.; van den Broek, B.; Peeper, D.S. Autophagy-Mediated Degradation of Nuclear Envelope Proteins during Oncogene-Induced Senescence. Carcinogenesis 2015, 36, 1263–1274. [Google Scholar] [CrossRef]
- Adams, P.D.; Ivanov, A.; Pawlikowski, J.; Manoharan, I.; van Tuyn, J.; Nelson, D.M.; Singh Rai, T.; Shah, P.P.; Hewitt, G.; Korolchuk, V.I.; et al. Lysosome-Mediated Processing of Chromatin in Senescence. J. Cell Biol. 2013, 202, 129–143. [Google Scholar] [CrossRef]
- Narita, M.; Young, A.R.J.; Arakawa, S.; Samarajiwa, S.A.; Nakashima, T.; Yoshida, S.; Hong, S.; Berry, L.S.; Reichelt, S.; Ferreira, M.; et al. Spatial Coupling of MTOR and Autophagy Augments Secretory Phenotypes. Science 2011, 332, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Toshima, T.; Shirabe, K.; Fukuhara, T.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Okano, S.; Maehara, Y. Suppression of Autophagy during Liver Regeneration Impairs Energy Charge and Hepatocyte Senescence in Mice. Hepatology 2014, 60, 290–300. [Google Scholar] [CrossRef]
- Wynn, T.A. Cellular and Molecular Mechanisms of Fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef]
- Turano, P.S.; Herbig, U. Cellular Senescence, P21, and the Path to Fibrosis. EMBO J. 2024, 43, 5332–5334. [Google Scholar] [CrossRef]
- Hernandez-Gonzalez, F.; Prats, N.; Ramponi, V.; Alberto López-Domínguez, J.; Meyer, K.; Aguilera, M.; Muñoz Martín, M.I.; Martínez, D.; Agusti, A.; Faner, R.; et al. Human Senescent Fibroblasts Trigger Progressive Lung Fibrosis in Mice. Aging 2023, 15, 6641–6657. [Google Scholar] [CrossRef]
- Wiley, C.D.; Brumwell, A.N.; Davis, S.S.; Jackson, J.R.; Valdovinos, A.; Calhoun, C.; Alimirah, F.; Castellanos, C.A.; Ruan, R.; Wei, Y.; et al. Secretion of Leukotrienes by Senescent Lung Fibroblasts Promotes Pulmonary Fibrosis. JCI Insight 2019, 4, e130056. [Google Scholar] [CrossRef]
- Schafer, M.J.; White, T.A.; Iijima, K.; Haak, A.J.; Ligresti, G.; Atkinson, E.J.; Oberg, A.L.; Birch, J.; Salmonowicz, H.; Zhu, Y.; et al. Cellular Senescence Mediates Fibrotic Pulmonary Disease. Nat. Commun. 2017, 8, 14532. [Google Scholar] [CrossRef]
- Maus, M.; López-Polo, V.; Mateo, L.; Lafarga, M.; Aguilera, M.; De Lama, E.; Meyer, K.; Sola, A.; Lopez-Martinez, C.; López-Alonso, I.; et al. Iron Accumulation Drives Fibrosis, Senescence and the Senescence-Associated Secretory Phenotype. Nat. Metab. 2023, 5, 2111–2130. [Google Scholar] [CrossRef]
- Hernández-Gea, V.; Friedman, S.L. Autophagy Fuels Tissue Fibrogenesis. Autophagy 2012, 8, 849–850. [Google Scholar] [CrossRef]
- Principe, D.D.; Lista, P.; Malorni, W.; Giammarioli, A.M. Fibroblast Autophagy in Fibrotic Disorders. J. Pathol. 2013, 229, 208–220. [Google Scholar] [CrossRef]
