The Combination of Neurotropic Vitamins B1, B6, and B12 Enhances Neural Cell Maturation and Connectivity Superior to Single B Vitamins
Abstract
:1. Introduction
1.1. Vitamin B1 (Thiamine) and Nerve Health
1.2. Vitamin B6 (Pyridoxine) and Neurotransmitter Synthesis
1.3. Vitamin B12 (Cobalamin) and Myelin Integrity
1.4. Synergistic Effects of B Vitamins
2. Materials and Methods
2.1. Cell Cultures
2.1.1. 3D Co-Culture Model
2.1.2. 2D Co-Culture Model for Synapsing and Networking Measurements
2.2. Preparation of Test Medium
2.3. Insult to Induce Nerve Cell Damage
2.4. Analytical Assays
2.4.1. AlamarBlue® Cell Viability Assay
2.4.2. NeuroFluor™ Maturation Detection Assay
2.4.3. Neuron 2D Cell Culture Morphology
2.4.4. 2D Neuron Images Masking Methodology
2.5. Statistical Analysis
2.6. Proteomic Analysis
2.6.1. 3D Co-Culture Sample Preparation and Data Acquisition for Proteomic Analysis
2.6.2. Proteomics Data Processing and Theme Analysis
3. Results
3.1. The Combination of the Vitamins B1, B6, and B12 Is Superior in Supporting Nerve Cell Viability in Healthy Cells and Regeneration After Damage (3D Co-Culture Model)
3.2. The Combination of the Vitamins B1, B6, and B12 Is Superior in Supporting Cell Maturation (3D Co-Culture Model)
3.3. The Combination of the Vitamins B1, B6, and B12 Is Superior in Promoting Cell Connectivity (2D Culture Model)
3.4. Proteomics Analysis Provides Molecular Support for the Enhancement of Connectivity and Resistance to Oxidative Stress by the Combination of the Vitamins B1, B6, B12
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Upregulated | |||||
---|---|---|---|---|---|
Protein Name | Protein ID | Gene Name | log2 FC | p-Value | Biological Processes |
THO complex subunit 4 | Q86V81 | ALYREF | 3.07992261 | 7.58 × 10−10 | mRNA export, RNA splicing |
Thioredoxin, mitochondrial | Q99757 | TXN2 | 1.959329953 | 0.005134 | Oxidative stress response, cellular detoxification |
Histone H1.5 | P16401 | H1-5 | 1.648369322 | 0.038178 | Chromatin organization |
Eukaryotic translation initiation factor 3 subunit L | Q9Y262 | EIF3L | 1.34902479 | 4.02 × 10−6 | Protein synthesis, translation initiation |
26S proteasome regulatory subunit 6A | P17980 | PSMC3 | 1.217082054 | 0.007098 | Proteasome activity |
Vacuolar protein sorting-associated protein 26B | Q4G0F5 | VPS26B | 1.040987307 | 0.003168 | Membrane trafficking |
Ubiquitin carboxyl-terminal hydrolase 15 | Q9Y4E8 | USP15 | 0.865903662 | 0.040522 | Cell signaling |
Thrombospondin-1 | P07996 | THBS1 | 0.786960385 | 0.014258 | Cell adhesion, extracellular matrix organization |
26S proteasome regulatory subunit 4 | P62191 | PSMC1 | 0.577553889 | 0.042857 | Proteasome function |
Eukaryotic peptide chain release factor subunit 1 | P62495 | ETF1 | 0.575912692 | 0.009141 | Translation regulation, stress response |
Downregulated | |||||
Protein Name | Protein ID | Gene Name | log2 FC | p-Value | Biological Processes |
RNA-binding protein FXR1 | P51114 | FXR1 | −0.568135896 | 0.035658 | RNA binding, mRNA regulation |
Lamin-B2 | Q03252 | LMNB2 | −0.645925315 | 0.069548 | Nuclear envelope organization, chromatin organization |
Leucine--tRNA ligase, cytoplasmic | Q9P2J5 | LARS1 | −0.652489557 | 0.058481 | Aminoacyl-tRNA biosynthesis, translation |
Eukaryotic translation initiation factor 2 subunit 2 | P20042 | EIF2S2 | −0.689670376 | 0.086004 | Translational initiation, protein synthesis |
