Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity
Abstract
:1. Introduction
1.1. Heart Failure
1.2. Heart Failure with Preserved Ejection Fraction and Heart Failure with Reduced Ejection Fraction
1.3. Remodelling of the Heart During Heart Failure
1.4. Fibrosis in Heart Failure
1.5. Circulating Markers of Fibrosis: Unmet Needs and New Opportunities
2. ncRNAs
2.1. miRNAs
2.2. lncRNAs
2.3. circRNAs
3. ncRNAs as Circulating HF Biomarkers of and Their Role in Fibrotic Remodelling
3.1. miRNAs
3.2. lncRNAs
3.3. circRNAs
4. ncRNAs Associated with HFpEF
5. ncRNAs Associated with HFrEF
6. ncRNAs Associated with Cardiac Remodelling
6.1. Circulating ncRNAs Associated with Coronary Diseases
6.2. Circulating ncRNAs Associated with Myocardial Infarction
6.3. Circulating ncRNAs Associated with Hypertrophic Cardiomyopathy
7. ncRNAs Involved in Fibrosis Mechanisms in the Heart
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.S.; Shahid, I.; Bennis, A.; Rakisheva, A.; Metra, M.; Butler, J. Global Epidemiology of Heart Failure. Nat. Rev. Cardiol. 2024, 21, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef]
- Arrigo, M.; Jessup, M.; Mullens, W.; Reza, N.; Shah, A.M.; Sliwa, K.; Mebazaa, A. Acute Heart Failure. Nat. Rev. Dis. Primers 2020, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Borlaug, B.A.; Kitzman, D.W.; McCulloch, A.D.; Blaxall, B.C.; Agarwal, R.; Chirinos, J.A.; Collins, S.; Deo, R.C.; Gladwin, M.T.; et al. Research Priorities for Heart Failure with Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020, 141, 1001–1026. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and Aetiology of Heart Failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef]
- Tikhomirov, R.; Donnell, B.R.O.; Catapano, F.; Faggian, G.; Gorelik, J.; Martelli, F.; Emanueli, C. Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells 2020, 9, 592. [Google Scholar] [CrossRef]
- Bayés-Genís, A.; Aimo, A.; Metra, M.; Anker, S.; Seferovic, P.; Rapezzi, C.; Castiglione, V.; Núñez, J.; Emdin, M.; Rosano, G.; et al. Head-to-Head Comparison between Recommendations by the ESC and ACC/AHA/HFSA Heart Failure Guidelines. Eur. J. Heart Fail. 2022, 24, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Abovich, A.; Matasic, D.S.; Cardoso, R.; Ndumele, C.E.; Blumenthal, R.S.; Blankstein, R.; Gulati, M. The AHA/ACC/HFSA 2022 Heart Failure Guidelines: Changing the Focus to Heart Failure Prevention. Am. J. Prev. Cardiol. 2023, 15, 100527. [Google Scholar] [CrossRef]
- Frisk, M.; Le, C.; Shen, X.; Røe, Å.T.; Hou, Y.; Manfra, O.; Silva, G.J.J.; van Hout, I.; Norden, E.S.; Aronsen, J.M.; et al. Etiology-Dependent Impairment of Diastolic Cardiomyocyte Calcium Homeostasis in Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 405–419. [Google Scholar] [CrossRef]
- Robinson, E.L.; Baker, A.H.; Brittan, M.; Mccracken, I.; Condorelli, G.; Emanueli, C.; Srivastava, P.K.; Gaetano, C.; Thum, T.; Vanhaverbeke, M.; et al. Dissecting the Transcriptome in Cardiovascular Disease. Cardiovasc. Res. 2022, 118, 1004–1019. [Google Scholar] [CrossRef]
- Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of Cardiac Hypertrophy and Heart Failure: Signaling Pathways and Novel Therapeutic Targets. Arch. Toxicol. 2015, 89, 1401–1438. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.G.; Yuan, Y.P.; Wu, H.M.; Zhang, X.; Tang, Q.Z. Cardiac Fibrosis: New Insights into the Pathogenesis. Int. J. Biol. Sci. 2018, 14, 1645–1657. [Google Scholar] [CrossRef]
- Maruyama, K.; Imanaka-Yoshida, K. The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. Int. J. Mol. Sci. 2022, 23, 2617. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Liu, Y.; Cheng, Z. Signaling Pathways in Cardiac Myocyte Apoptosis. Biomed. Res. Int. 2016, 23, 2617–2637. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Kramer, D.G.; Patel, A.R.; Maron, M.S.; Udelson, J.E. Left Ventricular Remodeling in Heart Failure: Current Concepts in Clinical Significance and Assessment. JACC Cardiovasc. Imaging 2011, 4, 98–108. [Google Scholar] [CrossRef]
- Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F.; Paiva, S.A.R.; Zornoff, L.A.M. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq. Bras. Cardiol. 2016, 106, 62–69. [Google Scholar] [CrossRef]
- Jiang, W.; Xiong, Y.; Li, X.; Yang, Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front. Cardiovasc. Med. 2021, 8, 715258. [Google Scholar] [CrossRef]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef]
- Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; Van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of Heart Failure with Preserved Ejection Fraction. Circulation 2016, 134, 73–90. [Google Scholar] [CrossRef]
- Crossman, D.J.; Shen, X.; Jüllig, M.; Munro, M.; Hou, Y.; Middleditch, M.; Shrestha, D.; Li, A.; Lal, S.; Dos Remedios, C.G.; et al. Increased Collagen within the Transverse Tubules in Human Heart Failure. Cardiovasc. Res. 2017, 113, 879–891. [Google Scholar] [CrossRef]
- Mukherjee, D.; Sen, S. Alteration of Collagen Phenotypes in Ischemic Cardiomyopathy. J. Clin. Investig. 1991, 88, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, P.; Boughner, D.R.; Kloner, R.A. Analysis of Healing After Myocardial Infarction Using Polarized Light Microscopy. Am. J. Pathol. 1989, 13, 879–893. [Google Scholar]
- Naugle, J.E.; Olson, E.R.; Zhang, X.; Mase, S.E.; Pilati, C.F.; Maron, M.B.; Folkesson, H.G.; Horne, W.I.; Doane, K.J.; Gary Meszaros, J. Type VI Collagen Induces Cardiac Myofibroblast Differentiation: Implications for Postinfarction Remodeling. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Spinale, F.G.; Coker, M.L.; Heung, L.J.; Bond, B.R.; Gunasinghe, H.R.; Etoh, T.; Goldberg, A.T.; Zellner, J.L.; Crumbley, A.J. A Matrix Metalloproteinase Induction/Activation System Exists in the Human Left Ventricular Myocardium and Is Upregulated in Heart Failure. Circulation 2000, 102, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Schafer, S.; Viswanathan, S.; Widjaja, A.A.; Lim, W.W.; Moreno-Moral, A.; DeLaughter, D.M.; Ng, B.; Patone, G.; Chow, K.; Khin, E.; et al. IL-11 Is a Crucial Determinant of Cardiovascular Fibrosis. Nature 2017, 552, 110–115. [Google Scholar] [CrossRef]
- Sweeney, M.; O’Fee, K.; Villanueva-Hayes, C.; Rahman, E.; Lee, M.; Vanezis, K.; Andrew, I.; Lim, W.W.; Widjaja, A.; Barton, P.J.R.; et al. Cardiomyocyte-Restricted Expression of IL11 Causes Cardiac Fibrosis, Inflammation, and Dysfunction. Int. J. Mol. Sci. 2023, 24, 12989. [Google Scholar] [CrossRef]
- Xue, Y.; Clopton, P.; Peacock, W.F.; Maisel, A.S. Serial Changes in High-Sensitive Troponin i Predict Outcome in Patients with Decompensated Heart Failure. Eur. J. Heart Fail. 2011, 13, 37–42. [Google Scholar] [CrossRef]
- Nadar, S.K.; Shaikh, M.M. Biomarkers in Routine Heart Failure Clinical Care. Card. Fail. Rev. 2019, 5, 50–56. [Google Scholar] [CrossRef]
- Inamdar, A.A.; Inamdar, A.C. Heart Failure: Diagnosis, Management and Utilization. J. Clin. Med. 2016, 5, 62. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, U.; Jindal, D.; Basak, T. A Narrative Review on Serum Biomarkers of Cardiac Fibrosis. J. Pract. Cardiovasc. Sci. 2023, 9, 24–36. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Caporali, A.; Anwar, M.; Devaux, Y.; Katare, R.; Martelli, F.; Srivastava, P.K.; Pedrazzini, T.; Emanueli, C. Non-Coding RNAs as Therapeutic Targets and Biomarkers in Ischaemic Heart Disease. Nat. Rev. Cardiol. 2024, 21, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Jalink, E.A.; Schonk, A.W.; Boon, R.A.; Juni, R.P. Non-Coding RNAs in the Pathophysiology of Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2023, 10, 1300375. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. MicroRNAs in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- Quah, S.; Subramanian, G.; Tan, J.S.L.; Utami, K.H.; Sampath, P. MicroRNAs: A Symphony Orchestrating Evolution and Disease Dynamics. Trends Mol. Med. 2024, 31, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Yu, D.; Bai, H.; Du, X. Research Progress of MiRNA in Heart Failure: Prediction and Treatment. J. Cardiovasc. Pharmacol. 2024, 84, 136–145. [Google Scholar] [CrossRef]
- Wong, L.L.; Zou, R.; Zhou, L.; Lim, J.Y.; Phua, D.C.Y.; Liu, C.; Chong, J.P.C.; Ng, J.Y.X.; Liew, O.W.; Chan, S.P.; et al. Combining Circulating MicroRNA and NT-ProBNP to Detect and Categorize Heart Failure Subtypes. J. Am. Coll. Cardiol. 2019, 73, 1300–1313. [Google Scholar] [CrossRef]
- Vilella-Figuerola, A.; Gallinat, A.; Escate, R.; Mirabet, S.; Padró, T.; Badimon, L. Systems Biology in Chronic Heart Failure—Identification of Potential MiRNA Regulators. Int. J. Mol. Sci. 2022, 23, 15226. [Google Scholar] [CrossRef]
- Navickas, R.; Gal, D.; Laucevičius, A.; Taparauskaite, A.; Zdanyte, M.; Holvoet, P. Identifying Circulating MicroRNAs as Biomarkers of Cardiovascular Disease: A Systematic Review. Cardiovasc. Res. 2016, 111, 322–337. [Google Scholar] [CrossRef]
- Goren, Y.; Kushnir, M.; Zafrir, B.; Tabak, S.; Lewis, B.S.; Amir, O. Serum Levels of MicroRNAs in Patients with Heart Failure. Eur. J. Heart Fail. 2012, 14, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Voellenkle, C.; van Rooij, J.; Cappuzzello, C.; Greco, S.; Arcelli, D.; Di Vito, L.; Melillo, G.; Rigolini, R.; Costa, E.; Crea, F.; et al. MicroRNA Signatures in Peripheral Blood Mononuclear Cells of Chronic Heart Failure Patients. Physiol. Genom. 2010, 42, 420–426. [Google Scholar] [CrossRef]