- Hernndezgea, V.; Ghiassinejad, Z.; Rozenfeld, R.; Gordon, R.; Fiel, M.I.; Yue, Z.; Czaja, M.J.; Friedman, S.L. Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues. Gastroenterology 2012, 142, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.; Dieudé, M.; Yang, B.; Hamelin, K.; Underwood, K.; Hébert, M.J. Autophagy Fosters Myofibroblast Differentiation through MTORC2 Activation and Downstream Upregulation of CTGF. Autophagy 2014, 10, 2193–2207. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.; Yang, B.; Migneault, F.; Turgeon, J.; Dieudé, M.; Olivier, M.A.; Cardin, G.B.; El-Diwany, M.; Underwood, K.; Rodier, F.; et al. Autophagy Drives Fibroblast Senescence through MTORC2 Regulation. Autophagy 2020, 16, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.J.; Shu, S.; Fan, Y.; Li, Z.; Jiao, Q.; Yin, X.M.; Venkatachalam, M.A.; Dong, Z. Tubular Cells Produce FGF2 via Autophagy after Acute Kidney Injury Leading to Fibroblast Activation and Renal Fibrosis. Autophagy 2023, 19, 256–277. [Google Scholar] [CrossRef]
- Canaud, G.; Brooks, C.R.; Kishi, S.; Taguchi, K.; Nishimura, K.; Magassa, S.; Scott, A.; Hsiao, L.-L.; Ichimura, T.; Terzi, F.; et al. Cyclin G1 and TASCC Regulate Kidney Epithelial Cell G2-M Arrest and Fibrotic Maladaptive Repair. Sci. Transl. Med. 2019, 11, eaav4754. [Google Scholar] [CrossRef]
- Della Fazia, M.A.; Servillo, G. Foie Gras and Liver Regeneration: A Fat Dilemma. Cell Stress. 2018, 2, 162–175. [Google Scholar] [CrossRef]
- Yue, F.; Oprescu, S.N.; Qiu, J.; Gu, L.; Zhang, L.; Chen, J.; Narayanan, N.; Deng, M.; Kuang, S. Lipid Droplet Dynamics Regulate Adult Muscle Stem Cell Fate. Cell Rep. 2022, 38. [Google Scholar] [CrossRef]
- Morales, P.E.; Bucarey, J.L.; Espinosa, A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J. Diabetes Res. 2017, 2017, 789395. [Google Scholar] [CrossRef]
- Wong, L.L.; Bruxvoort, C.G.; Cejda, N.I.; Delaney, M.R.; Otero, J.R.; Forsthoefel, D.J. Intestine-Enriched Apolipoprotein b Orthologs Are Required for Stem Cell Progeny Differentiation and Regeneration in Planarians. Nat. Commun. 2022, 13, 3803. [Google Scholar] [CrossRef]
- Deb, S.; Felix, D.A.; Koch, P.; Deb, M.K.; Szafranski, K.; Buder, K.; Sannai, M.; Groth, M.; Kirkpatrick, J.; Pietsch, S.; et al. Tnfaip2/Exoc3 -driven Lipid Metabolism Is Essential for Stem Cell Differentiation and Organ Homeostasis. EMBO Rep. 2021, 22, e49328. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy Regulates Lipid Metabolism. Nature 2009, 458, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, H.; Varela, A.T.; Teodoro, J.S.; Martins, M.A.; Rolo, A.P.; Tralhão, J.G.; Palmeira, C.M.; Castro e Sousa, F. Mitochondrial Bioenergetics and Posthepatectomy Liver Dysfunction. Eur. J. Clin. Investig. 2016, 46, 627–635. [Google Scholar] [CrossRef]
- Römermann, D.; Ansari, N.; Schultz-Moreira, A.R.; Michael, A.; Marhenke, S.; Hardtke-Wolenski, M.; Longerich, T.; Manns, M.P.; Wedemeyer, H.; Vogel, A.; et al. Absence of Atg7 in the Liver Disturbed Hepatic Regeneration after Liver Injury. Liver Int. 2020, 40, 1225–1238. [Google Scholar] [CrossRef]
- Haidar, M.; Loix, M.; Vanherle, S.; Dierckx, T.; Vangansewinkel, T.; Gervois, P.; Wolfs, E.; Lambrichts, I.; Bogie, J.F.J.; Hendriks, J.J.A. Targeting Lipophagy in Macrophages Improves Repair in Multiple Sclerosis. Autophagy 2022, 18, 2697–2710. [Google Scholar] [CrossRef]
- Kim, K.H.; Oprescu, S.N.; Snyder, M.M.; Kim, A.; Jia, Z.; Yue, F.; Kuang, S. PRMT5 Mediates FoxO1 Methylation and Subcellular Localization to Regulate Lipophagy in Myogenic Progenitors. Cell Rep. 2023, 42, 113329. [Google Scholar] [CrossRef]
