The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Mouse Models
2.3. Mouse Clinical FI Assessment
2.4. Physical Function Measurements
2.5. Y-Maze Test
2.6. Open Field Test
2.7. Treatment with H2O2, Donepezil, Rivastigmine, Galantamine, Nicotine, Lobeline, Cytisine
2.8. Microarray Analysis of Mice Brain Hippocampus
2.9. Histological Analysis of Mice Hippocampus
2.10. Antibodies and Immunoblotting
2.11. Viability Analysis of HT-22 Cells
2.12. Statistics
3. Results
3.1. Comparison of Cognitive and Physical Function of Young and Adult Mice
3.2. Comparison of Young Mice (p1), Adult Mice with Normal (p2), and with Declining Cognition (p3)
3.3. Chrna3 Expression Was Reduced in the Hippocampus of Adult Mice with Cognitive Decline Compared to Adult Mice Without Cognitive Decline
3.4. Chrna3 Expression Was Downregulated by Oxidative Stress and Cholinesterase Inhibitors, and Upregulated by Nicotine and Cytisine in HT-22 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer Disease |
ANOVA | Analysis Of Variance |
Chrna3 | Cholinergic receptor nicotinic α3 subunit |
DAPI | 4′,6-Diamidino-2-phenylindole Dihydrochloride Solution |
DNA | Deoxyribonucleotidic Acid |
FI | Frailty Index |
H2O2 | Hydrogen Peroxide |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
nAChR | nicotinic Acetylcholine Receptor |
RNA | Ribonucleic Acid |
SD | Standard Deviation |
TAC | Transcriptome Analysis Console |
References
- Jakobi, J.M.; Dempsey, J.A.; Hellsten, Y.; Monette, R.; Kalmar, J.M. On the horizon of aging and physical activity research. Appl. Physiol. Nutr. Metab. 2020, 45, 113–117. [Google Scholar] [CrossRef]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Badhwar, A.; McFall, G.P.; Sapkota, S.; E Black, S.; Chertkow, H.; Duchesne, S.; Masellis, M.; Li, L.; A Dixon, R.; Bellec, P. A multiomics approach to heterogeneity in Alzheimer’s disease: Focused review and roadmap. Brain 2020, 143, 1315–1331. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.D.; Ranson, J.M.; Wallace, L.M.K.; Llewellyn, D.J.; Rockwood, K. Frailty, lifestyle, genetics and dementia risk. J. Neurol. Neurosurg. Psychiatry 2022, 93, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Collyer, T.A.; Murray, A.M.; Woods, R.L.; Storey, E.; Chong, T.T.-J.; Ryan, J.; Orchard, S.G.; Brodtmann, A.; Srikanth, V.K.; Shah, R.C.; et al. Association of Dual Decline in Cognition and Gait Speed with Risk of Dementia in Older Adults. JAMA Netw. Open 2022, 5, e2214647. [Google Scholar] [CrossRef]
- Tian, Q.; Resnick, S.M.; Mielke, M.M.; Yaffe, K.; Launer, L.J.; Jonsson, P.V.; Grande, G.; Welmer, A.-K.; Laukka, E.J.; Bandinelli, S.; et al. Association of Dual Decline in Memory and Gait Speed with Risk for Dementia Among Adults Older Than 60 Years: A Multicohort Individual-Level Meta-analysis. JAMA Netw. Open 2020, 3, e1921636. [Google Scholar] [CrossRef] [PubMed]
- Kume, Y.; Takahashi, T.; Itakura, Y.; Lee, S.; Makizako, H.; Ono, T.; Shimada, H.; Ota, H. Characteristics of Mild Cognitive Impairment in Northern Japanese Community-Dwellers from the ORANGE Registry. J. Clin. Med. 2019, 8, 1937. [Google Scholar] [CrossRef]
- Bolaji, O.A.; Shoar, S.; Ouedraogo, F.; Demelash, S.; Adabale, O. Prevalence and factors associated with cognitive frailty in heart failure: A systematic review and meta-analysis protocol. BMJ Open 2023, 13, e074737. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Yang, S.-L.; Zhao, S.; Zheng, C.-H.; Li, H.-H.; Zhang, Y.; Huang, R.-X.; Li, M.-Z.; Gao, Y.; Zhang, S.-J.; et al. Biomarkers for Early Diagnostic of Mild Cognitive Impairment in Type-2 Diabetes Patients: A Multicentre, Retrospective, Nested Case-Control Study. EBioMedicine 2016, 5, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Gholamalishahi, S.; Hosseini, S.A.; Ettorre, E.; Mannocci, A.; Okechukwu, C.E.; Keshavarz, M.J.; La Torre, G. The Association between Levels of Physical Activity and Lifestyle, Life Expectancy, and Quality of Life in Patients with Alzheimer’s Disease. J. Clin. Med. 2023, 12, 7327. [Google Scholar] [CrossRef]