- Watson, C.J.; Gupta, S.K.; O’Connell, E.; Thum, S.; Glezeva, N.; Fendrich, J.; Gallagher, J.; Ledwidge, M.; Grote-Levi, L.; McDonald, K.; et al. MicroRNA Signatures Differentiate Preserved from Reduced Ejection Fraction Heart Failure. Eur. J. Heart Fail. 2015, 17, 405–415. [Google Scholar] [CrossRef]
- Ovchinnikova, E.S.; Schmitter, D.; Vegter, E.L.; Ter Maaten, J.M.; Valente, M.A.E.; Liu, L.C.Y.; Van Der Harst, P.; Pinto, Y.M.; De Boer, R.A.; Meyer, S.; et al. Signature of Circulating MicroRNAs in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2016, 18, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Vizi, D.; Khammy, O.; Mariani, J.A.; Kaye, D.M. The Transcardiac Gradient of Cardio-MicroRNAs in the Failing Heart. Eur. J. Heart Fail. 2016, 18, 1000–1008. [Google Scholar] [CrossRef]
- Wong, L.L.; Armugam, A.; Sepramaniam, S.; Karolina, D.S.; Lim, K.Y.; Lim, J.Y.; Chong, J.P.C.; Ng, J.Y.X.; Chen, Y.T.; Chan, M.M.Y.; et al. Circulating MicroRNAs in Heart Failure with Reduced and Preserved Left Ventricular Ejection Fraction. Eur. J. Heart Fail. 2015, 17, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, A.; Gallo, S.; Pardini, B.; Birolo, G.; Fariselli, P.; Boretto, P.; Vitacolonna, A.; Peraldo-Neia, C.; Spilinga, M.; Volpe, A.; et al. Identification of Novel Circulating MicroRNAs in Advanced Heart Failure by Next-Generation Sequencing. ESC Heart Fail. 2021, 8, 2907–2919. [Google Scholar] [CrossRef]
- Cakmak, H.A.; Coskunpinar, E.; Ikitimur, B.; Barman, H.A.; Karadag, B.; Tiryakioglu, N.O.; Kahraman, K.; Vural, V.A. The Prognostic Value of Circulating MicroRNAs in Heart Failure: Preliminary Results from a Genome-Wide Expression Study. J. Cardiovasc. Med. 2015, 16, 431–437. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, N.W.E.; Kawasaki, M.; Nariswari, F.A.; Fabrizi, B.; Neefs, J.; van der Made, I.; Wesselink, R.; van Boven, W.J.P.; Driessen, A.H.G.; Jongejan, A.; et al. MicroRNAs in Atrial Fibrillation Target Genes in Structural Remodelling. Cell Tissue Res. 2023, 394, 497–514. [Google Scholar] [CrossRef]
- Paim, L.R.; da Silva, L.M.; Antunes-Correa, L.M.; Ribeiro, V.C.; Schreiber, R.; Minin, E.O.Z.; Bueno, L.C.M.; Lopes, E.C.P.; Yamaguti, R.; Coy-Canguçu, A.; et al. Profile of Serum MicroRNAs in Heart Failure with Reduced and Preserved Ejection Fraction: Correlation with Myocardial Remodeling. Heliyon 2024, 10, e27206. [Google Scholar] [CrossRef]
- Fang, L.; Ellims, A.H.; Moore, X.l.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating MicroRNAs as Biomarkers for Diffuse Myocardial Fibrosis in Patients with Hypertrophic Cardiomyopathy. J. Transl. Med. 2015, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, B.; Xu, Y.; Zhou, N.; Zhang, R.; Lu, L.; Feng, Z. MiR-208b/MiR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-Β1/Smad-3 Signaling Pathway: An in Vitro and in Vivo Study. Front. Cardiovasc. Med. 2022, 9, 924629. [Google Scholar] [CrossRef]
- Marfella, R.; Di Filippo, C.; Potenza, N.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; Barbieri, M.; Mauro, C.; Mosca, N.; et al. Circulating microRNA Changes in Heart Failure Patients Treated with Cardiac Resynchronization Therapy: Responders vs. Non-Responders. Eur. J. Heart Fail. 2013, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Banerjee, S.; Xie, N.; Ge, J.; Liu, R.M.; Matalon, S.; Thannickal, V.J.; Liu, G. MicroRNA-27a-3p Is a Negative Regulator of Lung Fibrosis by Targeting Myofibroblast Differentiation. Am. J. Respir. Cell. Mol. Biol. 2016, 54, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Chen, M.; Wang, H.; Chen, X.; Wu, H.; Du, Y.; Xue, J. MicroRNA-27a-3p Inhibits Lung and Skin Fibrosis of Systemic Sclerosis by Negatively Regulating SPP1. Genomics 2022, 114, 110391. [Google Scholar] [CrossRef]
- Li, D.; Shen, M.; Deng, X.; Bai, Y. MicroRNA MiR-27a-3p Accelerates Cardiac Hypertrophy by Targeting Neuro-Oncological Ventral Antigen 1. Bioengineered 2022, 13, 8982–8993. [Google Scholar] [CrossRef]
- Liang, J.N.; Zou, X.; Fang, X.H.; Xu, J.D.; Xiao, Z.; Zhu, J.N.; Li, H.; Yang, J.; Zeng, N.; Yuan, S.J.; et al. The Smad3-MiR-29b/MiR-29c Axis Mediates the Protective Effect of Macrophage Migration Inhibitory Factor against Cardiac Fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2441–2450. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Z.; Chen, M.; Lun, J. LncRNA TUG1 Regulates Proliferation of Cardiac Fibroblast via the MiR-29b-3p/TGF-Β1 Axis. Front. Cardiovasc. Med. 2021, 8, 646806. [Google Scholar] [CrossRef]
- Guo, F.; Tang, C.; Huang, B.; Gu, L.; Zhou, J.; Mo, Z.; Liu, C.; Liu, Y. LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the MiR-29a-3p/MiR-29b-3pVEGFA/TGF-β Axis. Mol. Cells 2022, 45, 122–133. [Google Scholar] [CrossRef]
- Gao, L.; Qiu, F.; Cao, H.; Li, H.; Dai, G.; Ma, T.; Gong, Y.; Luo, W.; Zhu, D.; Qiu, Z.; et al. Therapeutic Delivery of MicroRNA-125a-5p Oligonucleotides Improves Recovery from Myocardial Ischemia/Reperfusion Injury in Mice and Swine. Theranostics 2023, 13, 685–703. [Google Scholar] [CrossRef]
- Dong, M.; Liao, J.K.; Fang, F.; Lee, A.P.W.; Yan, B.P.Y.; Liu, M.; Yu, C.M. Increased Rho Kinase Activity in Congestive Heart Failure. Eur. J. Heart Fail. 2012, 14, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, S.; Li, L.; Bu, Q.; Zhou, H.; Su, W.; Liu, Z.; Wang, M.; Lu, L. MiR-139-5p Sponged by LncRNA NEAT1 Regulates Liver Fibrosis via Targeting β-Catenin/SOX9/TGF-Β1 Pathway. Cell Death Discov. 2021, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Kim, H.; Lee, I.; Lee, J.H.; Cho, S.; Choi, Y.S. MicroRNA-139-5p Regulates Fibrotic Potentials via Modulation of Collagen Type 1 and Phosphorylated P38 MAPK in Uterine Leiomyoma. Yonsei Med. J. 2021, 62, 726–733. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, K.; Hu, Y.; Yang, F.; Li, P.; Liu, Y. MicroRNA-142-3p Alleviated High Salt-Induced Cardiac Fibrosis via Downregulating Optineurin-Mediated Mitophagy. iScience 2024, 27, 109764. [Google Scholar] [CrossRef]
- Su, Q.; Liu, Y.; Lv, X.W.; Ye, Z.L.; Sun, Y.H.; Kong, B.H.; Qin, Z.B. Inhibition of LncRNA TUG1 Upregulates MiR-142-3p to Ameliorate Myocardial Injury during Ischemia and Reperfusion via Targeting HMGB1- and Rac1-Induced Autophagy. J. Mol. Cell. Cardiol. 2019, 133, 12–25. [Google Scholar] [CrossRef]
- Scrutinio, D.; Conserva, F.; Passantino, A.; Iacoviello, M.; Lagioia, R.; Gesualdo, L. Circulating MicroRNA-150-5p as a Novel Biomarker for Advanced Heart Failure: A Genome-Wide Prospective Study. J. Heart Lung Transplant. 2017, 36, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xing, W.; Gong, F.; Wang, W.; Yan, Y.; Zhang, Y.; Xie, C.; Fu, S. MiR-150-5p Retards the Progression of Myocardial Fibrosis by Targeting EGR1. Cell Cycle 2019, 18, 1335–1348. [Google Scholar] [CrossRef]
- Deng, P.; Chen, L.; Liu, Z.; Ye, P.; Wang, S.; Wu, J.; Yao, Y.; Sun, Y.; Huang, X.; Ren, L.; et al. MicroRNA-150 Inhibits the Activation of Cardiac Fibroblasts by Regulating c-Myb. Cell. Physiol. Biochem. 2016, 38, 2103–2122. [Google Scholar] [CrossRef]
- Lai, Y.J.; Tsai, F.C.; Chang, G.J.; Chang, S.H.; Huang, C.C.; Chen, W.J.; Yeh, Y.H. MiR-181b Targets Semaphorin 3A to Mediate TGF-β–Induced Endothelial-Mesenchymal Transition Related to Atrial Fibrillation. J. Clin. Investig. 2022, 132, e161070. [Google Scholar] [CrossRef]
- Yang, H.; Shan, L.; Gao, Y.; Li, L.; Xu, G.; Wang, B.; Yin, X.; Gao, C.; Liu, J.; Yang, W. MicroRNA-181b Serves as a Circulating Biomarker and Regulates Inflammation in Heart Failure. Dis. Markers 2021, 2021, 4572282. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, X.; Li, B.; Gan, S. MiR-182-5p Combined with Brain-Derived Neurotrophic Factor Assists the Diagnosis of Chronic Heart Failure and Predicts a Poor Prognosis. J. Cardiothorac. Surg. 2022, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Q.; Zhou, Y.; Yang, Z.; Tan, M. Inhibition of MiR-182-5p Attenuates Pulmonary Fibrosis via TGF-β/Smad Pathway. Hum. Exp. Toxicol. 2020, 39, 683–695. [Google Scholar] [CrossRef]
- Pei, G.; Chen, L.; Wang, Y.; He, C.; Fu, C.; Wei, Q. Role of MiR-182 in Cardiovascular and Cerebrovascular Diseases. Front. Cell Dev. Biol. 2023, 11, 1181515. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Lv, P.; Zhao, X.; Wang, X.; Ma, X.; Meng, W.; Meng, X.; Dong, S. Predictive Value of Circulating MiR-328 and MiR-134 for Acute Myocardial Infarction. Mol. Cell. Biochem. 2014, 394, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, C.; Yan, H.; Li, T.; Qian, M.; Zheng, N.; Jiang, H.; Liu, L.; Xu, B.; Wu, Q.; et al. Cardiomyocyte Derived MiR-328 Promotes Cardiac Fibrosis by Paracrinely Regulating Adjacent Fibroblasts. Cell. Physiol. Biochem. 2018, 46, 1555–1565. [Google Scholar] [CrossRef]
- Huang, J.; Wang, F.; Sun, X.; Chu, X.; Jiang, R.; Wang, Y.; Pang, L. Myocardial Infarction Cardiomyocytes-Derived Exosomal MiR-328-3p Promote Apoptosis via Caspase Signaling. Am. J. Transl. Res. 2021, 13, 2365–2378. [Google Scholar]
- Wang, Y.; Huang, C.; Reddy Chintagari, N.; Bhaskaran, M.; Weng, T.; Guo, Y.; Xiao, X.; Liu, L. MiR-375 Regulates Rat Alveolar Epithelial Cell Trans-Differentiation by Inhibiting Wnt/β-Catenin Pathway. Nucleic Acids Res. 2013, 41, 3833–3844. [Google Scholar] [CrossRef]