- Balnis, J.; Jackson, E.L.; Drake, L.A.; Singer, D.V.; Bossardi Ramos, R.; Singer, H.A.; Jaitovich, A. Rapamycin Improves Satellite Cells Autophagy and Muscle Regeneration during Hypercapnia. JCI Insight 2024, 10, e182842. [Google Scholar] [CrossRef]
- Huang, H.C.; Chen, L.; Zhang, H.X.; Li, S.F.; Liu, P.; Zhao, T.Y.; Li, C.X. xiang Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats. J. Mol. Neurosci. 2016, 58, 416–423. [Google Scholar] [CrossRef]
- Pallauf, K.; Rimbach, G. Autophagy, Polyphenols and Healthy Ageing. Ageing Res. Rev. 2013, 12, 237–252. [Google Scholar] [CrossRef]
- Tian, Y.; Song, W.; Li, D.; Cai, L.; Zhao, Y. Resveratrol as a Natural Regulator of Autophagy for Prevention and Treatment of Cancer. Onco Targets Ther. 2019, 12, 8601–8609. [Google Scholar] [CrossRef]
- de Moraes, A.C.N.; de Andrade, C.B.V.; Ramos, I.P.R.; Dias, M.L.; Batista, C.M.P.; Pimentel, C.F.; de Carvalho, J.J.; dos Santos Goldenberg, R.C. Resveratrol promotes liver regeneration in drug-induced liver disease in mice. Food Res. Int. 2021, 142, 110185. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Zhang, S.; Yao, X.; Xu, L.; Hu, J.; Yin, C.; Chen, J.; Xu, H. Resveratrol Promotes Axonal Regeneration after Spinal Cord Injury through Activating Wnt/β-Catenin Signaling Pathway. Aging 2021, 13, 23603–23619. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Cao, J.; Shen, Y.; Zou, Y.; Yang, X.; Zhou, W.; Guo, Q.; Huang, C. Resveratrol Promotes Nerve Regeneration via Activation of P300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury. Front. Neurosci. 2018, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Zhao, P.; Sui, B.D.; Liu, N.; Hu, C.H.; Chen, J.; Zheng, C.X.; Liu, A.Q.; Xuan, K.; Pan, Y.P.; et al. Resveratrol Enhances the Functionality and Improves the Regeneration of Mesenchymal Stem Cell Aggregates. Exp. Mol. Med. 2018, 50, 1–15. [Google Scholar] [CrossRef]
- Lu, G.; Wu, Z.; Shang, J.; Xie, Z.; Zhang, C.; Chen, C. The Effects of Metformin on Autophagy. Biomed. Pharmacother. 2021, 137, 111286. [Google Scholar] [CrossRef]
- Xie, F.; Xu, S.; Lu, Y.; Wong, K.F.; Sun, L.; Hasan, K.M.M.; Ma, A.C.H.; Tse, G.; Manno, S.H.C.; Tian, L.; et al. Metformin Accelerates Zebrafish Heart Regeneration by Inducing Autophagy. NPJ Regen. Med. 2021, 6, 62. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Chen, Y.; Yu, H.; Xiang, L. Metformin Promotes Axonal Regeneration and Functional Recovery in Diabetic Rat Model of Sciatic Nerve Transection Injury. NeuroSci 2022, 3, 366–375. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Z.; Han, W.; Yuan, Y.; Li, Y.; Zhou, K.; Wang, Q.; Xie, L.; Xu, K.; Zhang, H.; et al. Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. Oxid. Med. Cell Longev. 2020, 2020, 9741369. [Google Scholar] [CrossRef]
- Suknovic, N.; Tomczyk, S.; Colevret, D.; Perruchoud, C.; Galliot, B. The ULK1 Kinase, a Necessary Component of the pro-Regenerative and Anti-Aging Machinery in Hydra. Mech. Ageing Dev. 2021, 194, 111414. [Google Scholar] [CrossRef]
- Kang, J.; Chen, J.; Dong, Z.; Chen, G.; Liu, D. The Negative Effect of the PI3K Inhibitor 3-Methyladenine on Planarian Regeneration via the Autophagy Signalling Pathway. Ecotoxicology 2021, 30, 1941–1948. [Google Scholar] [CrossRef]