- Beauchet, O.; Montembeault, M.; Barden, J.M.; Szturm, T.; Bherer, L.; Liu-Ambrose, T.; Chester, V.L.; Li, K.; Helbostad, J.L.; Allali, G.; et al. Canadian Gait Consortium. Brain gray matter volume associations with gait speed and related structural covariance networks in cognitively healthy individuals and in patients with mild cognitive impairment: A cross-sectional study. Exp. Gerontol. 2019, 122, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Pieruccini-Faria, F.; Haddad, S.M.H.; Bray, N.W.; Sarquis-Adamson, Y.; Bartha, R.; Montero-Odasso, M. Brain Structural Correlates of Obstacle Negotiation in Mild Cognitive Impairment: Results from the Gait and Brain Study. Gerontology 2023, 69, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.H.; Lawlor, B.; Kennelly, S.P.; NILVAD Study Group. Gait speed, cognition and falls in people living with mild-to-moderate Alzheimer disease: Data from NILVAD. BMC Geriatr. 2020, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Cezar, N.O.d.C.; Ansai, J.H.; de Oliveira, M.P.B.; da Silva, D.C.P.; Vale, F.A.C.; Takahashi, A.C.d.M.; de Andrade, L.P. Changes in executive function and gait in people with mild cognitive impairment and Alzheimer disease. Dement. Neuropsychol. 2021, 15, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Callisaya, M.L.; Ayers, E.; Barzilai, N.; Ferrucci, L.; Guralnik, J.M.; Lipton, R.B.; Otahal, P.; Srikanth, V.K.; Verghese, J. Motoric Cognitive Risk Syndrome and Falls Risk: A Multi-Center Study. J. Alzheimers Dis. 2016, 53, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Mekada, K.; Abe, K.; Murakami, A.; Nakamura, S.; Nakata, H.; Moriwaki, K.; Obata, Y.; Yoshiki, A. Genetic differences among C57BL/6 substrains. Exp. Anim. 2009, 58, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, J.C.; Hildebrand, B.A.; Sun, M.; Rockwood, M.R.; Rose, R.A.; Rockwood, K.; Howlett, S.E. A clinical frailty index in aging mice: Comparisons with frailty index data in humans. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 621–632. [Google Scholar] [CrossRef]
- Heinze-Milne, S.D.; Banga, S.; Howlett, S.E. Frailty Assessment in Animal Models. Gerontology 2019, 65, 610–619. [Google Scholar] [CrossRef]
- Ota, H.; Kodama, A. Dasatinib plus quercetin attenuates some frailty characteristics in SAMP10 mice. Sci. Rep. 2022, 14, 2425. [Google Scholar] [CrossRef]
- Ukai, M.; Itoh, J.; Kobayashi, T.; Shinkai, N.; Kameyama, T. Effects of the kappa-opioid dynorphin A(1–13) on learning and memory in mice. Behav. Brain Res. 1997, 83, 169–172. [Google Scholar] [CrossRef]
- Lukacs, H.; Hiatt, E.; Lei, Z.; Rao, C. Peripheral and intracerebroventricular administration of human chorionic gonadotropin alters several hippocampus-associated behaviors in cycling female rats. Horm. Behav. 1995, 29, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ota, H.; Kodama, A.; Suzuki, Y.; Ohnuma, T.; Suzuki, R.; Sugawara, K.; Sato, Y.; Kodama, H. Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice. Biomolecules 2024, 14, 1079. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, M.; Fusco, S.; Grassi, C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front. Neurosci. 2019, 13, 788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krall, W.J.; Sramek, J.J.; Cutler, N.R. Cholinesterase inhibitors: A therapeutic strategy for Alzheimer disease. Ann. Pharmacother. 1999, 33, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Bono, H.; Ogata, H.; Fujibuchi, W.; Nishioka, T.; Sato, K.; Kanehisa, M. Organizing and computing metabolic pathway data in terms of binary relations. Pac. Symp. Biocomput. 1997, 175–186. [Google Scholar]
- Available online: https://www.genome.jp/entry/hsa:1136 (accessed on 1 July 2024).