Small ribosomal subunit protein eS19 | P39019 | RPS19 | −0.692422523 | 0.061196 | Ribosome biogenesis, translation |
DnaJ homolog subfamily A member 3, mitochondrial | Q96EY1 | DNAJA3 | −0.816943432 | 0.031644 | Protein folding, stress response |
Cytoplasmic dynein 1 intermediate chain 2 | Q13409 | DYNC1I2 | −0.89680083 | 0.005707 | Cellular transport, intracellular transport |
Thioredoxin reductase 1, cytoplasmic | Q16881 | TXNRD1 | −0.902018704 | 0.07138 | Oxidative stress response, redox homeostasis |
Chloride intracellular channel protein 1 | O00299 | CLIC1 | −0.94282656 | 0.039423 | Ion transport, membrane excitability |
Ribonuclease 4 | P34096 | RNASE4 | −1.060295744 | 0.046965 | RNA metabolism, ribonuclease activity |
Isoleucine--tRNA ligase, cytoplasmic | P41252 | IARS1 | −1.083487407 | 0.046701 | Aminoacyl-tRNA synthesis |
Nucleolysin TIAR | Q01085 | TIAL1 | −1.158393764 | 0.046232 | RNA binding, post-transcriptional regulation |
Coatomer subunit zeta-1 | P61923 | COPZ1 | −1.233431622 | 0.061746 | Vesicle-mediated transport |
Ornithine aminotransferase, mitochondrial | P04181 | OAT | −1.278495679 | 0.00427 | Metabolism of amino acids |
Keratin, type I cytoskeletal 9 | P35527 | KRT9 | −1.31057719 | 0.052184 | Structural role in epithelial cell |
Aspartate aminotransferase, cytoplasmic | P17174 | GOT1 | −1.326097525 | 0.02216 | Amino acid metabolism, mitochondrial function |
Insulin-like growth factor 2 mRNA-binding protein 1 | Q9NZI8 | IGF2BP1 | −1.355001335 | 9.25 × 10−5 | mRNA stability |
Nucleobindin-1 | Q02818 | NUCB1 | −1.726609987 | 0.043991 | Neurogenesis, peptide metabolism |
COP9 signalosome complex subunit 6 | Q7L5N1 | COPS6 | −1.938040714 | 0.045324 | Protein degradation, cellular response to stress |
Staphylococcal nuclease domain-containing protein 1 | Q7KZF4 | SND1 | −2.276113333 | 0.044597 | Transcription regulation, RNA processing |
Large ribosomal subunit protein uL10 | P05388 | RPLP0 | −2.331198488 | 0.039767 | Ribosomal protein, translation regulation |
Large ribosomal subunit protein eL30 | P62888 | RPL30 | −2.344482805 | 0.004108 | Component of the ribosome, protein synthesis |
References
- Callaghan, B.C.; Price, R.S.; Feldman, E.L. Distal Symmetric Polyneuropathy: A Review. JAMA 2015, 314, 2172. [Google Scholar] [CrossRef] [PubMed]
- Hanewinckel, R.; Van Oijen, M.; Ikram, M.A.; Van Doorn, P.A. The Epidemiology and Risk Factors of Chronic Polyneuropathy. Eur. J. Epidemiol. 2016, 31, 5–20. [Google Scholar] [CrossRef]
- Rodriguez-Saldana, J.; Mijangos, J.H.S.; Hancock, C.N.; Ramsey, D.L.; Weiser, L.-K. Prevalence and Disease Burden of Peripheral Neuropathy in the General Population in Mexico City: A Cross-Sectional Epidemiological Study. Curr. Med. Res. Opin. 2024, 40, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Landmann, G. Diagnostik und Therapie der schmerzhaften Polyneuropathie. Schweiz. Z. Für Psychiatr. Neurol. 2012, 5, 13–16. [Google Scholar]
- Lehmann, H.C.; Wunderlich, G.; Fink, G.R.; Sommer, C. Diagnosis of Peripheral Neuropathy. Neurol. Res. Pract. 2020, 2, 20. [Google Scholar] [CrossRef]
- Nold, C.S.; Nozaki, K. Peripheral Neuropathy: Clinical Pearls for Making the Diagnosis. JAAPA 2020, 33, 9–15. [Google Scholar] [CrossRef]