- Chen, F.; Pu, S.; Tian, L.; Zhang, H.; Zhou, H.; Yan, Y.; Hu, X.; Wu, Q.; Chen, X.; Cheng, S.H.; et al. Radix Rehmanniae Praeparata Promoted Zebrafish Fin Regeneration through Aryl Hydrocarbon Receptor-Dependent Autophagy. J. Ethnopharmacol. 2024, 331, 118272. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Apple, E.C.; Liu, Z.; Chen, L. Age-Dependent Autophagy Induction after Injury Promotes Axon Regeneration by Limiting NOTCH. Autophagy 2020, 16, 2052–2068. [Google Scholar] [CrossRef] [PubMed]
- Mijaljica, D.; Spada, F.; Klionsky, D.J.; Harrison, I.P. Autophagy Is the Key to Making Chronic Wounds Acute in Skin Wound Healing. Autophagy 2023, 19, 2578–2584. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhao, F.; Zhang, Q.; Huang, X.; Wang, Z. Autophagy and Skin Wound Healing. Burn. Trauma. 2022, 10, tkac003. [Google Scholar] [CrossRef]
- Lu, H.; Jia, C.; Wu, D.; Jin, H.; Lin, Z.; Pan, J.; Li, X.; Wang, W. Fibroblast Growth Factor 21 (FGF21) Alleviates Senescence, Apoptosis, and Extracellular Matrix Degradation in Osteoarthritis via the SIRT1-MTOR Signaling Pathway. Cell Death Dis. 2021, 12, 865. [Google Scholar] [CrossRef]
- Yan, Y.; Ran, X.; Zhou, Z.; Gu, Y.; Wang, R.; Qiu, C.; Sun, Y.; Wang, J.; Xiao, J.; Lu, Y.; et al. FGF21 Inhibits Ferroptosis Caused by Mitochondrial Damage to Promote the Repair of Peripheral Nerve Injury. Front. Pharmacol. 2024, 15, 1358646. [Google Scholar] [CrossRef]
- An, Y.; Liu, W.J.; Xue, P.; Ma, Y.; Zhang, L.Q.; Zhu, B.; Qi, M.; Li, L.Y.; Zhang, Y.J.; Wang, Q.T.; et al. Autophagy Promotes MSC-Mediated Vascularization in Cutaneous Wound Healing via Regulation of VEGF Secretion Article. Cell Death Dis. 2018, 9, 58. [Google Scholar] [CrossRef]
- Xiao, M.; Li, L.; Hu, Q.; Ma, L.; Liu, L.; Chu, W.; Zhang, H. Rapamycin Reduces Burn Wound Progression by Enhancing Autophagy in Deep Second-Degree Burn in Rats. Wound Repair. Regen. 2013, 21, 852–859. [Google Scholar] [CrossRef]
- Zhao, P.; Sui, B.D.; Liu, N.; Lv, Y.J.; Zheng, C.X.; Lu, Y.B.; Huang, W.T.; Zhou, C.H.; Chen, J.; Pang, D.L.; et al. Anti-Aging Pharmacology in Cutaneous Wound Healing: Effects of Metformin, Resveratrol, and Rapamycin by Local Application. Aging Cell 2017, 16, 1083–1093. [Google Scholar] [CrossRef]
- Leis, K.; Pisanko, K.; Jundziłł, A.; Mazur, E.; Mȩcińska-Jundziłł, K.; Witmanowski, H. Resveratrol as a Factor Preventing Skin Aging and Affecting Its Regeneration. Postep. Dermatol. Alergol. 2022, 39, 439–445. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, W.; Wang, C.W.; Shi, J.P.; Shi, Z.Q.; Zhou, J. Resveratrol promotes skin wound healing by regulating the MiR-212/CASP8 Axis. Lab. Investig. 2021, 101, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S.P.; Kamolz, L.P.; Kotzbeck, P. The Impact of Resveratrol on Skin Wound Healing, Scarring, and Aging. Int. Wound J. 2022, 19, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Tombulturk, F.K.; Soydas, T.; Kanigur-Sultuybek, G. Topical Metformin Accelerates Wound Healing by Promoting Collagen Synthesis and Inhibiting Apoptosis in a Diabetic Wound Model. Int. Wound J. 2024, 21, e14345. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Liu, W.; Song, Y.; Du, J.; Wang, T.; Zhang, Y.; Huang, Z.; He, Q.; Dong, C.; Yu, Z.; et al. Metformin Promotes Mechanical Stretch-Induced Skin Regeneration by Improving the Proliferative Activity of Skin-Derived Stem Cells. Front. Med. 2022, 9, 813917. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a Novel MTOR-Independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein. J. Biol. Chem. 2007, 282, 5641–5652. [Google Scholar] [CrossRef]
- Palmieri, M.; Pal, R.; Nelvagal, H.R.; Lotfi, P.; Stinnett, G.R.; Seymour, M.L.; Chaudhury, A.; Bajaj, L.; Bondar, V.V.; Bremner, L.; et al. MTORC1-Independent TFEB Activation via Akt Inhibition Promotes Cellular Clearance in Neurodegenerative Storage Diseases. Nat. Commun. 2017, 8, 14338. [Google Scholar] [CrossRef]
- Mardones, P.; Rubinsztein, D.C.; Hetz, C. Mystery Solved: Trehalose Kickstarts Autophagy by Blocking Glucose Transport. Sci. Signal 2016, 9, fs2. [Google Scholar] [CrossRef]
- DeBosch, B.J.; Heitmeier, M.R.; Mayer, A.L.; Higgins, C.B.; Crowley, J.R.; Kraft, T.E.; Chi, M.; Newberry, E.P.; Chen, Z.; Finck, B.N.; et al. Trehalose Inhibits Solute Carrier 2A (SLC2A) Proteins to Induce Autophagy and Prevent Hepatic Steatosis. Sci. Signal 2016, 9, ra21. [Google Scholar] [CrossRef]
- Mayer, A.L.; Higgins, C.B.; Heitmeier, M.R.; Kraft, T.E.; Qian, X.; Crowley, J.R.; Hyrc, K.L.; Beatty, W.L.; Yarasheski, K.E.; Hruz, P.W.; et al. SLC2A8 (GLUT8) Is a Mammalian Trehalose Transporter Required for Trehalose-Induced Autophagy. Sci. Rep. 2016, 6, 38586. [Google Scholar] [CrossRef]
- Muto, J.; Fukuda, S.; Watanabe, K.; Dai, X.; Tsuda, T.; Kiyoi, T.; Kameda, K.; Kawakami, R.; Mori, H.; Shiraishi, K.; et al. Highly Concentrated Trehalose Induces Prohealing Senescence-like State in Fibroblasts via CDKN1A/P21. Commun. Biol. 2023, 6, 13. [Google Scholar] [CrossRef]
- Jin, J.; Zhu, K.; Tang, S.; Xiang, Y.; Mao, M.; Hong, X.; Chen, A.; Zhang, X.; Lu, H.; Chen, Z.; et al. Trehalose Promotes Functional Recovery of Keratinocytes under Oxidative Stress and Wound Healing via ATG5/ATG7. Burns 2023, 49, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Feng, Y.; Chen, T.; Zhang, Z.; He, X.; Jiang, L.; Liu, M. EGCG Restores Keratinocyte Autophagy to Promote Diabetic Wound Healing through the AMPK/ULK1 Pathway. Front. Biosci. Landmark 2023, 28, 324. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, L.; Cheng, Z.; Peng, Y.; Cao, Z.; Chen, B.; Duan, Y.; Wang, Y. SHED-Derived Exosomes Promote LPS-Induced Wound Healing with Less Itching by Stimulating Macrophage Autophagy. J. Nanobiotechnology 2022, 20, 239. [Google Scholar] [CrossRef] [PubMed]
- Li, K.C.; Wang, C.H.; Zou, J.J.; Qu, C.; Wang, X.L.; Tian, X.S.; Liu, H.W.; Cui, T. Loss of Atg7 in Endothelial Cells Enhanced Cutaneous Wound Healing in a Mouse Model. J. Surg. Res. 2020, 249, 145–155. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Dai, L.; Zhang, Y.; Wang, Y.; Hao, Y.; Ji, S.; Xu, Z.; Han, N.; Chen, H.; et al. Bafilomycin A1 Accelerates Chronic Refractory Wound Healing in Db/Db Mice. Biomed. Res. Int. 2020, 2020, 6265701. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, C.; Xu, P.; Wu, S.; Fu, X.; Xia, W.; Yao, M. AGEs Induced Autophagy Impairs Cutaneous Wound Healing via Stimulating Macrophage Polarization to M1 in Diabetes. Sci. Rep. 2016, 6, 36416. [Google Scholar] [CrossRef]