- Ali Sheikh, M.S. Overexpression of MiR-375 Protects Cardiomyocyte Injury Following Hypoxic-Reoxygenation Injury. Oxid. Med. Cell. Longev. 2020, 2020, 7164069. [Google Scholar] [CrossRef]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; De Windt, L.J.; Van Der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p as a Circulating Biomarker for Heart Failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Li, Y.; Wu, Y.; Huang, G.; Wang, X.; Guo, S. Downregulation of MicroRNA-423-5p Suppresses TGF-Β1-Induced EMT by Targeting FOXP4 in Airway Fibrosis. Mol. Med. Rep. 2022, 26, 242. [Google Scholar] [CrossRef]
- Zhu, X.; Lu, X. MiR-423-5p Inhibition Alleviates Cardiomyocyte Apoptosis and Mitochondrial Dysfunction Caused by Hypoxia/Reoxygenation through Activation of the Wnt/β-Catenin Signaling Pathway via Targeting MYBL2. J. Cell. Physiol. 2019, 234, 22034–22043. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, C.; Wang, C.; Liu, W.; Chu, Y.; Xiang, Z.; Hu, K.; Dong, P.; Han, X. The Role of MiR-497-5p in Myofibroblast Differentiation of LR-MSCs and Pulmonary Fibrogenesis. Sci. Rep. 2017, 7, 40958. [Google Scholar] [CrossRef]
- Tikhomirov, R.; Reilly-O’Donnell, B.; Lucarelli, C.; Srivastava, P.K.; Anwar, M.; Yiu, C.H.K.; Dielesen, J.; Piella, S.N.; Kwan, Z.; Zaccagnini, G.; et al. Interleukin 11-Induced MicroRNAs as Functional Mediators and Circulating Biomarkers of Cardiac Fibrosis. bioRxiv 2023. [Google Scholar]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Uszczynska-Ratajczak, B.; Lagarde, J.; Frankish, A.; Guigó, R.; Johnson, R. Towards a Complete Map of the Human Long Non-Coding RNA Transcriptome. Nat. Rev. Genet. 2018, 19, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Nie, X.; Fan, J.; Wang, D.W. The Function and Therapeutic Potential of LncRNAs in Cardiac Fibrosis. Biology 2023, 12, 154. [Google Scholar] [CrossRef]
- Shen, S.; Jiang, H.; Bei, Y.; Xiao, J.; Li, X. Long Non-Coding RNAs in Cardiac Remodeling. Cell. Physiol. Biochem. 2017, 41, 1830–1837. [Google Scholar] [CrossRef]
- Uchida, S.; Dimmeler, S. Long Noncoding RNAs in Cardiovascular Diseases. Circ. Res. 2015, 116, 737–750. [Google Scholar] [CrossRef]
- Qu, X.; Du, Y.; Shu, Y.; Gao, M.; Sun, F.; Luo, S.; Yang, T.; Zhan, L.; Yuan, Y.; Chu, W.; et al. MIAT Is a Pro-Fibrotic Long Non-Coding RNA Governing Cardiac Fibrosis in Post-Infarct Myocardium. Sci. Rep. 2017, 7, 42657. [Google Scholar] [CrossRef]
- Wylezinski, L.S.; Shaginurova, G.I.; Spurlock, C.F. Longitudinal Assessment and Stability of Long Non-Coding RNA Gene Expression Profiles Measured in Human Peripheral Whole Blood Collected into PAXgene Blood RNA Tubes. BMC Res. Notes 2020, 13, 531. [Google Scholar] [CrossRef]
- Boeckel, J.N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; et al. Identification and Regulation of the Long Non-Coding RNA Heat2 in Heart Failure. J. Mol. Cell. Cardiol. 2019, 126, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, Y.; Guo, S.; Yao, R.; Wu, L.; Xiao, L.; Wang, Z.; Liu, Y.; Zhang, Y. Circulating Long Noncoding RNA HOTAIR Is an Essential Mediator of Acute Myocardial Infarction. Cell. Physiol. Biochem. 2017, 44, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Thasma Loganathbabu, V.K.; Kumaran, K.; Krishnasamy, G.; Aruljothi, K.N. Long Non-Coding RNAs (LncRNAs) in Heart Failure: A Comprehensive Review. Noncoding RNA 2024, 10, 3. [Google Scholar] [CrossRef]
- Jiao, Y.; Meng, F.; Ma, G.; Lei, H.; Liu, J. An Increase in a Long Noncoding RNA ANRIL in Peripheral Plasma Is an Indicator of Stable Angina. Clinics 2023, 78, 100289. [Google Scholar] [CrossRef]
- Greco, S.; Zaccagnini, G.; Perfetti, A.; Fuschi, P.; Valaperta, R.; Voellenkle, C.; Castelvecchio, S.; Gaetano, C.; Finato, N.; Beltrami, A.P.; et al. Long Noncoding RNA Dysregulation in Ischemic Heart Failure. J. Transl. Med. 2016, 14, 183. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, L.; Kan, C.; Chen, X.; Shi, K.; Wang, W. DNMT1 Methylation of LncRNA-ANRIL Causes Myocardial Fibrosis Pyroptosis by Interfering with the NLRP3/Caspase-1 Pathway. Cell. Mol. Biol. 2024, 70, 197–203. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Guo, M.; Zhang, Y.; Cui, Y.; Yang, Q.; Bai, R.; Shi, D. ANRIL and Atherosclerosis. J. Clin. Pharm. Ther. 2020, 45, 240–248. [Google Scholar] [CrossRef]
- Bampatsias, D.; Mavroeidis, I.; Tual-Chalot, S.; Vlachogiannis, N.I.; Bonini, F.; Sachse, M.; Mavraganis, G.; Mareti, A.; Kritsioti, C.; Laina, A.; et al. Beta-Secretase-1 Antisense RNA Is Associated with Vascular Ageing and Atherosclerotic Cardiovascular Disease. Thromb. Haemost. 2022, 122, 1932–1942. [Google Scholar] [CrossRef]
- Greco, S.; Piella, S.N.; Made’, A.; Tascini, A.S.; Garcia-Manteiga, J.M.; Castelvecchio, S.; Menicanti, L.; Martelli, F. Basic Science-Cardiac Diseases LncRNA BACE1-AS: A Link between Heart Failure and Alzheimer’s Disease. Eur. Heart J. 2022, 43, ehac544-2945. [Google Scholar] [CrossRef]
- Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; et al. Increased BACE1-AS Long Noncoding RNA and β-Amyloid Levels in Heart Failure. Cardiovasc. Res. 2017, 113, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Kontaraki, J.E.; Marketou, M.E.; Kochiadakis, G.E.; Patrianakos, A.; Maragkoudakis, S.; Plevritaki, A.; Papadaki, S.; Alevizaki, A.; Theodosaki, O.; Parthenakis, F.I. Long Noncoding RNAs in Peripheral Blood Mononuclear Cells of Hypertensive Patients with Heart Failure with Preserved Ejection Fraction in Relation to Their Functional Capacity. Hell. J. Cardiol. 2021, 62, 473–476. [Google Scholar] [CrossRef]
- Ounzain, S.; Micheletti, R.; Arnan, C.; Plaisance, I.; Cecchi, D.; Schroen, B.; Reverter, F.; Alexanian, M.; Gonzales, C.; Ng, S.Y.; et al. CARMEN, a Human Super Enhancer-Associated Long Noncoding RNA Controlling Cardiac Specification, Differentiation and Homeostasis. J. Mol. Cell. Cardiol. 2015, 89, 98–112. [Google Scholar] [CrossRef]
- Xu, Y.l.; Liu, Y.; Cai, R.p.; He, S.r.; Dai, R.x.; Yang, X.h.; Kong, B.h.; Qin, Z.b.; Su, Q. Long Non-Coding RNA CASC7 Is Associated with the Pathogenesis of Heart Failure via Modulating the Expression of MiR-30c. J. Cell. Mol. Med. 2020, 24, 11500–11511. [Google Scholar] [CrossRef]
- Liao, B.; Gao, F.; Lin, F.; Yang, S.; Xu, Z.; Dong, S. LncRNA CASC7 Inhibits Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Rats by Regulating MiR-21 Expression. Panminerva Med. 2022, 64, 414–415. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Ma, Z.; Liang, W.; Li, J.; Li, Y.; Gui, Y.; Ai, S. Early Expressed Circulating Long Noncoding RNA CHAST Is Associated with Cardiac Contractile Function in Patients with Acute Myocardial Infarction. Int. J. Cardiol. 2020, 302, 15–20. [Google Scholar] [CrossRef]
- Viereck, J.; Kumarswamy, R.; Foinquinos, A.; Xiao, K.; Avramopoulos, P.; Kunz, M.; Dittrich, M.; Maetzig, T.; Zimmer, K.; Remke, J.; et al. Long Noncoding RNA Chast Promotes Cardiac Remodeling. Sci. Transl. Med. 2016, 8, 326ra22. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, L.; Yang, T. Fendrr Involves in the Pathogenesis of Cardiac Fibrosis via Regulating MiR-106b/SMAD3 Axis. Biochem. Biophys. Res. Commun. 2020, 524, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lin, X.; Tang, Y.; Sun, H.; Yin, L.; Luo, Z.; Wang, S.; Liang, P.; Jiang, B. LncRNA Fendrr: Involvement in the Protective Role of Nucleolin against H2O2-Induced Injury in Cardiomyocytes. Redox Rep. 2023, 28, 2168626. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, X.M.; Song, N.; Zhai, H.; Gao, X.M.; Yang, Y.N. Long Non-Coding RNAs H19, MALAT1 and MIAT as Potential Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. Biomed. Pharmacother. 2019, 118, 109208. [Google Scholar] [CrossRef]
- Omura, J.; Habbout, K.; Shimauchi, T.; Wu, W.H.; Breuils-Bonnet, S.; Tremblay, E.; Martineau, S.; Nadeau, V.; Gagnon, K.; Mazoyer, F.; et al. Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation 2020, 142, 1464–1484. [Google Scholar] [CrossRef]
- Tao, H.; Cao, W.; Yang, J.J.; Shi, K.H.; Zhou, X.; Liu, L.P.; Li, J. Long Noncoding RNA H19 Controls DUSP5/ERK1/2 Axis in Cardiac Fibroblast Proliferation and Fibrosis. Cardiovasc. Pathol. 2016, 25, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; et al. The H19 Long Noncoding RNA Is a Novel Negative Regulator of Cardiomyocyte Hypertrophy. Cardiovasc. Res. 2016, 111, 56–65. [Google Scholar] [CrossRef]
- Tan, W.; Wang, K.; Yang, X.; Wang, N.; Jiang, T.B. LncRNA HOTAIR Promotes Myocardial Fibrosis in Atrial Fibrillation through Binding with PTBP1 to Increase the Stability of Wnt5a. Int. J. Cardiol. 2022, 369, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, X.; Guo, S.; Xiao, L.; Liang, C.; Wang, Z.; Li, Y.; Liu, Y.; Yao, R.; Liu, Y.; et al. LncRNA HOTAIR Functions as a Competing Endogenous RNA to Upregulate SIRT1 by Sponging MiR-34a in Diabetic Cardiomyopathy. J. Cell. Physiol. 2019, 234, 4944–4958. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lu, F.; Zhang, F.; Fan, S.; Xu, J. Mechanism of LncRNA HOTAIR in Attenuating Cardiomyocyte Pyroptosis in Mice with Heart Failure via the MiR-17-5p/RORA Axis. Exp. Cell Res. 2023, 433, 113806. [Google Scholar] [CrossRef]
- Yang, F.; Qin, Y.; Lv, J.; Wang, Y.; Che, H.; Chen, X.; Jiang, Y.; Li, A.; Sun, X.; Yue, E.; et al. Silencing Long Non-Coding RNA Kcnq1ot1 Alleviates Pyroptosis and Fibrosis in Diabetic Cardiomyopathy. Cell Death Dis. 2018, 9, 1000–1013. [Google Scholar] [CrossRef]