- Jones, M.R.; Urits, I.; Wolf, J.; Corrigan, D.; Colburn, L.; Peterson, E.; Williamson, A.; Viswanath, O. Drug-Induced Peripheral Neuropathy: A Narrative Review. Curr. Clin. Pharmacol. 2020, 15, 38–48. [Google Scholar] [CrossRef]
- Castelli, G.; Desai, K.M.; Cantone, R.E. Peripheral Neuropathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 102, 732–739. [Google Scholar]
- Cascio, M.A.; Mukhdomi, T. Small Fiber Neuropathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef]
- Head, K.A. Peripheral Neuropathy: Pathogenic Mechanisms and Alternative Therapies. Altern. Med. Rev. 2006, 11, 294–329. [Google Scholar]
- Baltrusch, S. The Role of Neurotropic B Vitamins in Nerve Regeneration. BioMed Res. Int. 2021, 2021, 9968228. [Google Scholar] [CrossRef]
- Geller, M.; Oliveira, L.; Nigri, R.; Mezitis, S.G.; Ribeiro, M.G.; Fonseca, A.d.S.d.; Guimaraes, O.R.; Kaufman, R.; Fern; Wajnsztajn, A. B Vitamins for Neuropathy and Neuropathic Pain. Vitam. Miner. 2017, 6, 1000161. [Google Scholar] [CrossRef]
- Haynes, L.W.; Rushton, J.A.; Perrins, M.F.; Dyer, J.K.; Jones, R.; Howell, R. Diploid and Hyperdiploid Rat Schwann Cell Strains Displaying Negative Autoregulation of Growth in Vitro and Myelin Sheath-Formation in Vivo. J. Neurosci. Methods 1994, 52, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Banek, N.; Martens, L.; Daluege, N.; Carty, N.; Schmeier, S.; Trutz, O.; Young, K.W.; Bohnhorst, P. Transcriptome Changes and Neuronal Degeneration in an In Vitro Model of B Vitamin Depletion. Int. J. Phys. Med. Rehabil. 2022, 1–2. [Google Scholar] [CrossRef]
- Smith, P.O.; Trueman, R.; Powell, R.; Gregory, H.; Phillips, J.; Bohnhorst, P.; Rayner, M. Exploring the Effect of Vitamins B1, B6 and B12 on Neurite Regeneration Using a 3D Co-Culture Model of Neurodegeneration. Int. J. Phys. Med. Rehabil. 2023, 11, 1000667. [Google Scholar]
- The UniProt Consortium; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 12 November 2024).
- Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, Diagnosis and Clinical Management of Diabetic Sensorimotor Peripheral Neuropathy. Nat. Rev. Endocrinol. 2021, 17, 400–420. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Papanas, N.; Vinik, A.I.; Shaw, J.E. Chapter 1—Epidemiology of Polyneuropathy in Diabetes and Prediabetes. In Handbook of Clinical Neurology; Diabetes and the Nervous System; Zochodne, D.W., Malik, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 3–22. [Google Scholar]
- Jeyam, A.; McGurnaghan, S.J.; Blackbourn, L.A.K.; McKnight, J.M.; Green, F.; Collier, A.; McKeigue, P.M.; Colhoun, H.M.; on behalf of the SDRNT1BIO Investigators. Diabetic Neuropathy Is a Substantial Burden in People with Type 1 Diabetes and Is Strongly Associated with Socioeconomic Disadvantage: A Population-Representative Study from Scotland. Diabetes Care 2020, 43, 734–742. [Google Scholar] [CrossRef]
- Braffett, B.H.; Gubitosi-Klug, R.A.; Albers, J.W.; Feldman, E.L.; Martin, C.L.; White, N.H.; Orchard, T.J.; Lopes-Virella, M.; Lachin, J.M.; Pop-Busui, R.; et al. Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes 2020, 69, 1000–1010. [Google Scholar] [CrossRef]
- Mizokami-Stout, K.R.; Li, Z.; Foster, N.C.; Shah, V.; Aleppo, G.; McGill, J.B.; Pratley, R.; Toschi, E.; Ang, L.; Pop-Busui, R.; et al. The Contemporary Prevalence of Diabetic Neuropathy in Type 1 Diabetes: Findings from the T1D Exchange. Diabetes Care 2020, 43, 806–812. [Google Scholar] [CrossRef]