- Weinreich, J.; Löb, S.; Löffler, M.; Königsrainer, I.; Zieker, D.; Königsrainer, A.; Coerper, S.; Beckert, S. Rapamycin-Induced Impaired Wound Healing Is Associated with Compromised Tissue Lactate Accumulation and Extracellular Matrix Remodeling. Eur. Surg. Res. 2011, 47, 39–44. [Google Scholar] [CrossRef]
- Feldmeyer, L.; Hofbauer, G.F.L.; Böni, T.; French, L.E.; Hafner, J. Mammalian Target of Rapamycin (MTOR) Inhibitors Slow Skin Carcinogenesis, but Impair Wound Healing. Br. J. Dermatol. 2012, 166, 422–424. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Li, K.; Deng, L.; Wang, H. Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Front. Pharmacol. 2020, 11, 408. [Google Scholar] [CrossRef]
Biological Process | Consequences of the Biological Processes | Key Molecules and Mediators |
---|---|---|
Sensing the injury [11,12,13]. | Loss of tissue integrity, infection, DNA damage, cell death, senescence. | DAMPs (ROS, ATP, PUFAs, Egr), Ca2+, Wnt pathway, p38 signaling, MAPK/ERK pathway, regeneration-specific genetic programs through TREEs and re-activation of embryonic genetic programs, metabolic re-wiring. |
Immune response [14]. | Macrophage activation, cell migration, inflammation, cell death, debris clearance, defense from pathogens, induction of proliferation/differentiation, fibrosis, and scar formation. | PAMPs, Toll-like receptor signaling, NOD-like receptor signaling, signaling from macrophages. |
Peripheral barrier restoration [15]. | Re-epithelialization and extracellular matrix (ECM) remodeling for wound closure. | Cytokines and growth factors, Ca2+, matrix metalloproteinase (MMPs), integrins. |
Cell activation (may involve migration), cell cycle re-entry, and proliferation [16]. | Formation of a blastema or wound repair. | Wnt, BMP, Hippo, Junk, and IGF pathways, mTOR, Akt, SMG-1, growth factors, signaling from apoptotic and senescent cells. |
Differentiation and morphogenesis [17,18,19]. | Cell fate specification, pattern, and shape formation, and integration with existing tissue. | Wnt and BMP pathways, metabolic re-wiring. |
Remodeling and scaling [20,21,22,23]. | Growth with or without morphogenesis. | mTOR, JNK, and Hippo pathways, Wnt signaling, STRIPAK. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Blas, D.; Adell, T.; González-Estévez, C. Autophagy in Tissue Repair and Regeneration. Cells 2025, 14, 282. https://doi.org/10.3390/cells14040282
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells. 2025; 14(4):282. https://doi.org/10.3390/cells14040282
Chicago/Turabian StyleMoreno-Blas, Daniel, Teresa Adell, and Cristina González-Estévez. 2025. "Autophagy in Tissue Repair and Regeneration" Cells 14, no. 4: 282. https://doi.org/10.3390/cells14040282
APA StyleMoreno-Blas, D., Adell, T., & González-Estévez, C. (2025). Autophagy in Tissue Repair and Regeneration. Cells, 14(4), 282. https://doi.org/10.3390/cells14040282