- Zhu, L.; Feng, Q.; Fan, J.; Huang, J.; Zhu, Y.; Wu, Y.; Hou, A.; Huo, Y. Clinical Value of Long Non-Coding RNA KCNQ1OT1 in Estimating the Stenosis, Lipid Level, Inflammation Status, and Prognostication in Coronary Heart Disease Patients. J. Clin. Lab. Anal. 2023, 37, e24775. [Google Scholar] [CrossRef]
- Lai, L.; Xu, Y.; Kang, L.; Yang, J.; Zhu, G. LncRNA KCNQ1OT1 Contributes to Cardiomyocyte Apoptosis by Targeting FUS in Heart Failure. Exp. Mol. Pathol. 2020, 115, 104480. [Google Scholar] [CrossRef]
- Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; De Groote, P.; Pinet, F.; Thum, T. Circulating Long Noncoding RNA, LIPCAR, Predicts Survival in Patients with Heart Failure. Circ. Res. 2014, 114, 1569–1575. [Google Scholar] [CrossRef]
- Meessen, J.M.T.A.; Bär, C.; di Dona, F.M.; Staszewsky, L.I.; Di Giulio, P.; Di Tano, G.; Costa, A.; Leonardy, J.; Novelli, D.; Nicolis, E.B.; et al. LIPCAR Is Increased in Chronic Symptomatic HF Patients. A Sub-Study of the GISSI-HF Trial. Clin. Chem. 2021, 67, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, Y.; Wang, M.; Wang, L.; Zhang, W.; Ge, Z.R. Circulating LIPCAR Is a Potential Biomarker of Heart Failure in Patients Post-Acute Myocardial Infarction. Exp. Biol. Med. 2021, 246, 2589–2594. [Google Scholar] [CrossRef]
- Turkieh, A.; Beseme, O.; Saura, O.; Charrier, H.; Michel, J.B.; Amouyel, P.; Thum, T.; Bauters, C.; Pinet, F. LIPCAR Levels in Plasma-Derived Extracellular Vesicles Is Associated with Left Ventricle Remodeling Post-Myocardial Infarction. J. Transl. Med. 2024, 22, 31. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Chen, H.; Wei, X.; Xu, X. Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells. Med. Sci. Monit. 2019, 25, 7645–7651. [Google Scholar] [CrossRef]
- Li, R.; Jin, J.; Liu, E.; Zhang, J. A Novel Circulating Biomarker Lnc-MALAT1 for Acute Myocardial Infarction: Its Relationship with Disease Risk, Features, Cytokines, and Major Adverse Cardiovascular Events. J. Clin. Lab. Anal. 2022, 36, e24771. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, L.; Song, J.; Wang, Z.; Huang, X.; Guo, Z.; Chen, F.; Zhao, X. Long Noncoding RNA MALAT1 Mediates Cardiac Fibrosis in Experimental Postinfarct Myocardium Mice Model. J. Cell. Physiol. 2019, 234, 2997–3006. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Zhan, X. Lncrna Malat1 Regulates Diabetic Cardiac Fibroblasts through the Hippo–Yap Signaling Pathway. Biochem. Cell Biol. 2020, 98, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhu, Y.; Chang, H.; Li, Y.; Ma, F. Long Noncoding RNA MALAT1 Promotes Cardiomyocyte Apoptosis after Myocardial Infarction via Targeting MIR-144-3p. Biosci. Rep. 2019, 39, BSR20191103. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.J.; Zhang, S.L. Circulating LncRNA MHRT Predicts Survival of Patients with Chronic Heart Failure. J. Geriatr. Cardiol. 2019, 16, 818–821. [Google Scholar] [CrossRef]
- Xuan, L.; Sun, L.; Zhang, Y.; Huang, Y.; Hou, Y.; Li, Q.; Guo, Y.; Feng, B.; Cui, L.; Wang, X.; et al. Circulating Long Non-Coding RNAs NRON and MHRT as Novel Predictive Biomarkers of Heart Failure. J. Cell. Mol. Med. 2017, 21, 1803–1814. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, C.; Meng, M.; Tang, H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol. Ther. 2016, 24, 19–24. [Google Scholar] [CrossRef]
- Han, P.; Li, W.; Lin, C.H.; Yang, J.; Shang, C.; Nurnberg, S.T.; Jin, K.K.; Xu, W.; Lin, C.Y.; Lin, C.J.; et al. A Long Noncoding RNA Protects the Heart from Pathological Hypertrophy. Nature 2014, 514, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Ou, D.; Liu, Z.; Li, Y.; Zhang, X.; Zhang, F. LncRNA MHRT Promotes Cardiac Fibrosis via MiR-3185 Pathway Following Myocardial Infarction. Int. Heart J. 2021, 62, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Vausort, M.; Wagner, D.R.; Devaux, Y. Long Noncoding RNAs in Patients with Acute Myocardial Infarction. Circ. Res. 2014, 115, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ren, Y.; Ren, H.; Wu, Y.; Liu, X.; Chen, H.; Ying, C. The Mechanism of Myocardial Fibrosis Is Ameliorated by Myocardial Infarction-Associated Transcript through the PI3K/Akt Signaling Pathway to Relieve Heart Failure. J. Int. Med. Res. 2021, 49, 03000605211031433. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, H.; Mai, C.; Lin, H.; Shen, J.; Zhang, X.; Gao, Y.; Mao, Y.; Xie, X. LncRNA-MIAT-Mediated MiR-214-3p Silencing Is Responsible for IL-17 Production and Cardiac Fibrosis in Diabetic Cardiomyopathy. Front. Cell Dev. Biol. 2020, 8, 243. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Zhang, W.; Deng, S.Q.; Ge, Z.R. LncRNA-NRF Is a Potential Biomarker of Heart Failure After Acute Myocardial Infarction. J. Cardiovasc. Transl. Res. 2020, 13, 1008–1015. [Google Scholar] [CrossRef]
- Wang, K.; Liu, F.; Liu, C.Y.; An, T.; Zhang, J.; Zhou, L.Y.; Wang, M.; Dong, Y.H.; Li, N.; Gao, J.N.; et al. The Long Noncoding RNA NRF Regulates Programmed Necrosis and Myocardial Injury during Ischemia and Reperfusion by Targeting MiR-873. Cell Death Differ. 2016, 23, 1394–1405. [Google Scholar] [CrossRef]
- Gharbi, N.; Mahmoudinasab, H.; Hooshmandi, E.; Rahimi, M.; Bayat, M.; Karimi, N.; Hojati, S.S.; Zayani, Z.; Tabrizi, R.; Borhani-Haghighi, A. Altered Expression of Long Non-Coding RNAs NRON and SNHG11 in Patients with Ischemic Stroke. Egypt. J. Med. Hum. Genet. 2024, 25, 11. [Google Scholar] [CrossRef]
- Sun, F.; Guo, Z.; Zhang, C.; Che, H.; Gong, W.; Shen, Z.; Shi, Y.; Ge, S. LncRNA NRON Alleviates Atrial Fibrosis through Suppression of M1 Macrophages Activated by Atrial Myocytes. Biosci. Rep. 2019, 39, BSR20192215. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, P.; Zhang, C.; Feng, J.; Gong, W.; Ge, S.; Guo, Z. LncRNA NRON Alleviates Atrial Fibrosis via Promoting NFATc3 Phosphorylation. Mol. Cell. Biochem. 2019, 457, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hoepfner, J.; Leonardy, J.; Lu, D.; Schmidt, K.; Hunkler, H.J.; Biß, S.; Foinquinos, A.; Xiao, K.; Regalla, K.; Ramanujam, D.; et al. The Long Non-Coding RNA NRON Promotes the Development of Cardiac Hypertrophy in the Murine Heart. Mol. Ther. 2022, 30, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Meng, M.; Wei, J.; Wang, S. Long Noncoding RNA PVT1 Contributes to Vascular Endothelial Cell Proliferation via Inhibition of MiR-190a-5p in Diagnostic Biomarker Evaluation of Chronic Heart Failure. Exp. Ther. Med. 2020, 19, 3348–3354. [Google Scholar] [CrossRef]
- Cao, F.; Li, Z.; Ding, W.M.; Yan, L.; Zhao, Q.Y. LncRNA PVT1 Regulates Atrial Fibrosis via MiR-128-3p-SP1-TGF-Β1-Smad Axis in Atrial Fibrillation. Mol. Med. 2019, 25, 7. [Google Scholar] [CrossRef]
- Tian, C.; Hu, S.; Yu, J.; Li, W.; Li, P.; Huang, H. CREB1 Transcription-Activated LncRNA PVT1 Promotes Cardiac Fibrosis via MiR-145/HCN1 Axis. Int. J. Cardiol. 2022, 353, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Luo, M.; Xue, Y.; Lv, D.; Huang, L.; Li, X.; Shen, J. LncRNA Pvt1 Aggravates Cardiomyocyte Apoptosis via the MicroRNA-216/Ccnd3 Axis. Heliyon 2024, 10, e38261. [Google Scholar] [CrossRef]
- Ramos, K.S.; Li, J.; Wijdeveld, L.F.J.; van Schie, M.S.; Taverne, Y.J.H.J.; Boon, R.A.; de Groot, N.M.S.; Brundel, B.J.J.M. Long Noncoding RNA UCA1 Correlates with Electropathology in Patients with Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Trembinski, D.J.; Bink, D.I.; Theodorou, K.; Sommer, J.; Fischer, A.; van Bergen, A.; Kuo, C.C.; Costa, I.G.; Schürmann, C.; Leisegang, M.S.; et al. Aging-Regulated Anti-Apoptotic Long Non-Coding RNA Sarrah Augments Recovery from Acute Myocardial Infarction. Nat. Commun. 2020, 11, 2039. [Google Scholar] [CrossRef]
- Yu, Y.; Ge, X.; Cao, L.; Li, F. Diagnostic and Prognostic Value of Plasma LncRNA SRA1 in Chronic Heart Failure. Rev. Cardiovasc. Med. 2024, 25, 178. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, S.; Wang, Y.; Jin, P.; Lu, F. LncRNA SRA1 Promotes the Activation of Cardiac Myofibroblasts Through Negative Regulation of MiR-148b. DNA Cell Biol. 2019, 38, 385–394. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, S.; Aisha, A.; Abudoukelimu, M.; Tang, L.; Ling, Y. Long Noncoding RNA SRA1 Attenuates Hypoxia-Induced Injury in H9c2 Cardiomyocytes through Regulating PPARγ/NF-ΚB Signaling Pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 4512–4520. [Google Scholar] [PubMed]
- Zhang, S.; Jin, R.; Li, B. Serum NT-proBNP and TUG1 as Novel Biomarkers for Elderly Hypertensive Patients with Heart Failure with Preserved Ejection Fraction. Exp. Ther. Med. 2021, 21, 446. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, S.; Ji, K.; Zhou, H.; Luo, C.; Sui, Y. Differentially Expressed TUG1 and MiR-145-5p Indicate Different Severity of Chronic Heart Failure and Predict 2-year Survival Prognosis. Exp. Ther. Med. 2021, 22, 1362. [Google Scholar] [CrossRef]
- Fu, D.; Gao, T.; Liu, M.; Li, C.; Li, H.; Jiang, H.; Li, X. LncRNA TUG1 Aggravates Cardiomyocyte Apoptosis and Myocardial Ischemia/Reperfusion Injury. Histol. Histopathol. 2021, 36, 1261–1272. [Google Scholar] [CrossRef]
- Sun, Y.; Shan, X.; Guo, J.; Liu, X.; Ma, D. CHI3L1 Promotes Myocardial Fibrosis via Regulating LncRNA TUG1/MiR-495-3p/ETS1 Axis. Apoptosis 2023, 28, 1436–1451. [Google Scholar] [CrossRef]