- Jaiswal, M.; Divers, J.; Dabelea, D.; Isom, S.; Bell, R.A.; Martin, C.L.; Pettitt, D.J.; Saydah, S.; Pihoker, C.; Standiford, D.A.; et al. Prevalence of and Risk Factors for Diabetic Peripheral Neuropathy in Youth with Type 1 and Type 2 Diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care 2017, 40, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.M.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H. Vascular Risk Factors and Diabetic Neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef]
- Andersen, S.T.; Witte, D.R.; Dalsgaard, E.-M.; Andersen, H.; Nawroth, P.; Fleming, T.; Jensen, T.M.; Finnerup, N.B.; Jensen, T.S.; Lauritzen, T.; et al. Risk Factors for Incident Diabetic Polyneuropathy in a Cohort with Screen-Detected Type 2 Diabetes Followed for 13 Years: ADDITION-Denmark. Diabetes Care 2018, 41, 1068–1075. [Google Scholar] [CrossRef]
- Oates, P. Aldose Reductase, Still a Compelling Target for Diabetic Neuropathy. Curr. Drug Targets 2008, 9, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed]
- Chopra, K.; Tiwari, V. Alcoholic Neuropathy: Possible Mechanisms and Future Treatment Possibilities. Br. J. Clin. Pharmacol. 2012, 73, 348–362. [Google Scholar] [CrossRef]
- Paul, P.; Campbell, G.; Zekeridou, A.; Mauermann, M.; Naddaf, E. Diagnosing Peripheral Neuropathy in Patients with Alcohol Use Disorder. Mayo Clin. Proc. 2024, 99, 1299–1305. [Google Scholar] [CrossRef]
- Rayner, M.L.D.; Ruiz, A.J.; Viel, C. The Combination of Neurotropic B Vitamins (B1, B6, and B12) Is Superior to Individual B Vitamins in Promoting Neurite Growth in Vitro. Vitr. Cell. Dev. Biol.-Anim. 2025, 1–4. [Google Scholar] [CrossRef]
- Kartal, B.; Palabiyik, B. Thiamine Leads to Oxidative Stress Resistance via Regulation of the Glucose Metabolism. Cell. Mol. Biol. 2019, 65, 73–77. [Google Scholar] [CrossRef]
- Liu, D.; Ke, Z.; Luo, J. Thiamine Deficiency and Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol. Neurobiol. 2017, 54, 5440–5448. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, J.R.; Melton, D.A. Cell Maturation: Hallmarks, Triggers, and Manipulation. Cell 2022, 185, 235–249. [Google Scholar] [CrossRef]
- Colón-Ramos, D.A. Chapter 2 Synapse Formation in Developing Neural Circuits. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 87, pp. 53–79. ISBN 978-0-12-374469-2. [Google Scholar]
- Huang, B.; Liang, J.-J.; Zhuang, X.; Chen, S.-W.; Ng, T.K.; Chen, H. Intravitreal Injection of Hydrogen Peroxide Induces Acute Retinal Degeneration, Apoptosis, and Oxidative Stress in Mice. Oxidative Med. Cell. Longev. 2018, 2018, 5489476. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Takatsu, H.; Koike, T.; Urano, S. Hydrogen Peroxide Induces Neurite Degeneration: Prevention by Tocotrienols. Free Radic. Res. 2011, 45, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K. Reactive Oxygen Species Induce Neurite Degeneration before Induction of Cell Death. J. Clin. Biochem. Nutr. 2016, 59, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic Peripheral Neuropathy: Pathogenetic Mechanisms and Treatment. Front. Endocrinol. 2024, 14, 1265372. [Google Scholar] [CrossRef]
- Taveggia, C.; Feltri, M.L. Beyond Wrapping: Canonical and Noncanonical Functions of Schwann Cells. Annu. Rev. Neurosci. 2022, 45, 561–580. [Google Scholar] [CrossRef]
