Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology
Abstract
:1. Introduction
2. GLP-1 and GLP-1RAs
3. GLP-1RAs
4. GLP-1 and GLP-1RAs Effects at the Brain Level
5. DPP-4 and DPP-4is
6. SGLT2 and SGLT2is
7. New Drugs, Comparative Analysis, and Combination/Multidrug Therapy
8. Comparison Between SGLT2is, GLP-1RAs, and DPP-4is
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T2D | type 2 diabetes |
GLP-1 | glucagon-like peptide 1 |
SGLT2 | sodium-glucose cotransporter 2 |
DPP-4 | dipeptidyl peptidase-4 |
NTS | nucleus of the solitary tract |
GLP-1RA | GLP-1 receptor agonist |
GLP-1R | GLP-1 receptor |
cAMP | cyclic adenosine monophosphate |
PKA | protein kinase A |
cAMP-GEFII or Epac2 | cAMP-regulated guanine nucleotide exchange factor |
CREB | cAMP-responsive element binding |
MACE | major adverse cardiovascular event |
CVOTs | CardioVascular Outcome Trials |
ICV | intracerebroventricular |
BAT | brown adipose tissue |
DPP-4i | dipeptidyl peptidase 4 inhibitor |
sDPP-4 | dipeptidyl peptidase 4 soluble |
AGEs | advanced glycation end products |
RAGE | advanced glycation end product receptor |
ROS | reactive oxygen species |
Ang | angiotensin |
ACE | angiotensin I-converting enzyme |
AT1R | Ang II type 1 receptor |
HF | heart failure |
STEMI | ST-segment elevation myocardial infarction |
HCV | hepatitis C virus |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
ADA | adenosine deaminase |
TGF | tubuloglomerular feedback |
GFR | glomerular filtration rate |
mProx24 | proximal tubular epithelial cells |
SGLT2is | SGLT2 inhibitors |
HK2 cells | human kidney proximal tubular cell line |
mTORC1 | rapamycin complex 1 |
KB | ketone body |
HFrEF | reduced ejection fraction |
HFpEF | preserved ejection fraction |
NOS | nitric oxide synthase |
NHE | Na+/H+ exchanger CA |
CA | cardiac arrest |
ROSC | return of spontaneous circulation |
MFN | mitofusin |
DRP1 | dynamin-related protein 1 |
AMP | adenosine monophosphate |
AMPK | activated protein kinase |
OPA1 | optic atrophy 1 |
Fis-1 | fission 1 |
GIP | glucose-dependent insulinotropic polypeptide |
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Chatzianagnostou, K.; Gaggini, M.; Suman Florentin, A.; Simonini, L.; Vassalle, C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int. J. Mol. Sci. 2024, 25, 6218. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clin. Diabetes 2022, 40, 10–38. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the Management of Cardiovascular Disease in Patients with Diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Shin, J.-I.; Xu, Y.; Chang, A.R.; Carrero, J.J.; Flaherty, C.M.; Mukhopadhyay, A.; Inker, L.A.; Blecker, S.B.; Horwitz, L.I.; Grams, M.E. Prescription Patterns for Sodium-Glucose Cotransporter 2 Inhibitors in U.S. Health Systems. J. Am. Coll. Cardiol. 2024, 84, 683–693. [Google Scholar] [CrossRef]
- Simões de Carvalho, F.; de Brito Marques, F.; Lopes, A.E.; Lima Ferreira, J.; Príncipe, R.M. Underprescription of SGLT2i and GLP-1 RA: CAREPRO-T2D (Cardiorenal Protection in Type 2 Diabetes) Cross-Sectional Study. Cureus 2023, 15, e33509. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Gribble, F.M.; Reimann, F. Signalling in the Gut Endocrine Axis. Physiol. Behav. 2017, 176, 183–188. [Google Scholar] [CrossRef]
- Williams, D.L. Minireview: Finding the Sweet Spot: Peripheral versus Central Glucagon-like Peptide 1 Action in Feeding and Glucose Homeostasis. Endocrinology 2009, 150, 2997–3001. [Google Scholar] [CrossRef]
- Stanciu, S.; Rusu, E.; Miricescu, D.; Radu, A.C.; Axinia, B.; Vrabie, A.M.; Ionescu, R.; Jinga, M.; Sirbu, C.A. Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites 2023, 13, 87. [Google Scholar] [CrossRef]
- D’Alessio, D. Is GLP-1 a Hormone: Whether and When? J. Diabetes Investig. 2016, 7 (Suppl. S1), 50–55. [Google Scholar] [CrossRef] [PubMed]
- Vilsbøll, T.; Krarup, T.; Sonne, J.; Madsbad, S.; Vølund, A.; Juul, A.G.; Holst, J.J. Incretin Secretion in Relation to Meal Size and Body Weight in Healthy Subjects and People with Type 1 and Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2003, 88, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- Hui, H.; Farilla, L.; Merkel, P.; Perfetti, R. The Short Half-Life of Glucagon-like Peptide-1 in Plasma Does Not Reflect Its Long-Lasting Beneficial Effects. Eur. J. Endocrinol. 2002, 146, 863–869. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Cignarelli, A.; Giorgino, F.; Prodam, F.; Santi, D.; Tirabassi, G.; Balercia, G.; Modica, R.; Faggiano, A.; Colao, A. GLP-1: Benefits beyond Pancreas. J. Endocrinol. Investig. 2014, 37, 1143–1153. [Google Scholar] [CrossRef]
- Doyle, M.E.; Egan, J.M. Mechanisms of Action of Glucagon-like Peptide 1 in the Pancreas. Pharmacol. Ther. 2007, 113, 546–593. [Google Scholar] [CrossRef]