- Yang, D.; Yu, J.; Liu, H.B.; Yan, X.Q.; Hu, J.; Yu, Y.; Guo, J.; Yuan, Y.; Du, Z.M. The Long Non-Coding RNA TUG1-MiR-9a-5p Axis Contributes to Ischemic Injuries by Promoting Cardiomyocyte Apoptosis via Targeting KLF5. Cell Death Dis. 2019, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Liu, Y.; Lv, X.W.; Dai, R.X.; Yang, X.H.; Kong, B.H. LncRNA TUG1 Mediates Ischemic Myocardial Injury by Targeting MiR-132-3p/HDAC3 Axis. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H332–H344. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, M.; Zhang, M.; Ning, L.; Chen, D. Long Non-Coding RNA LOC285194 Regulates Vascular Smooth Muscle Cell Apoptosis in Atherosclerosis. Bioengineered 2020, 11, 53–60. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, B.; Liu, N.; Qi, C.; Xiao, Y.; Tian, X.; Li, T.; Liu, B. Circulating Long Noncoding RNA UCA1 as a Novel Biomarker of Acute Myocardial Infarction. Biomed. Res. Int. 2016, 2016, 8079372. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Yin, M.; Cheng, Z.; Jiang, P.; Feng, M.; Liu, Z.; Liao, B. TGF-Β1/Smad3 Upregulates UCA1 to Promote Liver Fibrosis through DKK1 and MiR18a. J. Mol. Med. 2022, 100, 1465–1478. [Google Scholar] [CrossRef]
- Zhou, G.; Li, C.; Feng, J.; Zhang, J.; Fang, Y. LncRNA UCA1 Is a Novel Regulator in Cardiomyocyte Hypertrophy through Targeting the MiR-184/HOXA9 Axis. Cardiorenal Med. 2018, 8, 130–139. [Google Scholar] [CrossRef]
- Huang, K.; Huang, D.; Li, Q.; Zhong, J.; Zhou, Y.; Zhong, Z.; Tang, S.; Zhang, W.; Chen, Z.; Lu, S. Upregulation of LncRNA UCA1 Promotes Cardiomyocyte Proliferation by Inhibiting the MiR-128/SUZ12/P27 Pathway. Heliyon 2024, 10, e34181. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Fuschi, P.; Ivan, C.; Martelli, F. Circular RNAs: Methodological Challenges and Perspectives in Cardiovascular Diseases. J. Cell. Mol. Med. 2018, 22, 5176–5187. [Google Scholar] [CrossRef]
- Santer, L.; Bär, C.; Thum, T. Circular RNAs: A Novel Class of Functional RNA Molecules with a Therapeutic Perspective. Mol. Ther. 2019, 27, 1350–1363. [Google Scholar] [CrossRef] [PubMed]
- Madè, A.; Bibi, A.; Garcia-Manteiga, J.M.; Tascini, A.S.; Piella, S.N.; Tikhomirov, R.; Voellenkle, C.; Gaetano, C.; Leszek, P.; Castelvecchio, S.; et al. CircRNA-MiRNA-MRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023, 12, 2578. [Google Scholar] [CrossRef]
- Salgado-Somoza, A.; Zhang, L.; Vausort, M.; Devaux, Y. The Circular RNA MICRA for Risk Stratification after Myocardial Infarction. IJC Heart Vasc. 2017, 17, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, J.D.; Fang, X.H.; Zhu, J.N.; Yang, J.; Pan, R.; Yuan, S.J.; Zeng, N.; Yang, Z.Z.; Yang, H.; et al. Circular RNA CircRNA_000203 Aggravates Cardiac Hypertrophy via Suppressing MiR-26b-5p and MiR-140-3p Binding to Gata4. Cardiovasc. Res. 2021, 116, 1323–1334. [Google Scholar] [CrossRef]
- Bibi, A.; Bartekova, M.; Gandhi, S.; Greco, S.; Madè, A.; Sarkar, M.; Stopa, V.; Tastsoglou, S.; de Gonzalo-Calvo, D.; Devaux, Y.; et al. Circular RNA Regulatory Role in Pathological Cardiac Remodelling. Br. J. Pharmacol. 2024, 182, 316–339. [Google Scholar] [CrossRef]
- Ren, L.; Jiang, Q.; Mo, L.; Tan, L.; Dong, Q.; Meng, L.; Yang, N.; Li, G. Mechanisms of Circular RNA Degradation. Commun. Biol. 2022, 5, 1355. [Google Scholar] [CrossRef]
- Ge, L.; Sun, Y.; Shi, Y.; Liu, G.; Teng, F.; Geng, Z.; Chen, X.; Xu, H.; Xu, J.; Jia, X. Plasma CircRNA Microarray Profiling Identifies Novel CircRNA Biomarkers for the Diagnosis of Ovarian Cancer. J. Ovarian Res. 2022, 15, 58. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, X.; Lv, Y.; Liang, X.; Zhao, B.; Bian, W.; Zhang, D.; Jiang, J.; Zhang, C. Circular RNA Expression Profiles in Plasma from Patients with Heart Failure Related to Platelet Activity. Biomolecules 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Dawson, R.; Tea, M.; McAninch, D.; Piltz, S.; Jackson, D.; Stewart, L.; Ricos, M.G.; Dibbens, L.M.; Harvey, N.L.; et al. Knockout of the Epilepsy Gene Depdc5 in Mice Causes Severe Embryonic Dysmorphology with Hyperactivity of MTORC1 Signalling. Sci. Rep. 2017, 7, 12618. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhu, H.; Zhang, J.; Yang, X.; Zhao, L. Genome-Wide Screening for CircRNAs in Epicardial Adipose Tissue of Heart Failure Patients with Preserved Ejection Fraction. Am. J. Transl. Res. 2023, 15, 4610–4619. [Google Scholar]
- Pan, R.Y.; Liu, P.; Zhou, H.T.; Sun, W.X.; Song, J.; Shu, J.; Cui, G.J.; Yang, Z.J.; Jia, E.Z. Circular RNAs Promote TRPM3 Expression by Inhibiting Hsa-MiR- 130a-3p in Coronary Artery Disease Patients. Oncotarget 2017, 8, 60280–60290. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Wei, Z.; Cheng, Y.; Tian, G.; Quan, Y.; Kong, Q.; Wu, W.; Liu, X. Identification of Circular RNAs in Cardiac Hypertrophy and Cardiac Fibrosis. Front. Pharmacol. 2022, 13, 940768. [Google Scholar] [CrossRef]
- Imanishi, R.; Nakau, K.; Shimada, S.; Oka, H.; Takeguchi, R.; Tanaka, R.; Sugiyama, T.; Nii, M.; Okamoto, T.; Nagaya, K.; et al. A Novel HECW2 Variant in an Infant with Congenital Long QT Syndrome. Hum. Genome Var. 2023, 10, 17. [Google Scholar] [CrossRef]
- Vilades, D.; Martínez-Camblor, P.; Ferrero-Gregori, A.; Bär, C.; Lu, D.; Xiao, K.; Vea, À.; Nasarre, L.; Sanchez Vega, J.; Leta, R.; et al. Plasma Circular RNA Hsa_circ_0001445 and Coronary Artery Disease: Performance as a Biomarker. FASEB J. 2020, 34, 4403–4414. [Google Scholar] [CrossRef]
- Dinh, P.S.; Peng, J.H.; Tran, T.L.; Wu, D.F.; Tran, C.M.T.; Dinh, T.P.H.; Pan, S.L. Identification of Hsa_circ_0001445 of a Novel CircRNA-MiRNA-MRNA Regulatory Network as Potential Biomarker for Coronary Heart Disease. Front. Cardiovasc. Med. 2023, 10, 1104223. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Du, W.W.; Wu, Y.; Yang, Z.; Awan, F.M.; Li, X.; Yang, W.; Zhang, C.; Yang, Q.; Yee, A.; et al. A Circular RNA Binds to and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics 2017, 7, 3842–3855. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, H.; Yang, C. Circ-AMOTL1 Enhances Cardiac Fibrosis through Binding with EIF4A3 and Stabilizing MARCKS Expression in Diabetic Cardiomyopathy. Cell Signal 2023, 111, 110853. [Google Scholar] [CrossRef]
- Du, W.W.; Yang, W.; Chen, Y.; Wu, Z.-K.; Foster, F.S.; Yang, Z.; Li, X.; Yang, B.B. Foxo3 Circular RNA Promotes Cardiac Senescence by Modulating Multiple Factors Associated with Stress and Senescence Responses. Eur. Heart J. 2016, 38, 1402–1412. [Google Scholar] [CrossRef]
- Sun, G.; Shen, J.F.; Wei, X.F.; Qi, G.X. Circular RNA Foxo3 Relieves Myocardial Ischemia/ Reperfusion Injury by Suppressing Autophagy via Inhibiting HMGB1 by Repressing KAT7 in Myocardial Infarction. J. Inflamm. Res. 2021, 14, 6397–6407. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Li, M.; Deng, Q.; Wang, C.; Rong, J.; He, S.; Xiang, Y.; Zheng, F. CircRNA ZNF609 in Peripheral Blood Leukocytes Acts as a Protective Factor and a Potential Biomarker for Coronary Artery Disease. Ann. Transl. Med. 2020, 8, 741. [Google Scholar] [CrossRef] [PubMed]
- Vausort, M.; Salgado-Somoza, A.; Zhang, L.; Leszek, P.; Scholz, M.; Teren, A.; Burkhardt, R.; Thiery, J.; Wagner, D.R.; Devaux, Y. Myocardial Infarction-Associated Circular RNA Predicting Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 2016, 68, 1247–1248. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Peng, L.; Liu, Y.; Cheng, D.; Wang, Y.; Ni, C. CircZNF609 Regulates Pulmonary Fibrosis via MiR-145-5p/KLF4 Axis and Its Translation Function. Cell. Mol. Biol. Lett. 2023, 28, 105. [Google Scholar] [CrossRef] [PubMed]
- Devaux, Y.; Zhang, L. Novel Circular RNA Biomarkers for Heart Failure 2018. U.S. Patent 2020/018356 A1, 18 June 2020. [Google Scholar]
- Wang, C.; Liu, Y.; Zhang, W.; Huang, J.; Jiang, J.; Wang, R.; Zeng, D. Circ-Bptf Serves as a Mir-486-5p Sponge to Regulate Cemip and Promotes Hypoxic Pulmonary Arterial Smooth Muscle Cell Proliferation in Copd. Acta Biochim. Biophys. Sin. 2023, 55, 438–448. [Google Scholar] [CrossRef]
- Chen, H.; Lv, L.; Liang, R.; Guo, W.; Liao, Z.; Chen, Y.; Zhu, K.; Huang, R.; Zhao, H.; Pu, Q.; et al. MiR-486 Improves Fibrotic Activity in Myocardial Infarction by Targeting SRSF3/P21-Mediated Cardiac Myofibroblast Senescence. J. Cell. Mol. Med. 2022, 26, 5135–5149. [Google Scholar] [CrossRef]
- Zhang, W.; Sui, Y. CircBPTF Knockdown Ameliorates High Glucose-Induced Inflammatory Injuries and Oxidative Stress by Targeting the MiR-384/LIN28B Axis in Human Umbilical Vein Endothelial Cells. Mol. Cell. Biochem. 2020, 471, 101–111. [Google Scholar] [CrossRef]
- Liu, R.; Hu, L.; Zhou, Y.; Cao, Y. Serum CircPRDM5 as a Novel Diagnostic Biomarker for Acute Myocardial Infarction. Gene 2024, 899, 148142. [Google Scholar] [CrossRef]
- Huang, P.; Hu, Y.; Duan, Y. TGF-Β2-Induced Circ-PRDM5 Regulates Migration, Invasion, and EMT through the MiR-92b-3p/COL1A2 Pathway in Human Lens Epithelial Cells. J. Mol. Histol. 2022, 53, 309–320. [Google Scholar] [CrossRef]
- Garikipati, V.N.S.; Verma, S.K.; Cheng, Z.; Liang, D.; Truongcao, M.M.; Cimini, M.; Yue, Y.; Huang, G.; Wang, C.; Benedict, C.; et al. Circular RNA CircFndc3b Modulates Cardiac Repair after Myocardial Infarction via FUS/VEGF-A Axis. Nat. Commun. 2019, 10, 4317. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Yao, H.; Zhang, P.; Sun, Y.; Ma, J.; Xia, Q. Emerging Landscape of CircFNDC3B and Its Role in Human Malignancies. Front. Oncol. 2023, 13, 1097956. [Google Scholar] [CrossRef]