- Jolivalt, C.G.; Mizisin, L.M.; Nelson, A.; Cunha, J.M.; Ramos, K.M.; Bonke, D.; Calcutt, N.A. B Vitamins Alleviate Indices of Neuropathic Pain in Diabetic Rats. Eur. J. Pharmacol. 2009, 612, 41–47. [Google Scholar] [CrossRef]
- Martins, D.O.; Marques, D.P.; Chacur, M. Enhancing Nerve Regeneration in Infraorbital Nerve Injury Rat Model: Effects of Vitamin B Complex and Photobiomodulation. Lasers Med. Sci. 2024, 39, 119. [Google Scholar] [CrossRef]
- Fujii, A.; Matsumoto, H.; Yamamoto, H. Effect of Vitamin B Complex on Neurotransmission and Neurite Outgrowth. Gen. Pharmacol. Vasc. Syst. 1996, 27, 995–1000. [Google Scholar] [CrossRef]
- McKinnon, C.; Tabrizi, S.J. The Ubiquitin-Proteasome System in Neurodegeneration. Antioxid. Redox Signal. 2014, 21, 2302–2321. [Google Scholar] [CrossRef]
- Fan, J.; Wang, K.; Du, X.; Wang, J.; Chen, S.; Wang, Y.; Shi, M.; Zhang, L.; Wu, X.; Zheng, D.; et al. ALYREF Links 3′-end Processing to Nuclear Export of Non-polyadenylated mRNA s. EMBO J. 2019, 38, e99910. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Liu, M.; Zhang, X.; Yu, H.; Fang, Z.; Gao, X.; Chen, M.; Shao, Q.; Gao, W.; Lei, L.; et al. Thioredoxin-2 Suppresses Hydrogen Peroxide–Activated Nuclear Factor Kappa B Signaling via Alleviating Oxidative Stress in Bovine Adipocytes. J. Dairy Sci. 2024, 107, 4045–4055. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; He, Y.; Qi, C.; Li, F. Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury. Toxics 2024, 12, 510. [Google Scholar] [CrossRef]
- Zukin, R.S. Signals, Synapses, and Synthesis: How New Proteins Control Plasticity. Front. Neural Circuits 2009, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Schuman, E.M. Dendritic Protein Synthesis, Synaptic Plasticity, and Memory. Cell 2006, 127, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, G.; Baggiolini, A.; Cho, H.S.; Kshirsagar, M.; Benito-Kwiecinski, S.; Walsh, R.M.; Aromolaran, K.A.; Gonzalez-Hernandez, A.J.; Munguba, H.; Koo, S.Y.; et al. An Epigenetic Barrier Sets the Timing of Human Neuronal Maturation. Nature 2024, 626, 881–890. [Google Scholar] [CrossRef]
- Majumder, M.; House, R.; Palanisamy, N.; Qie, S.; Day, T.A.; Neskey, D.; Diehl, J.A.; Palanisamy, V. RNA-Binding Protein FXR1 Regulates P21 and TERC RNA to Bypass P53-Mediated Cellular Senescence in OSCC. PLoS Genet. 2016, 12, e1006306. [Google Scholar] [CrossRef]
- Goldman, R.D.; Gruenbaum, Y.; Moir, R.D.; Shumaker, D.K.; Spann, T.P. Nuclear Lamins: Building Blocks of Nuclear Architecture. Genes Dev. 2002, 16, 533–547. [Google Scholar] [CrossRef]
- Didangelos, T.; Karlafti, E.; Kotzakioulafi, E.; Giannoulaki, P.; Kontoninas, Z.; Kontana, A.; Evripidou, P.; Savopoulos, C.; Birkenfeld, A.L.; Kantartzis, K. Efficacy and Safety of the Combination of Palmitoylethanolamide, Superoxide Dismutase, Alpha Lipoic Acid, Vitamins B12, B1, B6, E, Mg, Zn and Nicotinamide for 6 Months in People with Diabetic Neuropathy. Nutrients 2024, 16, 3045. [Google Scholar] [CrossRef] [PubMed]
- Grimm, H.; Biller-Andorno, N.; Buch, T.; Dahlhoff, M.; Davies, G.; Cederroth, C.R.; Maissen, O.; Lukas, W.; Passini, E.; Törnqvist, E.; et al. Advancing the 3Rs: Innovation, Implementation, Ethics and Society. Front. Vet. Sci. 2023, 10, 1185706. [Google Scholar] [CrossRef]