- Lamont, B.J.; Li, Y.; Kwan, E.; Brown, T.J.; Gaisano, H.; Drucker, D.J. Pancreatic GLP-1 Receptor Activation Is Sufficient for Incretin Control of Glucose Metabolism in Mice. J. Clin. Investig. 2012, 122, 388–402. [Google Scholar] [CrossRef]
- MacDonald, P.E.; El-Kholy, W.; Riedel, M.J.; Salapatek, A.M.F.; Light, P.E.; Wheeler, M.B. The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion. Diabetes 2002, 51 (Suppl. S3), S434–S442. [Google Scholar] [CrossRef]
- Meloni, A.R.; DeYoung, M.B.; Lowe, C.; Parkes, D.G. GLP-1 Receptor Activated Insulin Secretion from Pancreatic β-Cells: Mechanism and Glucose Dependence. Diabetes Obes. Metab. 2013, 15, 15–27. [Google Scholar] [CrossRef]
- Eliasson, L.; Ma, X.; Renström, E.; Barg, S.; Berggren, P.-O.; Galvanovskis, J.; Gromada, J.; Jing, X.; Lundquist, I.; Salehi, A.; et al. SUR1 Regulates PKA-Independent cAMP-Induced Granule Priming in Mouse Pancreatic B-Cells. J. Gen. Physiol. 2003, 121, 181–197. [Google Scholar] [CrossRef]
- Ma, X.; Guan, Y.; Hua, X. Glucagon-like Peptide 1-Potentiated Insulin Secretion and Proliferation of Pancreatic β-Cells. J. Diabetes 2014, 6, 394–402. [Google Scholar] [CrossRef]
- Dalle, S.; Quoyer, J.; Varin, E.; Costes, S. Roles and Regulation of the Transcription Factor CREB in Pancreatic β -Cells. Curr. Mol. Pharmacol. 2011, 4, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Johnsen, A.H.; Holst, J.J. Degradation of Glucagon-like Peptide-1 by Human Plasma in Vitro Yields an N-Terminally Truncated Peptide That Is a Major Endogenous Metabolite in Vivo. J. Clin. Endocrinol. Metab. 1995, 80, 952–957. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, J.; Zwartkruis, F.J.; Verheijen, M.H.; Cool, R.H.; Nijman, S.M.; Wittinghofer, A.; Bos, J.L. Epac Is a Rap1 Guanine-Nucleotide-Exchange Factor Directly Activated by Cyclic AMP. Nature 1998, 396, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Springett, G.M.; Mochizuki, N.; Toki, S.; Nakaya, M.; Matsuda, M.; Housman, D.E.; Graybiel, A.M. A Family of cAMP-Binding Proteins That Directly Activate Rap1. Science 1998, 282, 2275–2279. [Google Scholar] [CrossRef]
- Niimura, M.; Miki, T.; Shibasaki, T.; Fujimoto, W.; Iwanaga, T.; Seino, S. Critical Role of the N-Terminal Cyclic AMP-Binding Domain of Epac2 in Its Subcellular Localization and Function. J. Cell Physiol. 2009, 219, 652–658. [Google Scholar] [CrossRef]
- Lovshin, J.A. Glucagon-like Peptide-1 Receptor Agonists: A Class Update for Treating Type 2 Diabetes. Can. J. Diabetes 2017, 41, 524–535. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Dai, S.; Gu, L.; Xiang, Z.; Xu, A.; Lu, S.; Yang, Y.; Zhou, C. Efficacy of Glucagon-like Peptide-1 Receptor Agonists in Overweight/Obese and/or T2DM Adolescents: A Meta-Analysis Based on Randomized Controlled Trials. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 323–333. [Google Scholar] [CrossRef]
- Katole, N.T.; Salankar, H.V.; Khade, A.M.; Kale, J.S.; Bankar, N.J.; Gosavi, P.; Dudhe, B.; Mankar, N.; Noman, O. The Antiobesity Effect and Safety of GLP-1 Receptor Agonist in Overweight/Obese Adolescents without Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e66280. [Google Scholar] [CrossRef]
- Latif, W.; Lambrinos, K.J.; Patel, P.; Rodriguez, R. Compare and Contrast the Glucagon-Like Peptide-1 Receptor Agonists (GLP1RAs). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Liu, J.; Conde, K.; Zhang, P.; Lilascharoen, V.; Xu, Z.; Lim, B.K.; Seeley, R.J.; Zhu, J.J.; Scott, M.M.; Pang, Z.P. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron 2017, 96, 897–909.e5. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, X.; Shi, C.; Jing, H.; Tian, Y.; Zhong, J.; Chen, G.; Xu, Y.; Luo, Y.; Zhu, Y. GLP-1R–Positive Neurons in the Lateral Septum Mediate the Anorectic and Weight-Lowering Effects of Liraglutide in Mice. J. Clin. Investig. 2024, 134, e178239. [Google Scholar] [CrossRef]
- López, M.; Diéguez, C.; Nogueiras, R. Hypothalamic GLP-1: The Control of BAT Thermogenesis and Browning of White Fat. Adipocyte 2015, 4, 141–145. [Google Scholar] [CrossRef]
- Beiroa, D.; Imbernon, M.; Gallego, R.; Senra, A.; Herranz, D.; Villarroya, F.; Serrano, M.; Fernø, J.; Salvador, J.; Escalada, J.; et al. GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning through Hypothalamic AMPK. Diabetes 2014, 63, 3346–3358. [Google Scholar] [CrossRef]
- Erbil, D.; Eren, C.Y.; Demirel, C.; Küçüker, M.U.; Solaroğlu, I.; Eser, H.Y. GLP-1’s Role in Neuroprotection: A Systematic Review. Brain Inj. 2019, 33, 734–819. [Google Scholar] [CrossRef]
- Siddeeque, N.; Hussein, M.H.; Abdelmaksoud, A.; Bishop, J.; Attia, A.S.; Elshazli, R.M.; Fawzy, M.S.; Toraih, E.A. Neuroprotective Effects of GLP-1 Receptor Agonists in Neurodegenerative Disorders: A Large-Scale Propensity-Matched Cohort Study. Int. Immunopharmacol. 2024, 143, 113537. [Google Scholar] [CrossRef] [PubMed]
- Böhm, A.; Wagner, R.; Machicao, F.; Holst, J.J.; Gallwitz, B.; Stefan, N.; Fritsche, A.; Häring, H.-U.; Staiger, H. DPP4 Gene Variation Affects GLP-1 Secretion, Insulin Secretion, and Glucose Tolerance in Humans with High Body Adiposity. PLoS ONE 2017, 12, e0181880. [Google Scholar] [CrossRef] [PubMed]