- Bazan, H.A.; Hatfield, S.A.; Brug, A.; Brooks, A.J.; Lightell, D.J.; Woods, T.C. Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum CircR-284 to MiR-221 Levels. Circ. Cardiovasc. Genet. 2017, 10, e001720. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, M.; Han, R.; Yu, Z.; Yuan, W.; Xie, B.; Zhang, Y.; Zhong, J.; Wang, L.; Wang, L.; et al. Circulating Exosomal CircRNAs as Diagnostic Biomarkers for Chronic Coronary Syndrome. Metabolites 2023, 13, 1066. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Y.; Guo, J.; Gong, Y.; Xu, X.; Lin, Y.; Hu, Y.; Wen, Y.; Yang, L.; Li, H.; et al. Circ_0000284: A Risk Factor and Potential Biomarker for Prehypertension and Hypertension. Hypertens. Res. 2023, 46, 720–729. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Xu, L.; Feng, Y.; Wu, X.; Zhang, M.; Yu, Z.; Zhou, X. Involvement of CircHIPK3 in the Pathogenesis of Diabetic Cardiomyopathy in Mice. Diabetologia 2021, 64, 681–692. [Google Scholar] [CrossRef]
- Ni, H.; Li, W.; Zhuge, Y.; Xu, S.; Wang, Y.; Chen, Y.; Shen, G.; Wang, F. Inhibition of CircHIPK3 Prevents Angiotensin II-Induced Cardiac Fibrosis by Sponging MiR-29b-3p. Int. J. Cardiol. 2019, 292, 188–196. [Google Scholar] [CrossRef]
- Zheng, M.L.; Du, X.P.; Zhao, L.; Yang, X.C.; Hao, X.Y.; Chen, X. Expression Profile of Circular RNAs in Epicardial Adipose Tissue in Heart Failure. Chin. Med. J. 2020, 133, 2565–2572. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, W.; Yang, T.; Meng, X.; Jiang, Z.; Tao, L.; Wang, L. Upregulation of Circular RNA CircNFIB Attenuates Cardiac Fibrosis by Sponging MiR-433. Front. Genet. 2019, 10, 564. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Wang, D.; Lin, Y.; Bai, C.; Nie, N.; Gao, S.; Zhang, Q.; Chang, H.; Ren, C. Elucidating the Role of CircNFIB in Myocardial Fibrosis Alleviation by Endogenous Sulfur Dioxide. BMC Cardiovasc. Disord. 2022, 22, 492–499. [Google Scholar] [CrossRef]
- Chen, C.; Shen, H.; Huang, Q.; Li, Q. The Circular RNA CDR1as Regulates the Proliferation and Apoptosis of Human Cardiomyocytes through the MiR-135a/HMOX1 and MiR-135b/HMOX1 Axes. Genet. Test. Mol. Biomark. 2020, 24, 537–548. [Google Scholar] [CrossRef]
- Gonzalez, C.; Cimini, M.; Benedict, C.; Mallaredy, V.; Trungcao, M.; Rajan, S.; Garikipati, V.N.; Kishore, R. Abstract P3090: The Role Of Circular Cdr1as In Macrophage Cardiac Inflammation And Fibrosis. Circ. Res. 2023, 133, AP3090. [Google Scholar] [CrossRef]
- Mester-Tonczar, J.; Winkler, J.; Einzinger, P.; Hasimbegovic, E.; Kastner, N.; Lukovic, D.; Zlabinger, K.; Spannbauer, A.; Traxler, D.; Batkai, S.; et al. Association between Circular Rna Cdr1as and Post-Infarction Cardiac Function in Pig Ischemic Heart Failure: Influence of the Anti-Fibrotic Natural Compounds Bufalin and Lycorine. Biomolecules 2020, 10, 1180. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, L.; Hu, L.; Yu, H.; Xu, F.; Yang, B.; Zhang, R.; Zhang, Y.; An, Y. Circular RNA-Expression Profiling Reveals a Potential Role of Hsa_circ_0097435 in Heart Failure via Sponging Multiple MicroRNAs. Front. Genet. 2020, 11, 212. [Google Scholar] [CrossRef]
- Sun, L.Y.; Zhao, J.C.; Ge, X.M.; Zhang, H.; Wang, C.M.; Bie, Z.D. Circ_LAS1L Regulates Cardiac Fibroblast Activation, Growth, and Migration through MiR-125b/SFRP5 Pathway. Cell Biochem. Funct. 2020, 38, 443–450. [Google Scholar] [CrossRef]
- Sonnenschein, K.; Wilczek, A.L.; de Gonzalo-Calvo, D.; Pfanne, A.; Derda, A.A.; Zwadlo, C.; Bavendiek, U.; Bauersachs, J.; Fiedler, J.; Thum, T. Serum Circular RNAs Act as Blood-Based Biomarkers for Hypertrophic Obstructive Cardiomyopathy. Sci. Rep. 2019, 9, 20350–20358. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, L.; Deng, W.; Jiang, M. CircRNA MFACR Is Upregulated in Myocardial Infarction and Downregulates MiR-125b to Promote Cardiomyocyte Apoptosis Induced by Hypoxia. J. Cardiovasc. Pharmacol. 2021, 78, 802–808. [Google Scholar] [CrossRef]
- Wang, K.; Gan, T.Y.; Li, N.; Liu, C.Y.; Zhou, L.Y.; Gao, J.N.; Chen, C.; Yan, K.W.; Ponnusamy, M.; Zhang, Y.H.; et al. Circular RNA Mediates Cardiomyocyte Death via MiRNA-Dependent Upregulation of MTP18 Expression. Cell Death Differ. 2017, 24, 1111–1120. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; Gao, C.; Jian, D.; Hao, P.; Rao, L.; Li, M. Peripheral Blood Circular RNA Hsa_circ_0124644 Can Be Used as a Diagnostic Biomarker of Coronary Artery Disease. Sci. Rep. 2017, 7, 39918. [Google Scholar] [CrossRef]
- Chen, T.p.; Zhang, N.j.; Wang, H.j.; Hu, S.g.; Geng, X. Knockdown of CircROBO2 Attenuates Acute Myocardial Infarction through Regulating the MiR-1184/TRADD Axis. Mol. Med. 2021, 27, 21. [Google Scholar] [CrossRef]
- Guo, J.; Chen, L.W.; Huang, Z.Q.; Guo, J.S.; Li, H.; Shan, Y.; Chen, Z.R.; Yan, Y.M.; Zhu, J.N.; Guo, H.M.; et al. Suppression of the Inhibitory Effect of Circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by MiR-218-5p. J. Cardiovasc. Transl. Res. 2022, 15, 548–559. [Google Scholar] [CrossRef] [PubMed]
- D’alessandra, Y.; Chiesa, M.; Carena, M.C.; Beltrami, A.P.; Rizzo, P.; Buzzetti, M.; Ricci, V.; Ferrari, R.; Fucili, A.; Livi, U.; et al. Differential Role of Circulating Micrornas to Track Progression and Pre-Symptomatic Stage of Chronic Heart Failure: A Pilot Study. Biomedicines 2020, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Seronde, M.F.; Vausort, M.; Gayat, E.; Goretti, E.; Ng, L.L.; Squire, I.B.; Vodovar, N.; Sadoune, M.; Samuel, J.L.; Thum, T.; et al. Circulating MicroRNAs and Outcome in Patients with Acute Heart Failure. PLoS ONE 2015, 10, e0142237. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, D.; Gao, X.; Wang, Z.; Zhang, L.; Fan, H. MiR-423-5p Inhibition Exerts Protective Effects on Angiotensin II-Induced Cardiomyocyte Hypertrophy. Tohoku J. Exp. Med. 2023, 259, 199–208. [Google Scholar] [CrossRef]
- Pradhan, K.; Niehues, P.; Neupane, B.; Maleck, C.; Sharif-Yakan, A.; Emrani, M.; Zink, M.D.; Napp, A.; Marx, N.; Gramlich, M. MicroRNA-21 Mediated Cross-Talk between Cardiomyocytes and Fibroblasts in Patients with Atrial Fibrillation. Front. Cardiovasc. Med. 2023, 10, 1056134. [Google Scholar] [CrossRef]
- Torres-Paz, Y.E.; Gamboa, R.; Fuentevilla-Álvarez, G.; Soto, M.E.; González-Moyotl, N.; Martínez-Alvarado, R.; Torres-Tamayo, M.; Ramírez-Marroquín, E.S.; Vásquez-Jiménez, X.; Sainz-Escarrega, V.; et al. Overexpression of MicroRNA-21-5p and MicroRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. Int. J. Mol. Sci. 2023, 24, 8641. [Google Scholar] [CrossRef]
- Tikhomirov, R.; Reilly-O’donnell, B.; Lucarelli, C.; Greco, S.; Zacagnini, G.; Maryam, A.; Menicanti, L.; Leszek, P.; Faggian, G.; Srivastava, P.; et al. Identification of MiRNA-497 and MiRNA-27b-5p as Potential Diagnostic Markers of Cardiac Fibrosis. Eur. Heart J. 2021, 42, ehab724-3344. [Google Scholar] [CrossRef]
- Bahls, M.; Könemann, S.; Markus, M.R.P.; Wenzel, K.; Friedrich, N.; Nauck, M.; Völzke, H.; Steveling, A.; Janowitz, D.; Grabe, H.J.; et al. Brain-Derived Neurotrophic Factor Is Related with Adverse Cardiac Remodeling and High NTproBNP. Sci. Rep. 2019, 9, 15421–15429. [Google Scholar] [CrossRef]
- Jiang, Y.; Mo, H.; Luo, J.; Zhao, S.; Liang, S.; Zhang, M.; Yuan, J. HOTAIR Is a Potential Novel Biomarker in Patients with Congenital Heart Diseases. Biomed. Res. Int. 2018, 2018, 2850657. [Google Scholar] [CrossRef]
- Taghvimi, S.; Soltani Fard, E.; Khatami, S.H.; Zafaranchi, Z.M.S.; Taheri-Anganeh, M.; Movahedpour, A.; Ghasemi, H. LncRNA HOTAIR and Cardiovascular Diseases. Funct. Integr. Genom. 2024, 24, 165. [Google Scholar] [CrossRef]
- Lai, Y.; He, S.; Ma, L.; Lin, H.; Ren, B.; Ma, J.; Zhu, X.; Zhuang, S. HOTAIR Functions as a Competing Endogenous RNA to Regulate PTEN Expression by Inhibiting MiR-19 in Cardiac Hypertrophy. Mol. Cell Biochem. 2017, 432, 179–187. [Google Scholar] [CrossRef]
- Pan, S.C.; Cui, H.H.; Qiu, C.G. HOTAIR Promotes Myocardial Fibrosis through Regulating URI1 Expression via Wnt Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6983–6990. [Google Scholar] [CrossRef] [PubMed]
- Baral, H.; Uchiyama, A.; Yokoyama, Y.; Sekiguchi, A.; Yamazaki, S.; Amalia, S.N.; Inoue, Y.; Ogino, S.; Torii, R.; Hosoi, M.; et al. Antifibrotic Effects and Mechanisms of Mesenchymal Stem Cell-Derived Exosomes in a Systemic Sclerosis Mouse Model: Possible Contribution of MiR-196b-5p. J. Dermatol. Sci. 2021, 104, 39–47. [Google Scholar] [CrossRef]
- Bei, Y.; Lu, D.; Bär, C.; Chatterjee, S.; Costa, A.; Riedel, I.; Mooren, F.C.; Zhu, Y.; Huang, Z.; Wei, M.; et al. MiR-486 Attenuates Cardiac Ischemia/Reperfusion Injury and Mediates the Beneficial Effect of Exercise for Myocardial Protection. Mol. Ther. 2022, 30, 1675–1691. [Google Scholar] [CrossRef] [PubMed]
- Douvris, A.; Viñas, J.; Burns, K.D. MiRNA-486-5p: Signaling Targets and Role in Non-Malignant Disease. Cell. Mol. Life Sci. 2022, 79, 376. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zeng, X.; Shan, R.; Wen, W.; Li, J.; Tan, J.; Li, L.; Wan, R. The Emerging Picture of the Roles of CircRNA-CDR1as in Cancer. Front. Cell Dev. Biol. 2020, 8, 590478. [Google Scholar] [CrossRef]