- Barlow, R.; Johnson, O. Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (−)−cytisine and (−)−lobeline hydrochloride and a comparison with (−)−nicotine and other nicotine-like compounds. Br. J. Pharmacol. 1989, 98, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. An Overview of Cognitive Impairment. Clin. Geriatr. Med. 2018, 34, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, J.; Wu, D. Risk factors for frailty in older adults. Medicine 2022, 101, e30169. [Google Scholar] [CrossRef]
- Plaza-Rosales, I.; Brunetti, E.; Montefusco-Siegmund, R.; Madariaga, S.; Hafelin, R.; Ponce, D.P.; Behrens, M.I.; Maldonado, P.E.; Paula-Lima, A. Visual-spatial processing impairment in the occipital-frontal connectivity network at early stages of Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1097577. [Google Scholar] [CrossRef]
- Kuan, Y.-C.; Huang, L.-K.; Wang, Y.-H.; Hu, C.-J.; Tseng, I.-J.; Chen, H.-C.; Lin, L.-F. Balance and gait performance in older adults with early-stage cognitive impairment. Eur. J. Phys. Rehabil. Med. 2021, 57, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.D.; Lawler, K.; Callisaya, M.L.; Alty, J. Investigating the associations between upper limb motor function and cognitive impairment: A scoping review. Geroscience 2023, 45, 3449–3473. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.-Y.; Nishita, Y.; Nakagawa, T.; Tange, C.; Tomida, M.; Shimokata, H.; Otsuka, R.; Chen, L.-K.; Arai, H. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P., III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 2009, 192, 29–60. [Google Scholar] [CrossRef]
- Zoli, M.; Pistillo, F.; Gotti, C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 2015, 96 Pt B, 302–311. [Google Scholar] [CrossRef]
- Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther. 2013, 137, 22–54. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, R.E.; Wolfman, S.L.; De Biasi, M.; Dani, J.A. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020, 177, 108256. [Google Scholar] [CrossRef] [PubMed]
- Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.; Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol. 2009, 78, 703–711. [Google Scholar] [CrossRef]
- Zoli, M.; Pucci, S.; Vilella, A.; Gotti, C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr. Neuropharmacol. 2018, 16, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; McIntosh, J.M. Characterization of nicotinic acetylcholine receptors that modulate nicotine-evoked [3H]norepinephrine release from mouse hippocampal synaptosomes. Mol. Pharmacol. 2006, 70, 967–976. [Google Scholar] [CrossRef]
- Arneric, S.P.; Holladay, M.; Williams, M. Neuronal nicotinic receptors: A perspective on two decades of drug discovery research. Biochem. Pharmacol. 2007, 74, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Mineur, Y.S.; Eibl, C.; Young, G.; Kochevar, C.; Papke, R.L.; Gündisch, D.; Picciotto, M.R. Cytisine-based nicotinic partial agonists as novel antidepressant compounds. J. Pharmacol. Exp. Ther. 2009, 329, 377–386. [Google Scholar] [CrossRef]
- Winterer, G.; Mittelstrass, K.; Giegling, I.; Lamina, C.; Fehr, C.; Brenner, H.; Breitling, L.P.; Nitz, B.; Raum, E.; Müller, H.; et al. Risk gene variants for nicotine dependence in the CHRNA5-CHRNA3-CHRNB4 cluster are associated with cognitive performance. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Wu, J.; Lukas, R.J. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem. Pharmacol. 2011, 82, 800–807. [Google Scholar] [CrossRef]