- Misumi, Y.; Hayashi, Y.; Arakawa, F.; Ikehara, Y. Molecular Cloning and Sequence Analysis of Human Dipeptidyl Peptidase IV, a Serine Proteinase on the Cell Surface. Biochim. Biophys. Acta 1992, 1131, 333–336. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, B.; Luo, D.; Wang, H.; Cao, H.; Chen, X.; Tian, L.; Yu, X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front. Endocrinol. 2022, 13, 856954. [Google Scholar] [CrossRef]
- Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl Peptidase 4 Inhibitors and Their Potential Immune Modulatory Functions. Pharmacol. Ther. 2020, 209, 107503. [Google Scholar] [CrossRef]
- Tomovic, K.; Lazarevic, J.; Kocic, G.; Deljanin-Ilic, M.; Anderluh, M.; Smelcerovic, A. Mechanisms and Pathways of Anti-Inflammatory Activity of DPP-4 Inhibitors in Cardiovascular and Renal Protection. Med. Res. Rev. 2019, 39, 404–422. [Google Scholar] [CrossRef]
- Pechmann, L.M.; Pinheiro, F.I.; Andrade, V.F.C.; Moreira, C.A. The Multiple Actions of Dipeptidyl Peptidase 4 (DPP-4) and Its Pharmacological Inhibition on Bone Metabolism: A Review. Diabetol. Metab. Syndr. 2024, 16, 175. [Google Scholar] [CrossRef]
- Kirino, Y.; Sei, M.; Kawazoe, K.; Minakuchi, K.; Sato, Y. Plasma Dipeptidyl Peptidase 4 Activity Correlates with Body Mass Index and the Plasma Adiponectin Concentration in Healthy Young People. Endocr. J. 2012, 59, 949–953. [Google Scholar] [CrossRef]
- Deacon, C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 80. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Dule, S.; Cavallo, M.G. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines 2022, 10, 2306. [Google Scholar] [CrossRef]
- Röhrborn, D.; Brückner, J.; Sell, H.; Eckel, J. Reduced DPP4 Activity Improves Insulin Signaling in Primary Human Adipocytes. Biochem. Biophys. Res. Commun. 2016, 471, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Holst, J.J. Dipeptidyl Peptidase-4 Inhibitors for the Treatment of Type 2 Diabetes: Comparison, Efficacy and Safety. Expert. Opin. Pharmacother. 2013, 14, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Makrilakis, K. The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect. Int. J. Environ. Res. Public. Health 2019, 16, 2720. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Y.; Shi, L.; Li, L.; Zhang, D.; Gong, Z.; Wu, Q. Activation and Modulation of the AGEs-RAGE Axis: Implications for Inflammatory Pathologies and Therapeutic Interventions—A Review. Pharmacol. Res. 2024, 206, 107282. [Google Scholar] [CrossRef] [PubMed]
- Kaifu, K.; Ueda, S.; Nakamura, N.; Matsui, T.; Yamada-Obara, N.; Ando, R.; Kaida, Y.; Nakata, M.; Matsukuma-Toyonaga, M.; Higashimoto, Y.; et al. Advanced Glycation End Products Evoke Inflammatory Reactions in Proximal Tubular Cells via Autocrine Production of Dipeptidyl Peptidase-4. Microvasc. Res. 2018, 120, 90–93. [Google Scholar] [CrossRef]
- Matsui, T.; Nakashima, S.; Nishino, Y.; Ojima, A.; Nakamura, N.; Arima, K.; Fukami, K.; Okuda, S.; Yamagishi, S. Dipeptidyl Peptidase-4 Deficiency Protects against Experimental Diabetic Nephropathy Partly by Blocking the Advanced Glycation End Products-Receptor Axis. Lab. Investig. 2015, 95, 525–533. [Google Scholar] [CrossRef]
- Lee, D.-S.; Lee, E.-S.; Alam, M.M.; Jang, J.-H.; Lee, H.-S.; Oh, H.; Kim, Y.-C.; Manzoor, Z.; Koh, Y.-S.; Kang, D.-G.; et al. Soluble DPP-4 up-Regulates Toll-like Receptors and Augments Inflammatory Reactions, Which Are Ameliorated by Vildagliptin or Mannose-6-Phosphate. Metabolism 2016, 65, 89–101. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Simpson, R.W.; Dear, A.E. GLP-1-Dependent and Independent Effects and Molecular Mechanisms of a Dipeptidyl Peptidase 4 Inhibitor in Vascular Endothelial Cells. Mol. Biol. Rep. 2013, 40, 2273–2279. [Google Scholar] [CrossRef]
- Romacho, T.; Vallejo, S.; Villalobos, L.A.; Wronkowitz, N.; Indrakusuma, I.; Sell, H.; Eckel, J.; Sánchez-Ferrer, C.F.; Peiró, C. Soluble Dipeptidyl Peptidase-4 Induces Microvascular Endothelial Dysfunction through Proteinase-Activated Receptor-2 and Thromboxane A2 Release. J. Hypertens. 2016, 34, 869–876. [Google Scholar] [CrossRef]
- Zhong, J.; Rajagopalan, S. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease. Front. Immunol. 2015, 6, 477. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Wu, S.-T.; Du, C.-X.; Ku, H.-C. Potential Role of Dipeptidyl Peptidase-4 in Regulating Mitochondria and Oxidative Stress in Cardiomyocytes. Cardiovasc. Toxicol. 2024, 24, 1090–1104. [Google Scholar] [CrossRef] [PubMed]
- Varin, E.M.; Mulvihill, E.E.; Beaudry, J.L.; Pujadas, G.; Fuchs, S.; Tanti, J.-F.; Fazio, S.; Kaur, K.; Cao, X.; Baggio, L.L.; et al. Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition. Cell Metab. 2019, 29, 320–334.e5. [Google Scholar] [CrossRef] [PubMed]