- Díaz, L.; Zambrano, E.; Flores, M.E.; Contreras, M.; Crispín, J.C.; Alemán, G.; Bravo, C.; Armenta, A.; Valdés, V.J.; Tovar, A.; et al. Ethical Considerations in Animal Research: The Principle of 3R’s. Rev. Investig. Clin. 2020, 73, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in Clinical Determinants and Neurological Manifestations of B Vitamin Deficiency in Adults. Nutr. Rev. 2016, 74, 281–300. [Google Scholar] [CrossRef]
Fold Superiority of B1, B6, B12 Combination Treatment on Nerve Cell Maturation | |
---|---|
B1 alone | 14.3-fold |
B6 alone | 50.9-fold |
B12 alone | 2.9-fold |
No Insult | H2O2 Insult | |
---|---|---|
Superiority of the B1, B6, B12 combination vs. untreated control | ||
Synapsing | 4-fold | 5.44-fold |
Networking | 4.6-fold | 6.44-fold |
Superiority of B12 vs. untreated control | ||
Synapsing | 2.55-fold | 3-fold |
Networking | 3.2-fold | 3.44-fold |
Superiority of the B1, B6, B12 combination vs. B12 alone | ||
Synapsing | 1.94-fold | 2.22-fold |
Networking | 1.64-fold | 2.23-fold |
FDR | Biological Processes/ Pathways | Related to Neuron | Proteins |
---|---|---|---|
8.25 × 10−4 | Proteasome complex | Synaptic plasticity and maintaining cellular homeostasis | PSMC1 PSMA7 PSMD11 PSMD6 PSMD12 |
1.74 × 10−3 | Synapse | Synaptic communication and neurotransmission | RPL38 RHOA PICALM CLTA SH3GL1 ARFGAP1 COPS4 YWHAZ PSMA7 EIF3A SPTBN1 HNRNPD IGF2BP1 FABP5 YWHAG DES RPL10A ITSN1 |
7.07 × 10−8 | Axon guidance | Proper formation of neural circuits and connectivity | RHOA MYL6 PSMC1 PSMA7 MAPK3 PSMD11 SPTBN1 CLTA TLN1 MSN PSMD6 RPL38 PSMD12 SPTAN1 RPL10A ITSN1 RPS28 ARPC4 |
9.38 × 10−8 | Cellular responses to stress | Maintenance of cellular homeostasis, protection from damage and promotion of cell survival | TPR ASNS XPO1 KHSRP PSMC1 PSMA7 ARFGAP1 MAPK3 PSMD11 LMNB1 TLN1 PSMD6 PRDX3 STAT3 HSPA4 RPL38 DCTN2 PSMD12 TXNRD1 RPL10A RPS28 |
1.38 × 10−4 | Regulation of expression of SLITs and ROBOs | Establishment of proper neuronal connections and circuitry | PSMC1 PSMA7 PSMD11 PSMD6 RPL38 PSMD12 RPL10A RPS28 |
2.08 × 10−3 | Signaling by NOTCH | Neuronal differentiation, maturation, and synaptic plasticity | SNW1 PSMC1 PSMA7 PSMD11 PSMD6 YWHAZ PSMD12 |
4.72 × 10−4 | Signaling by WNT | Neuronal development and synaptic plasticity | RHOA XPO1 PSMC1 PSMA7 PSMD11 CLTA PSMD6 YWHAZ PSMD12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuyubamba, O.; Braga, C.P.; Swift, D.; Stickney, J.T.; Viel, C. The Combination of Neurotropic Vitamins B1, B6, and B12 Enhances Neural Cell Maturation and Connectivity Superior to Single B Vitamins. Cells 2025, 14, 477. https://doi.org/10.3390/cells14070477
Cuyubamba O, Braga CP, Swift D, Stickney JT, Viel C. The Combination of Neurotropic Vitamins B1, B6, and B12 Enhances Neural Cell Maturation and Connectivity Superior to Single B Vitamins. Cells. 2025; 14(7):477. https://doi.org/10.3390/cells14070477
Chicago/Turabian StyleCuyubamba, Oscar, Camila Pereira Braga, Dionne Swift, John T. Stickney, and Christian Viel. 2025. "The Combination of Neurotropic Vitamins B1, B6, and B12 Enhances Neural Cell Maturation and Connectivity Superior to Single B Vitamins" Cells 14, no. 7: 477. https://doi.org/10.3390/cells14070477
APA StyleCuyubamba, O., Braga, C. P., Swift, D., Stickney, J. T., & Viel, C. (2025). The Combination of Neurotropic Vitamins B1, B6, and B12 Enhances Neural Cell Maturation and Connectivity Superior to Single B Vitamins. Cells, 14(7), 477. https://doi.org/10.3390/cells14070477