- Molas, S.; Gener, T.; Güell, J.; Martín, M.; Ballesteros-Yáñez, I.; Sanchez-Vives, M.V.; Dierssen, M. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathol. Commun. 2014, 2, 147. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Sugimoto, M.; Takada, Y.; Yamaguchi, T.; Yonezawa, A.; Katsuki, H.; Sugimoto, H.; Akaike, A. Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur. J. Pharmacol. 2005, 527, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.E.; Lessov-Schlaggar, C.N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 2007, 17, 259–273. [Google Scholar] [CrossRef]
- Wang, Q.; Du, W.; Wang, H.; Geng, P.; Sun, Y.; Zhang, J.; Wang, W.; Jin, X. Nicotine’s effect on cognition, a friend or foe? Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 124, 110723. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.D.; McClernon, F.J.; Rezvani, A.H. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 2006, 184, 523–539. [Google Scholar] [CrossRef]
- Li, X.-W.; Lu, Y.-Y.; Zhang, S.-Y.; Sai, N.-N.; Fan, Y.-Y.; Cheng, Y.; Liu, Q.-S. Mechanism of Neural Regeneration Induced by Natural Product LY01 in the 5×FAD Mouse Model of Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 926123. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Pompa, A.; Arribas, R.L.; McIntosh, J.M.; Albillos, A. Differential tyrosine and serine/threonine phosphorylation/dephosphorylation pathways regulate the expression of α7 versus α3β4 nicotinic receptor subtypes in mouse hippocampal neurons. Biochem. Biophys. Res. Commun. 2023, 684, 149115. [Google Scholar] [CrossRef] [PubMed]
- Riganti, L.; Matteoni, C.; Di Angelantonio, S.; Nistri, A.; Gaimarri, A.; Sparatore, F.; Canu-Boido, C.; Clementi, F.; Gotti, C. Long-term exposure to the new nicotinic antagonist 1,2-bisN-cytisinylethane upregulates nicotinic receptor subtypes of SH-SY5Y human neuroblastoma cells. Br. J. Pharmacol. 2005, 146, 1096–1109. [Google Scholar] [CrossRef]
- Mazzo, F.; Pistillo, F.; Grazioso, G.; Clementi, F.; Borgese, N.; Gotti, C.; Colombo, S.F. Nicotine-modulated subunit stoichiometry affects stability and trafficking of α3β4 nicotinic receptor. J. Neurosci. 2013, 33, 12316–12328. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.D.; Galea, L.A.M.; Kuroda, Y.; McEwen, B.S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 1996, 110, 1321–1334. [Google Scholar] [CrossRef]
- Cognato, G.P.; Agostinho, P.M.; Hockemeyer, J.; Müller, C.E.; Souza, D.O.; Cunha, R.A. Caffeine and an adenosine A2A receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J. Neurochem. 2010, 112, 453–462. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Sibille, E.L.; Pavlides, C.; Fenster, R.J.; McEwen, B.S.; Tóth, M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proc. Natl. Acad. Sci. USA 2000, 97, 14731–14736. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ota, H.; Ohnuma, T.; Kodama, A.; Shimizu, T.; Sugawara, K.; Yamamoto, F. The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells. Cells 2025, 14, 340. https://doi.org/10.3390/cells14050340
Ota H, Ohnuma T, Kodama A, Shimizu T, Sugawara K, Yamamoto F. The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells. Cells. 2025; 14(5):340. https://doi.org/10.3390/cells14050340
Chicago/Turabian StyleOta, Hidetaka, Takako Ohnuma, Ayuto Kodama, Tatsunori Shimizu, Kaoru Sugawara, and Fumio Yamamoto. 2025. "The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells" Cells 14, no. 5: 340. https://doi.org/10.3390/cells14050340
APA StyleOta, H., Ohnuma, T., Kodama, A., Shimizu, T., Sugawara, K., & Yamamoto, F. (2025). The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells. Cells, 14(5), 340. https://doi.org/10.3390/cells14050340