- Rohmann, N.; Schlicht, K.; Geisler, C.; Hollstein, T.; Knappe, C.; Krause, L.; Hagen, S.; Beckmann, A.; Seoudy, A.K.; Wietzke-Braun, P.; et al. Circulating sDPP-4 Is Increased in Obesity and Insulin Resistance but Is Not Related to Systemic Metabolic Inflammation. J. Clin. Endocrinol. Metab. 2021, 106, e592–e601. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.L.; Ribeiro-Silva, J.C.; Nistala, R.; Girardi, A.C.C. Bidirectional Relation between Dipeptidyl Peptidase 4 and Angiotensin II Type I Receptor Signaling. Am. J. Physiol. Cell Physiol. 2024, 326, C1203–C1211. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lee, S.-Y.; Du, C.-X.; Ku, H.-C. Soluble Dipeptidyl Peptidase-4 Induces Epithelial-Mesenchymal Transition through Tumor Growth Factor-β Receptor. Pharmacol. Rep. 2023, 75, 1005–1016. [Google Scholar] [CrossRef]
- Gillani, S.W.; Syed Sulaiman, S.A.; Menon, V.; Rahamathullah, N.; Elshafie, R.M.; Rathore, H.A. Effect of Different Antidiabetic Medications on Atherosclerotic Cardiovascular Disease (ASCVD) Risk Score among Patients with Type-2 Diabetes Mellitus: A Multicenter Non-Interventional Observational Study. PLoS ONE 2022, 17, e0270143. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Kong, X.-Q.; Zhang, K.-F.; Luo, S.; Wang, F.; Zhang, J.-J. DPP4 as a Potential Candidate in Cardiovascular Disease. J. Inflamm. Res. 2022, 15, 5457–5469. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Faigle, M.; Knapp, S.; Karhausen, J.; Ibla, J.; Rosenberger, P.; Odegard, K.C.; Laussen, P.C.; Thompson, L.F.; Colgan, S.P. Endothelial Catabolism of Extracellular Adenosine during Hypoxia: The Role of Surface Adenosine Deaminase and CD26. Blood 2006, 108, 1602–1610. [Google Scholar] [CrossRef]
- Kubota, A.; Takano, H.; Wang, H.; Hasegawa, H.; Tadokoro, H.; Hirose, M.; Kobara, Y.; Yamada-Inagawa, T.; Komuro, I.; Kobayashi, Y. DPP-4 Inhibition Has Beneficial Effects on the Heart after Myocardial Infarction. J. Mol. Cell Cardiol. 2016, 91, 72–80. [Google Scholar] [CrossRef]
- Li, J.-W.; Chen, Y.-D.; Chen, W.-R.; You, Q.; Li, B.; Zhou, H.; Zhang, Y.; Han, T.-W. Prognostic Value of Plasma DPP4 Activity in ST-Elevation Myocardial Infarction. Cardiovasc. Diabetol. 2017, 16, 72. [Google Scholar] [CrossRef]
- Rau, M.; Schmitt, J.; Berg, T.; Kremer, A.E.; Stieger, B.; Spanaus, K.; Bengsch, B.; Romero, M.R.; Marin, J.J.; Keitel, V.; et al. Serum IP-10 Levels and Increased DPPIV Activity Are Linked to Circulating CXCR3+ T Cells in Cholestatic HCV Patients. PLoS ONE 2018, 13, e0208225. [Google Scholar] [CrossRef] [PubMed]
- Barchetta, I.; Ceccarelli, V.; Cimini, F.A.; Barone, E.; Sentinelli, F.; Coluzzi, M.; Chiappetta, C.; Bertoccini, L.; Tramutola, A.; Labbadia, G.; et al. Circulating Dipeptidyl Peptidase-4 Is Independently Associated with the Presence and Severity of NAFLD/NASH in Individuals with and without Obesity and Metabolic Disease. J. Endocrinol. Investig. 2021, 44, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Higuera-de la Tijera, F.; Servín-Caamaño, A.I. Pathophysiological Mechanisms Involved in Non-Alcoholic Steatohepatitis and Novel Potential Therapeutic Targets. World J. Hepatol. 2015, 7, 1297–1301. [Google Scholar] [CrossRef]
- Blaslov, K.; Bulum, T.; Knežević-Ćuća, J.; Duvnjak, L. Fasting Serum Dipeptidyl Peptidase-4 Activity Is Independently Associated with Alanine Aminotransferase in Type 1 Diabetic Patients. Clin. Biochem. 2015, 48, 39–43. [Google Scholar] [CrossRef]
- Kotrulev, M.; Gomez-Touriño, I.; Cordero, O.J. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers 2024, 16, 2427. [Google Scholar] [CrossRef]
- Sinnathurai, P.; Lau, W.; Vieira de Ribeiro, A.J.; Bachovchin, W.W.; Englert, H.; Howe, G.; Spencer, D.; Manolios, N.; Gorrell, M.D. Circulating Fibroblast Activation Protein and Dipeptidyl Peptidase 4 in Rheumatoid Arthritis and Systemic Sclerosis. Int. J. Rheum. Dis. 2018, 21, 1915–1923. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Xue, X. Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases. Molecules 2022, 27, 4498. [Google Scholar] [CrossRef]
- Gorrell, M.D.; Wickson, J.; McCaughan, G.W. Expression of the Rat CD26 Antigen (Dipeptidyl Peptidase IV) on Subpopulations of Rat Lymphocytes. Cell Immunol. 1991, 134, 205–215. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Wei, Y.; Li, X.; Gao, S.; Dong, L.; Rao, X.; Zhong, J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front. Immunol. 2022, 13, 830863. [Google Scholar] [CrossRef]
- Kasina, S.V.S.K.; Baradhi, K.M. Dipeptidyl Peptidase IV (DPP IV) Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island FL, USA, 2025. [Google Scholar]
- Huang, J.; Jia, Y.; Sun, S.; Meng, L. Adverse Event Profiles of Dipeptidyl Peptidase-4 Inhibitors: Data Mining of the Public Version of the FDA Adverse Event Reporting System. BMC Pharmacol. Toxicol. 2020, 21, 68. [Google Scholar] [CrossRef]
- Ahwin, P.; Martinez, D. The Relationship between SGLT2 and Systemic Blood Pressure Regulation. Hypertens. Res. 2024, 47, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Perkins, B.A.; Soleymanlou, N.; Maione, M.; Lai, V.; Lee, A.; Fagan, N.M.; Woerle, H.J.; Johansen, O.E.; Broedl, U.C.; et al. Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients with Type 1 Diabetes Mellitus. Circulation 2014, 129, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Yamagishi, S. Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation. Horm. Metab. Res. 2016, 48, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Ojima, A.; Matsui, T.; Nishino, Y.; Nakamura, N.; Yamagishi, S. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm. Metab. Res. 2015, 47, 686–692. [Google Scholar] [CrossRef]
- Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H.; et al. Long-Term Treatment with the Sodium Glucose Cotransporter 2 Inhibitor, Dapagliflozin, Ameliorates Glucose Homeostasis and Diabetic Nephropathy in Db/Db Mice. PLoS ONE 2014, 9, e100777. [Google Scholar] [CrossRef]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 PROTEIN INHIBITION DECREASES RENAL LIPID ACCUMULATION, INFLAMMATION, AND THE DEVELOPMENT OF NEPHROPATHY IN DIABETIC MICE. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef]
- Vivian, E.M. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Growing Class of Antidiabetic Agents. Drugs Context 2014, 3, 212264. [Google Scholar] [CrossRef]
- Fathi, A.; Vickneson, K.; Singh, J.S. SGLT2-Inhibitors; More than Just Glycosuria and Diuresis. Heart Fail. Rev. 2021, 26, 623–642. [Google Scholar] [CrossRef]
- van Bommel, E.J.M.; Muskiet, M.H.A.; van Baar, M.J.B.; Tonneijck, L.; Smits, M.M.; Emanuel, A.L.; Bozovic, A.; Danser, A.H.J.; Geurts, F.; Hoorn, E.J.; et al. The Renal Hemodynamic Effects of the SGLT2 Inhibitor Dapagliflozin Are Caused by Post-Glomerular Vasodilatation Rather than Pre-Glomerular Vasoconstriction in Metformin-Treated Patients with Type 2 Diabetes in the Randomized, Double-Blind RED Trial. Kidney Int. 2020, 97, 202–212. [Google Scholar] [CrossRef]
- Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 Inhibition in Human Kidney Proximal Tubular Cells—Renoprotection in Diabetic Nephropathy? PLoS ONE 2013, 8, e54442. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin Reduces Inflammation and Fibrosis Biomarkers: A Potential Mechanism of Action for Beneficial Effects of SGLT2 Inhibitors in Diabetic Kidney Disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Rajasekeran, H.; Cherney, D.Z.; Lovshin, J.A. Do Effects of Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Diabetes Give Insight into Potential Use in Non-Diabetic Kidney Disease? Curr. Opin. Nephrol. Hypertens. 2017, 26, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Tomita, I.; Kume, S.; Sugahara, S.; Osawa, N.; Yamahara, K.; Yasuda-Yamahara, M.; Takeda, N.; Chin-Kanasaki, M.; Kaneko, T.; Mayoux, E.; et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 2020, 32, 404–419.e6. [Google Scholar] [CrossRef]
- Tsai, K.-F.; Chen, Y.-L.; Chiou, T.T.-Y.; Chu, T.-H.; Li, L.-C.; Ng, H.-Y.; Lee, W.-C.; Lee, C.-T. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants 2021, 10, 1166. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef]
- Marfella, R.; Scisciola, L.; D’Onofrio, N.; Maiello, C.; Trotta, M.C.; Sardu, C.; Panarese, I.; Ferraraccio, F.; Capuano, A.; Barbieri, M.; et al. Sodium-Glucose Cotransporter-2 (SGLT2) Expression in Diabetic and Non-Diabetic Failing Human Cardiomyocytes. Pharmacol. Res. 2022, 184, 106448. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Cui, L.; Gu, S.; Zhao, J.; Wang, H. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiovascular and Cerebrovascular Diseases: A Meta-Analysis of Controlled Clinical Trials. Front. Endocrinol. 2024, 15, 1436217. [Google Scholar] [CrossRef]
- Mazidi, M.; Rezaie, P.; Gao, H.; Kengne, A.P. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials with 22 528 Patients. JAHA 2017, 6, e004007. [Google Scholar] [CrossRef]
- Chesterman, T.; Thynne, T.R. Harms and Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. Aust. Prescr. 2020, 43, 168–171. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 2099. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Al Jobori, H.; Daniele, G.; Adams, J.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A.; Abdul-Ghani, M. Determinants of the Increase in Ketone Concentration during SGLT2 Inhibition in NGT, IFG and T2DM Patients. Diabetes Obes. Metab. 2017, 19, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.-J. Metabolic Response to Sodium-Glucose Cotransporter 2 Inhibition in Type 2 Diabetic Patients. J. Clin. Investig. 2014, 124, 499–508. [Google Scholar] [CrossRef]
- Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects without Diabetes and Patients with Type 2 Diabetes. Diabetes 2016, 65, 1190–1195. [Google Scholar] [CrossRef]
- Su, S.; Ji, X.; Li, T.; Teng, Y.; Wang, B.; Han, X.; Zhao, M. The Changes of Cardiac Energy Metabolism with Sodium-Glucose Transporter 2 Inhibitor Therapy. Front. Cardiovasc. Med. 2023, 10, 1291450. [Google Scholar] [CrossRef]
- Yurista, S.R.; Silljé, H.H.W.; Oberdorf-Maass, S.U.; Schouten, E.-M.; Pavez Giani, M.G.; Hillebrands, J.-L.; van Goor, H.; van Veldhuisen, D.J.; de Boer, R.A.; Westenbrink, B.D. Sodium-Glucose Co-Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non-Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. Eur. J. Heart Fail. 2019, 21, 862–873. [Google Scholar] [CrossRef]
- Butts, B.; Gary, R.A.; Dunbar, S.B.; Butler, J. The Importance of NLRP3 Inflammasome in Heart Failure. J. Card. Fail. 2015, 21, 586–593. [Google Scholar] [CrossRef]
- Benetti, E.; Mastrocola, R.; Vitarelli, G.; Cutrin, J.C.; Nigro, D.; Chiazza, F.; Mayoux, E.; Collino, M.; Fantozzi, R. Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation. J. Pharmacol. Exp. Ther. 2016, 359, 45–53. [Google Scholar] [CrossRef]
- Kondo, H.; Akoumianakis, I.; Badi, I.; Akawi, N.; Kotanidis, C.P.; Polkinghorne, M.; Stadiotti, I.; Sommariva, E.; Antonopoulos, A.S.; Carena, M.C.; et al. Effects of Canagliflozin on Human Myocardial Redox Signalling: Clinical Implications. Eur. Heart J. 2021, 42, 4947–4960. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P.J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; et al. Impact of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors on Atherosclerosis: From Pharmacology to Pre-Clinical and Clinical Therapeutics. Theranostics 2021, 11, 4502–4515. [Google Scholar] [CrossRef] [PubMed]
- Rahadian, A.; Fukuda, D.; Salim, H.M.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Sata, M. Canagliflozin Prevents Diabetes-Induced Vascular Dysfunction in ApoE-Deficient Mice. J. Atheroscler. Thromb. 2020, 27, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; McGuire, D.K. Sodium-Glucose Cotransporter-2 Inhibition for the Reduction of Cardiovascular Events in High-Risk Patients with Diabetes Mellitus. Eur. Heart J. 2016, 37, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
- Baartscheer, A.; Schumacher, C.A.; van Borren, M.M.G.J.; Belterman, C.N.W.; Coronel, R.; Fiolet, J.W.T. Increased Na+/H+-Exchange Activity Is the Cause of Increased [Na+]i and Underlies Disturbed Calcium Handling in the Rabbit Pressure and Volume Overload Heart Failure Model. Cardiovasc. Res. 2003, 57, 1015–1024. [Google Scholar] [CrossRef]
- Pogwizd, S.M.; Sipido, K.R.; Verdonck, F.; Bers, D.M. Intracellular Na in Animal Models of Hypertrophy and Heart Failure: Contractile Function and Arrhythmogenesis. Cardiovasc. Res. 2003, 57, 887–896. [Google Scholar] [CrossRef]
- Baartscheer, A.; Schumacher, C.A.; Wüst, R.C.I.; Fiolet, J.W.T.; Stienen, G.J.M.; Coronel, R.; Zuurbier, C.J. Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia 2017, 60, 568–573. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, K.; Liang, L.; Liu, Y.; Song, F.; Ge, Q.; Fang, X.; Yu, T.; Huang, Z.; Jiang, L.; et al. Sodium-Glucose Co-Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function After Cardiac Arrest in Rats by Enhancing Mitochondrial Energy Metabolism. Front. Pharmacol. 2021, 12, 758080. [Google Scholar] [CrossRef]
- Xu, L.; Xu, C.; Liu, X.; Li, X.; Li, T.; Yu, X.; Xue, M.; Yang, J.; Kosmas, C.E.; Moris, D.; et al. Empagliflozin Induces White Adipocyte Browning and Modulates Mitochondrial Dynamics in KK Cg-Ay/J Mice and Mouse Adipocytes. Front. Physiol. 2021, 12, 745058. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Zhu, P.; Hu, S.; Chen, Y.; Ren, J. Empagliflozin Rescues Diabetic Myocardial Microvascular Injury via AMPK-Mediated Inhibition of Mitochondrial Fission. Redox Biol. 2018, 15, 335–346. [Google Scholar] [CrossRef]
- Bode, D.; Semmler, L.; Wakula, P.; Hegemann, N.; Primessnig, U.; Beindorff, N.; Powell, D.; Dahmen, R.; Ruetten, H.; Oeing, C.; et al. Dual SGLT-1 and SGLT-2 Inhibition Improves Left Atrial Dysfunction in HFpEF. Cardiovasc. Diabetol. 2021, 20, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, H.; Yang, X.; Shi, J.; Sheng, X.; Wang, L.; Li, T.; Quan, H.; Zhai, X.; Li, W. Effects of Dapagliflozin Monotherapy and Combined Aerobic Exercise on Skeletal Muscle Mitochondrial Quality Control and Insulin Resistance in Type 2 Diabetes Mellitus Rats. Biomed. Pharmacother. 2023, 169, 115852. [Google Scholar] [CrossRef] [PubMed]
- Durak, A.; Olgar, Y.; Degirmenci, S.; Akkus, E.; Tuncay, E.; Turan, B. A SGLT2 Inhibitor Dapagliflozin Suppresses Prolonged Ventricular-Repolarization through Augmentation of Mitochondrial Function in Insulin-Resistant Metabolic Syndrome Rats. Cardiovasc. Diabetol. 2018, 17, 144. [Google Scholar] [CrossRef]
- Fatima, H.; Rangwala, H.S.; Mustafa, M.S.; Shafique, M.A.; Abbas, S.R.; Rizwan, A.; Fadlalla Ahmed, T.K.; Arshad, A. Evaluating Glycemic Control Efficacy and Safety of the Oral Small Molecule Glucagon-Like Peptide 1 Receptor Agonist Danuglipron in Type 2 Diabetes Patients: A Systemic Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2023, 16, 3567–3578. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Pamporis, K.; Stachteas, P.; Bougioukas, K.I.; Klisic, A.; Fragakis, N.; Rizzo, M. Safety and Efficacy of the New, Oral, Small-Molecule, GLP-1 Receptor Agonists Orforglipron and Danuglipron for the Treatment of Type 2 Diabetes and Obesity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolism 2023, 149, 155710. [Google Scholar] [CrossRef] [PubMed]
- Lütkemeyer, C.; Pasqualotto, E.; Ferreira, R.O.M.; Chavez, M.P.; Petris, I.; dos Santos, H.V.; Wille, J.M.; Hohl, A.; Ronsoni, M.F.; van de Sande-Lee, S. Effects of Once-Daily Oral Orforglipron on Weight and Metabolic Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Endocrinol. Metab. 2024, 68, e230469. [Google Scholar] [CrossRef]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and Safety of a Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide in Patients with Type 2 Diabetes (SURPASS-1): A Double-Blind, Randomised, Phase 3 Trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef]
- Coskun, T.; Urva, S.; Roell, W.C.; Qu, H.; Loghin, C.; Moyers, J.S.; O’Farrell, L.S.; Briere, D.A.; Sloop, K.W.; Thomas, M.K.; et al. LY3437943, a Novel Triple Glucagon, GIP, and GLP-1 Receptor Agonist for Glycemic Control and Weight Loss: From Discovery to Clinical Proof of Concept. Cell Metab. 2022, 34, 1234–1247.e9. [Google Scholar] [CrossRef]
- Urva, S.; Coskun, T.; Loh, M.T.; Du, Y.; Thomas, M.K.; Gurbuz, S.; Haupt, A.; Benson, C.T.; Hernandez-Illas, M.; D’Alessio, D.A.; et al. LY3437943, a Novel Triple GIP, GLP-1, and Glucagon Receptor Agonist in People with Type 2 Diabetes: A Phase 1b, Multicentre, Double-Blind, Placebo-Controlled, Randomised, Multiple-Ascending Dose Trial. Lancet 2022, 400, 1869–1881. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L.; et al. Triple-Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef]
- Sumithran, P.; Russell, A.W.; Zoungas, S. Cardiovascular Effects of Tirzepatide. J. Endocrinol. 2025, 264, e240259. [Google Scholar] [CrossRef]
- Khera, R.; Aminorroaya, A.; Dhingra, L.S.; Thangaraj, P.M.; Camargos, A.P.; Bu, F.; Ding, X.; Nishimura, A.; Anand, T.V.; Arshad, F.; et al. Comparative Effectiveness of Second-Line Antihyperglycemic Agents for Cardiovascular Outcomes: A Large-Scale, Multinational, Federated Analysis of the LEGEND-T2DM Study. Comparative Effectiveness of Second-line Antihyperglycemic Agents for Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2024, 84, 904–917. [Google Scholar] [CrossRef] [PubMed]
- Brønden, A.; Christensen, M.B.; Glintborg, D.; Snorgaard, O.; Kofoed-Enevoldsen, A.; Madsen, G.K.; Toft, K.; Kristensen, J.K.; Højlund, K.; Hansen, T.K.; et al. Effects of DPP-4 Inhibitors, GLP-1 Receptor Agonists, SGLT-2 Inhibitors and Sulphonylureas on Mortality, Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Network Meta-Analyses-Driven Approach. Diabet. Med. 2023, 40, e15157. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Cardiovascular and Renal Effects of the Combination Therapy of a GLP-1 Receptor Agonist and an SGLT2 Inhibitor in Observational Real-Life Studies. Diabetes Metab. 2024, 51, 101594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, C.; Cai, X.; Jiao, R.; Bai, S.; Li, Z.; Lv, F.; Yang, W.; Liu, G.; Yang, X.; et al. One or Two? Comparison of the Cardiorenal Effects between Combination Therapy and Monotherapy with SGLT2i or GLP1RA. Diabetes Obes. Metab. 2025, 27, 806–815. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Cao, Q. Efficacy and Safety of GLP-1 Receptor Agonists Combined with SGLT-2 Inhibitors in Elderly Patients with Type 2 Diabetes: A Meta-Analysis. Am. J. Transl. Res. 2024, 16, 6852–6866. [Google Scholar] [CrossRef]
- Tuersun, A.; Hou, G.; Cheng, G. Efficacy and Safety of the Combination or Monotherapy with GLP-1 Receptor Agonists and SGLT-2 Inhibitors in Type 2 Diabetes Mellitus: An Update Systematic Review and Meta-Analysis. Am. J. Med. Sci. 2024, 368, 579–588. [Google Scholar] [CrossRef]
- Vale, C.; Lourenço, I.M.; Jordan, G.; Golovaty, I.; Torres, H.; Moin, T.; Buysschaert, M.; Neves, J.S.; Bergman, M. Early Combination Therapy with SGLT2i and GLP-1 RA or Dual GIP/GLP-1 RA in Type 2 Diabetes. Diabetes Obes. Metab. 2025, 27, 468–481. [Google Scholar] [CrossRef]
- Pawaskar, M.; Bilir, S.P.; Kowal, S.; Gonzalez, C.; Rajpathak, S.; Davies, G. Cost-Effectiveness of DPP-4 Inhibitor and SGLT2 Inhibitor Combination Therapy for Type 2 Diabetes. Am. J. Manag. Care 2019, 25, 231–238. [Google Scholar]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Giugliano, D.; Scappaticcio, L.; Longo, M.; Bellastella, G.; Esposito, K. GLP-1 Receptor Agonists vs. SGLT-2 Inhibitors: The Gap Seems to Be Leveling Off. Cardiovasc. Diabetol. 2021, 20, 205. [Google Scholar] [CrossRef]
- Tomlinson, B.; Chan, P. Effects of Glucose-Lowering Drugs on Cardiovascular Outcomes in Patients with Type 2 Diabetes: An Update. Expert. Opin. Drug Metab. Toxicol. 2024, 20, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Hage, C. GLP-1 Receptor Agonists in Heart Failure: How Far to Expand Use? Lancet 2024, 404, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.S.; Packer, M.; Ferreira, J.P. Increased Risk of Heart Failure Hospitalization with GLP-1 Receptor Agonists in Patients with Reduced Ejection Fraction: A Meta-Analysis of the EXSCEL and FIGHT Trials. J. Card. Fail. 2023, 29, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Sharma, A.; Butler, J.; Packer, M.; Zannad, F.; Vasques-Nóvoa, F.; Leite-Moreira, A.; Neves, J.S. Glucagon-Like Peptide-1 Receptor Agonists Across the Spectrum of Heart Failure. J. Clin. Endocrinol. Metab. 2023, 109, 4–9. [Google Scholar] [CrossRef]
- Clifton, P. Do Dipeptidyl Peptidase IV (DPP-IV) Inhibitors Cause Heart Failure? Clin. Ther. 2014, 36, 2072–2079. [Google Scholar] [CrossRef]
- Scirica, B.M.; Braunwald, E.; Raz, I.; Cavender, M.A.; Morrow, D.A.; Jarolim, P.; Udell, J.A.; Mosenzon, O.; Im, K.; Umez-Eronini, A.A.; et al. Heart Failure, Saxagliptin, and Diabetes Mellitus: Observations from the SAVOR-TIMI 53 Randomized Trial. Circulation 2014, 130, 1579–1588. [Google Scholar] [CrossRef]
- Vörös, I.; Onódi, Z.; Tóth, V.É.; Gergely, T.G.; Sághy, É.; Görbe, A.; Kemény, Á.; Leszek, P.; Helyes, Z.; Ferdinandy, P.; et al. Saxagliptin Cardiotoxicity in Chronic Heart Failure: The Role of DPP4 in the Regulation of Neuropeptide Tone. Biomedicines 2022, 10, 1573. [Google Scholar] [CrossRef]
- Epelde, F. Impact of DPP-4 Inhibitors in Patients with Diabetes Mellitus and Heart Failure: An In-Depth Review. Medicina 2024, 60, 1986. [Google Scholar] [CrossRef]
- Kongwatcharapong, J.; Dilokthornsakul, P.; Nathisuwan, S.; Phrommintikul, A.; Chaiyakunapruk, N. Effect of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure: A Meta-Analysis of Randomized Clinical Trials. Int. J. Cardiol. 2016, 211, 88–95. [Google Scholar] [CrossRef]
- Mannucci, E.; Nreu, B.; Montereggi, C.; Ragghianti, B.; Gallo, M.; Giaccari, A.; Monami, M. SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes Cardiovascular Events and All-Cause Mortality in Patients with Type 2 Diabetes Treated with Dipeptidyl Peptidase-4 Inhibitors: An Extensive Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2745–2755. [Google Scholar] [CrossRef]
- Guo, W.-Q.; Li, L.; Su, Q.; Dai, W.-R.; Ye, Z.-L. Effect of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure: A Network Meta-Analysis. Value Health 2017, 20, 1427–1430. [Google Scholar] [CrossRef]
Drug | Study Acronym | Patient Number | Dose | Frequency | Primary CV Outcome | Results vs. Placebo | Ref |
---|---|---|---|---|---|---|---|
Exenatide | EXCEL | 14752 | 2 mg | O/W | CV death, AMI, stroke | noninferiority | [27] |
Lixisenatide | ELIXA | 6068 | 20 µg | O/D | CV death, AMI, stroke | noninferiority | [28] |
Liraglutide | LEADER | 9340 | 1.8 (or MTD) | O/D | CV death, AMI, stroke | superiority | [29] |
Semaglutide | SUSTAIN-6 | 2735 | 0.5–1 | O/W | CV death, AMI, stroke | superiority | [30] |
Oral Semaglutide | PIONEER-6 | 3183 | 3–14 | O/D | CV death, AMI, stroke | noninferiority | [31] |
Albiglutide | HARMONY OUTCOMES | 9.463 | 30 (until 50) | O/W | CV death, AMI, stroke | superiority | [32] |
Dulaglutide | REWIND | 9901 | 1.5 | O/W | CV death, AMI, stroke | superiority | [33] |
Adipose tissue | Inflammation Fibrosis VAT insulin resistance |
Pancreatic islets | β-cell function and survival reduction Insulin secretion impairment |
Liver | Inflammation Altered lipid metabolism Insulin resistance Steatosis/fibrosis |
T lymphocytes | Immune response |
Macrophages | Inflammation Chemotaxis |
NK cells, eosinophils, basophils | Inflammation |
Kidney | Inflammation/oxidative stress Fibrosis |
CVD | Endothelial progenitor cell reduction Endothelial dysfunction/impaired vasodilation Inflammation/oxidative stress Myocardial fibrosis Reduced cardiac function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggini, M.; Sabatino, L.; Suman, A.F.; Chatzianagnostou, K.; Vassalle, C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025, 14, 387. https://doi.org/10.3390/cells14050387
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells. 2025; 14(5):387. https://doi.org/10.3390/cells14050387
Chicago/Turabian StyleGaggini, Melania, Laura Sabatino, Adrian Florentin Suman, Kyriazoula Chatzianagnostou, and Cristina Vassalle. 2025. "Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology" Cells 14, no. 5: 387. https://doi.org/10.3390/cells14050387
APA StyleGaggini, M., Sabatino, L., Suman, A. F., Chatzianagnostou, K., & Vassalle, C. (2025). Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells, 14(5), 387. https://doi.org/10.3390/cells14050387