- Hirt, M.N.; Werner, T.; Indenbirken, D.; Alawi, M.; Demin, P.; Kunze, A.C.; Stenzig, J.; Starbatty, J.; Hansen, A.; Fiedler, J.; et al. Deciphering the MicroRNA Signature of Pathological Cardiac Hypertrophy by Engineered Heart Tissue- and Sequencing-Technology. J. Mol. Cell. Cardiol. 2015, 81, 1–9. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Sharma, K.; Shah, S.J.; Ho, J.E. Heart Failure with Preserved Ejection Fraction: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef]
- Omote, K.; Verbrugge, F.H.; Borlaug, B.A. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu. Rev. Med. 2022, 73, 321–337. [Google Scholar] [CrossRef]
- Jie, R.; Zhu, P.; Zhong, J.; Zhang, Y.; Wu, H. LncRNA KCNQ1OT1 Affects Cell Proliferation, Apoptosis and Fibrosis through Regulating MiR-18b-5p/SORBS2 Axis and NF-KB Pathway in Diabetic Nephropathy. Diabetol. Metab. Syndr. 2020, 12, 77. [Google Scholar] [CrossRef]
- Lazar, S.; Rayner, B.; Lopez Campos, G.; McGrath, K.; McClements, L. Mechanisms of Heart Failure with Preserved Ejection Fraction in the Presence of Diabetes Mellitus. Transl. Metab. Syndr. Res. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Mgbemena, O.; Zhang, Y.; Velarde, G. Role of Diabetes Mellitus in Heart Failure with Preserved Ejection Fraction: A Review Article. Cureus 2021, 13, e19398. [Google Scholar] [CrossRef] [PubMed]
- Scărlătescu, A.I.; Barbălată, T.; Sima, A.V.; Stancu, C.; Niculescu, L.Ș.; Micheu, M.M. MiR-146a-5p, MiR-223-3p and MiR-142-3p as Potential Predictors of Major Adverse Cardiac Events in Young Patients with Acute ST Elevation Myocardial Infarction—Added Value over Left Ventricular Myocardial Work Indices. Diagnostics 2022, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dou, L.; Chen, Y. Association of Long-Chain Non-Coding RNA MHRT Gene Single Nucleotide Polymorphism with Risk and Prognosis of Chronic Heart Failure. Medicine 2020, 99, e19703. [Google Scholar] [CrossRef]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure with Reduced Ejection Fraction: A Review. JAMA-J. Am. Med. Assoc. 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Chen, Y.T.; Wong, L.L.; Liew, O.W.; Richards, A.M. Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells 2019, 8, 1651. [Google Scholar] [CrossRef]
- Takvorian, K.S.; Wang, D.; Larson, M.G.; Courchesne, P.; Levy, D.; Ho, J.E. The Association of Protein Biomarkers with Incident HFpEF vs HFrEF. J. Am. Coll. Cardiol. 2021, 77, 562. [Google Scholar] [CrossRef]
- Lala, A.; Desai, A.S. The Role of Coronary Artery Disease in Heart Failure. Heart Fail. Clin. 2014, 10, 353–365. [Google Scholar] [CrossRef]
- Lin, D.S.; Zhang, C.Y.; Li, L.; Ye, G.H.; Jiang, L.P.; Jin, Q. Circ_ROBO2/MiR-149 Axis Promotes the Proliferation and Migration of Human Aortic Smooth Muscle Cells by Activating NF-ΚB Signaling. Cytogenet. Genome Res. 2021, 161, 414–424. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ding, Z.; Chen, Y.; Wang, W. LncRNA H19: A Novel Biomarker in Cardiovascular Disease. Acta Cardiol. Sin. 2024, 40, 172–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, W.; Long, Q.Q.; Zhang, J.; Li, Y.F.; Liu, D.C.; Yan, J.J.; Yang, Z.J.; Wang, L.S. Increased Plasma Levels of LncRNA H19 and LIPCAR Are Associated with Increased Risk of Coronary Artery Disease in a Chinese Population. Sci. Rep. 2017, 7, 7491–7499. [Google Scholar] [CrossRef] [PubMed]
- Busscher, D.; Boon, R.A.; Juni, R.P. The Multifaceted Actions of the LncRNA H19 in Cardiovascular Biology and Diseases. Clin. Sci. 2022, 136, 1157–1178. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yu, F.; Li, X.; Gao, H.; Li, P. CircHIPK3 Plays Vital Roles in Cardiovascular Disease. Front. Cardiovasc. Med. 2021, 8, 733248. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, J.; Xie, G.; Zeng, X.; Li, H. Circ-Hipk3 Strengthens the Effects of Adrenaline in Heart Failure by Mir-17-3p-Adcy6 Axis. Int. J. Biol. Sci. 2019, 15, 2484–2496. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. A Necessary Role of MiR-221 and MiR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circ. Res. 2009, 104, 476–487. [Google Scholar] [CrossRef]
- Jenča, D.; Melenovský, V.; Stehlik, J.; Staněk, V.; Kettner, J.; Kautzner, J.; Adámková, V.; Wohlfahrt, P. Heart Failure after Myocardial Infarction: Incidence and Predictors. ESC Heart Fail. 2021, 8, 222–237. [Google Scholar] [CrossRef]
- Arun, G.; Aggarwal, D.; Spector, D.L. MALAT1 Long Non-Coding RNA: Functional Implications. Noncoding RNA 2020, 6, 22. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, J.Y.; Liu, F.; Zhang, X.H.; Luo, F.; Yang, Y.N.; Li, X.M. Long Noncoding RNA MALAT1 Polymorphism Predicts MACCEs in Patients with Myocardial Infarction. BMC Cardiovasc. Disord. 2022, 22, 152. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Cai, Y.; Yang, Y.; Wang, Y. Lncrna Malat1: A Potential Fibrosis Biomarker and Therapeutic Target. Crystals 2021, 11, 249. [Google Scholar] [CrossRef]
- De Gonzalo-Calvo, D.; Kenneweg, F.; Bang, C.; Toro, R.; Van Der Meer, R.W.; Rijzewijk, L.J.; Smit, J.W.; Lamb, H.J.; Llorente-Cortes, V.; Thum, T. Circulating Long-Non Coding RNAs as Biomarkers of Left Ventricular Diastolic Function and Remodelling in Patients with Well-Controlled Type 2 Diabetes. Sci. Rep. 2016, 6, 37354. [Google Scholar] [CrossRef]
- McEwan, D.G.; Popovic, D.; Gubas, A.; Terawaki, S.; Suzuki, H.; Stadel, D.; Coxon, F.P.; MirandadeStegmann, D.; Bhogaraju, S.; Maddi, K.; et al. PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins. Mol. Cell 2015, 57, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, D.; Piccini, J.P. Atrial Fibrillation in Heart Failure: What Should We Do? Eur. Heart J. 2015, 36, 3250–3257. [Google Scholar] [CrossRef] [PubMed]
- Bitarafan, S.; Yari, M.; Broumand, M.A.; Ghaderian, S.M.H.; Rahimi, M.; Mirfakhraie, R.; Azizi, F.; Omrani, M.D. Association of Increased Levels of LncRNA H19 in PBMCs with Risk of Coronary Artery Disease. Cell J. 2019, 20, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yu, J.W. A Novel Identified Circular RNA, CircRNA_010567, Promotes Myocardial Fibrosis via Suppressing MiR-141 by Targeting TGF-Β1. Biochem. Biophys. Res. Commun. 2017, 487, 769–775. [Google Scholar] [CrossRef]
- Bai, M.; Pan, C.L.; Jiang, G.X.; Zhang, Y.M. CircRNA 010567 Improves Myocardial Infarction Rats through Inhibiting TGF-Β1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 369–375. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, W.; Pan, W.; Wang, Z. CircRNA 010567 Plays a Significant Role in Myocardial Infarction via the Regulation of the MiRNA-141/DAPK1 Axis. J. Thorac. Dis. 2021, 13, 2447–2459. [Google Scholar] [CrossRef]
- Tang, C.-M.; Zhang, M.; Huang, L.; Hu, Z.; Zhu, J.-N.; Xiao, Z.; Zhang, Z.; Lin, Q.; Zheng, X.-L.; Yang, M.; et al. CircRNA_000203 Enhances the Expression of Fibrosis-Associated Genes by Derepressing Targets of MiR-26b-5p, Col1a2 and CTGF, in Cardiac Fibroblasts. Sci. Rep. 2017, 7, 40342. [Google Scholar] [CrossRef]
- Zhang, L.; Lou, Q.; Zhang, W.; Yang, W.; Li, L.; Zhao, H.; Kong, Y.; Li, W. CircCAMTA1 Facilitates Atrial Fibrosis by Regulating the MiR-214-3p/TGFBR1 Axis in Atrial Fibrillation. J. Mol. Histol. 2023, 54, 55–65. [Google Scholar] [CrossRef]
- Li, F.; Long, T.Y.; Bi, S.S.; Sheikh, S.A.; Zhang, C.L. CircPAN3 Exerts a Profibrotic Role via Sponging MiR-221 through FoxO3/ATG7-Activated Autophagy in a Rat Model of Myocardial Infarction. Life Sci. 2020, 257, 118015. [Google Scholar] [CrossRef]
- Pang, P.; Si, W.; Wu, H.; Wang, C.; Liu, K.; Jia, Y.; Zhang, Z.; Zhang, F.; Kong, X.; Yang, Y.; et al. The Circular RNA CircHelz Enhances Cardiac Fibrosis by Facilitating the Nuclear Translocation of YAP1. Transl. Res. 2023, 257, 30–42. [Google Scholar] [CrossRef]
- Ji, D.N.; Jin, S.D.; Jiang, Y.; Xu, F.Y.; Fan, S.W.; Zhao, Y.L.; Liu, X.Q.; Sun, H.; Cheng, W.Z.; Zhang, X.Y.; et al. CircNSD1 Promotes Cardiac Fibrosis through Targeting the MiR-429-3p/SULF1/Wnt/β-Catenin Signaling Pathway. Acta Pharmacol. Sin. 2024, 45, 2092–2106. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Li, C.; Xu, B.; Xiang, Y.; Jia, X.; Yuan, Z.; Wu, L.; Zhong, L.; Li, Y. Circular RNA Mmu_circ_0005019 Inhibits Fibrosis of Cardiac Fibroblasts and Reverses Electrical Remodeling of Cardiomyocytes. BMC Cardiovasc. Disord. 2021, 21, 308. [Google Scholar] [CrossRef]
- Li, X.X.; Mu, B.; Li, X.; Bie, Z. Dong CircCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/M6A and MiR-636. J. Cardiovasc. Transl. Res. 2022, 15, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bian, Y.F.; Bai, R.; Song, X.S.; Liang, B.; Xiao, C.S. Circ_bmp2k Enhances the Regulatory Effects of Mir-455-3p on Its Target Gene Sumo1 and Thereby Inhibits the Activation of Cardiac Fibroblasts. Biochem. Cell Biol. 2020, 98, 583–590. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Hu, Y.; Guan, J.; Xu, L.; Xiao, W.; Zhong, Q.; Ren, C.; Lu, J.; Liang, J.; et al. Long Noncoding RNA Crnde Attenuates Cardiac Fibrosis via Smad3-Crnde Negative Feedback in Diabetic Cardiomyopathy. FEBS J. 2019, 286, 1645–1655. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Wang, B.; Li, Y. Protective Effect of LncRNA CRNDE on Myocardial Cell Apoptosis in Heart Failure by Regulating HMGB1 Cytoplasm Translocation through PARP-1. Arch. Pharm. Res. 2020, 43, 1325–1334. [Google Scholar] [CrossRef]
- Chen, W.; Ye, Q.; Dong, Y. Long Term Exercise-Derived Exosomal LncRNA CRNDE Mitigates Myocardial Infarction Injury through MiR-489-3p/Nrf2 Signaling Axis. Nanomedicine 2024, 55, 102717. [Google Scholar] [CrossRef]
- Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; et al. The Long Noncoding RNA Wisper Controls Cardiac Fibrosis and Remodeling. Sci. Transl. Med. 2017, 9, eaai9118. [Google Scholar] [CrossRef]
- Karras, J.; Kling, F.; Marcuello, M.; Cruz, J.; Tien, C.-L.; Roberts, C.; Gentry, K.; Watson, A.; Loetscher, A.; Rauleac, T.; et al. Preclinical Evaluation of HTX-001 as a Novel Anti-Fibrotic Therapy for Non-Obstructive HCM. J. Card. Fail. 2024, 30, S9–S10. [Google Scholar] [CrossRef]
- Mou, Y.; Fan, X.; Sun, R.; Zhang, X.; Yu, J. The Role and Mechanism of CircAMOTL1 in Hypertensive Heart Failure. J. Biomed. Nanotechnol. 2024, 20, 1519–1526. [Google Scholar] [CrossRef]
- Chen, M.S.; Lee, R.T.; Garbern, J.C. Senescence Mechanisms and Targets in the Heart. Cardiovasc. Res. 2022, 118, 1173–1187. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, C.; Wang, B.; Zheng, H.; McAlister, V.; Lacefield, J.C.; Quan, D.; Mele, T.; Greasley, A.; Liu, K.; et al. Circular RNA Foxo3 in Cardiac Ischemia-Reperfusion Injury in Heart Transplantation: A New Regulator and Target. Am. J. Transplant. 2021, 21, 2992–3004. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Cai, Q.; Wang, S.; Wang, S.; Wang, J.; Quan, Z. Long Noncoding RNA PVT1 Promoted Gallbladder Cancer Proliferation by Epigenetically Suppressing MiR-18b-5p via DNA Methylation. Cell Death Dis. 2020, 11, 871. [Google Scholar] [CrossRef]
- Wang, W.X.; Rajeev, B.W.; Stromberg, A.J.; Ren, N.; Tang, G.; Huang, Q.; Rigoutsos, I.; Nelson, P.T. The Expression of MicroRNA MiR-107 Decreases Early in Alzheimer’s Disease and May Accelerate Disease Progression through Regulation of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1. J. Neurosci. 2008, 28, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Yang, Z.; Yang, F.; Wang, X.; Tan, J.; Liao, B. Long Noncoding RNA NEAT1 Aggravates Aβ-Induced Neuronal Damage by Targeting MiR-107 in Alzheimer’s Disease. Yonsei Med. J. 2019, 60, 640–650. [Google Scholar] [CrossRef]
- Qu, K.; Zhang, X.; Lin, T.; Liu, T.; Wang, Z.; Liu, S.; Zhou, L.; Wei, J.; Chang, H.; Li, K.; et al. Circulating MiRNA-21-5p as a Diagnostic Biomarker for Pancreatic Cancer: Evidence from Comprehensive MiRNA Expression Profiling Analysis and Clinical Validation. Sci. Rep. 2017, 7, 1692. [Google Scholar] [CrossRef]
- Dioguardi, M.; Caloro, G.A.; Laino, L.; Alovisi, M.; Sovereto, D.; Crincoli, V.; Aiuto, R.; Coccia, E.; Troiano, G.; Muzio, L. Lo Circulating MiR-21 as a Potential Biomarker for the Diagnosis of Oral Cancer: A Systematic Review with Meta-Analysis. Cancers 2020, 12, 936. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Yang, G.; He, S.; Qiu, X.; Zhang, L.; Deng, Q.; Zheng, F. Using Circular RNA SMARCA5 as a Potential Novel Biomarker for Hepatocellular Carcinoma. Clin. Chim. Acta 2019, 492, 37–44. [Google Scholar] [CrossRef]
- Hussein, N.A.; El Sewedy, S.M.; Zakareya, M.M.; Youssef, E.A.; Ibrahim, F.A.R. Expression Status of Circ-SMARCA5, Circ-NOL10, Circ-LDLRAD3, and Circ-RHOT1 in Patients with Colorectal Cancer. Sci. Rep. 2023, 13, 13308. [Google Scholar] [CrossRef]
- Li, B.; Wang, K.; Cheng, W.; Fang, B.; Li, Y.H.; Yang, S.M.; Zhang, M.H.; Wang, Y.H.; Wang, K. Recent Advances of PIWI-interacting RNA in Cardiovascular Diseases. Clin. Transl. Med. 2024, 14, e1770. [Google Scholar] [CrossRef]
- Lv, L.; Yuan, K.; Li, J.; Lu, J.; Zhao, Q.; Wang, H.; Chen, Q.; Dong, X.; Sheng, S.; Liu, M.; et al. PiRNA CFAPIR inhibits cardiac fibrosis by regulating the muscleblind-like protein MBNL2. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167456. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Q.; Zhang, Y.H.; Liu, F.; Ponnusamy, M.; Zhao, X.M.; Zhou, L.Y.; Zhai, M.; Liu, C.Y.; Li, X.M.; Wang, M.; et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 2020, 22, 1319–1331. [Google Scholar] [CrossRef]
- Koch, C.; Reilly-O’Donnell, B.; Gutierrez, R.; Lucarelli, C.; Ng, F.S.; Gorelik, J.; Ivanov, A.P.; Edel, J.B. Nanopore Sequencing of DNA-Barcoded Probes for Highly Multiplexed Detection of MicroRNA, Proteins and Small Biomarkers. Nat. Nanotechnol. 2023, 18, 1483–1491. [Google Scholar] [CrossRef]
- Ren, R.; Cai, S.; Fang, X.; Wang, X.; Zhang, Z.; Damiani, M.; Hudlerova, C.; Rosa, A.; Hope, J.; Cook, N.J.; et al. Multiplexed Detection of Viral Antigen and RNA Using Nanopore Sensing and Encoded Molecular Probes. Nat. Commun. 2023, 14, 7362. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.M.; Arendt, L.M.; Zhou, W.; Baig, S.; Walter, S.R.; Buchsbaum, R.J.; Kuperwasser, C.; Walt, D.R. Ultra-Sensitive Protein Detection via Single Molecule Arrays towards Early Stage Cancer Monitoring. Sci. Rep. 2015, 5, 11034. [Google Scholar] [CrossRef] [PubMed]
- Takvorian, K.S.; Wang, D.; Courchesne, P.; Vasan, R.S.; Benjamin, E.J.; Cheng, S.; Larson, M.G.; Levy, D.; Ho, J.E. The Association of Protein Biomarkers with Incident Heart Failure with Preserved and Reduced Ejection Fraction. Circ. Heart Fail. 2023, 16, e009446. [Google Scholar] [CrossRef]
- Vanhaverbeke, M.; Attard, R.; Bartekova, M.; Ben-Aicha, S.; Brandenburger, T.; De Gonzalo-Calvo, D.; Emanueli, C.; Farrugia, R.; Grillari, J.; Hackl, M.; et al. Peripheral Blood RNA Biomarkers for Cardiovascular Disease from Bench to Bedside: A Position Paper from the EU-CardioRNA COST Action CA17129. Cardiovasc. Res. 2022, 118, 3183–3197. [Google Scholar] [CrossRef]
miRNA | Change in Expression | Sample Type (Human) | Patient Experimental Group | Patient Control Group | Fibrosis | Other Functions | Study |
---|---|---|---|---|---|---|---|
miR-18b-5p | ↓ (all HF and HFpEF relative to HFrEF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ | Plasma | AHF, n = 100 | Healthy, n = 24 | [44] | |||
Upregulated in atrial fibrillation in humans | [49] | ||||||
miR-19b-3p | ↓ (all HF and HFpEF relative to HFrEF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ (HFpEF relative to HFrEF) | Serum | HFrEF, n = 31 HFpEF, n = 36 | Inverse correlation with LVEF | [50] | |||
↑ | Plasma | HCM, n = 27 T1 < 470 ms (patients likely to have diffuse cardiac fibrosis) | HCM, n = 28, T1 ≥ 470 ms (patients unlikely to have cardiac fibrosis) | Potentially PF: suggested as biomarker for diffuse fibrosis in hypertrophic cardiomyopathy in humans | [51] | ||
miR-21-5p | ↑ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↑ | Plasma | HF, n = 9 | Healthy, n = 8 | [45] | |||
PF: promotes cardiac fibrosis in rat H9c2 cells via TGF-β/Smad signalling pathway | [52] | ||||||
miR-27a-3p | ↓ (all AHF; discovery and validation cohorts) | Plasma | AHF, n = 100 | Healthy, n = 24 | [44] | ||
↓ (all HF relative to healthy and non-HF) | Plasma | HF, n = 81 | Healthy, n = 15 Non-HF, n = 60 | [53] | |||
Potentially AF: negatively regulated lung fibrosis in human fibroblasts and bleomycin-treated mice | [54,55] | ||||||
Promoted cardiac hypertrophy by decreasing NOVA1 in mice | [56] | ||||||
miR-29b-3p | ↓ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ | Plasma | HF, n = 9 | Healthy, n = 8 | [45] | |||
AF: overexpression in mouse CFs reduced fibrosis by targeting TGF-β2 and MMP2 | [57] | ||||||
lncRNAs TUG1 and H19 act as competing endogenous RNAs formiR-29b-3p to inhibit its anti-fibrotic role | [58,59] | ||||||
miR-107 | ↓ (all CHF) | Plasma | CHF, n = 46 | Non-CHF, n = 26 | [39] | ||
↓ (all CHF) | PBMC | CHF with NIDCM, n = 19 CHF with ICM, n = 15 | Non-CHF, n = 19 | [42] | |||
Potentially PF: miR-107 in silico was predicted to downregulate BDNF, which may result in pathological LV cardiac remodelling | [39] | ||||||
miR-125a-5p | ↓ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ | Plasma | CHF, n = 46 | Non-CHF, n = 26 | [39] | |||
↑ (HFrEF relative to HFpEF and healthy) | Plasma | HFrEF, n = 30 HFpEF, n = 30 | Healthy, n = 30 | [46] | |||
↓ | Plasma | HF, n = 30 | Healthy, n = 36 | [47] | |||
AF: overexpression in myocardial ischemia/reperfusion mice improved cardiac function and limited fibroblast proliferation | Targeted Klf13, Tgfbr1, and Daam1 to regulate macrophage functions, fibroblasts, and endothelial cells in mice | [60] | |||||
miR-139-5p | ↓ | Plasma | CHF, n = 46 | Non-CHF, n = 26 | In silico targeted ROCK1 and ROCK2, to potentially promote inflammation and cardiac hypertrophy | [39,61] | |
Potentially AF: overexpression in vivo reduced liver fibrosis in mice and in human uterine leiomyoma cells | [62,63] | ||||||
miR-142-3p | ↑ | PBMC | CHF with NIDCM, n = 19 | Non-CHF, n = 19 | [42] | ||
AF: reduced high-salt-induced cardiac fibrosis in rats | [64] | ||||||
miR-142-3p targeted by TUG1, resulting in apoptosis and autophagy of mouse cardiomyocytes | [65] | ||||||
miR-150-5p | ↓ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ | Plasma | CHF, n = 46 | Non-CHF, n = 26 | [39] | |||
↓ (advanced HF relative to mild/moderate HF and healthy) | Serum | Advanced HF, n = 29 Mild/moderate HF, n = 25 | Healthy, n = 15 | [66] | |||
AF: targeted EGR1 to promote fibrosis in human CFs and in MI mice | [67] | ||||||
Knockout of miR-150 in mice resulted in cardiac dysfunction and fibrosis | [68] | ||||||
miR-181b-5p | ↓ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↑ | Plasma | HF, n = 9 | Healthy, n = 8 | [45] | |||
PF: miR-181b antagomir reduced atrial fibrosis in TGF-β-transgenic mice | [69] | ||||||
Overexpression in HF rats reduced inflammation by downregulating TNF-α, IL-1β, and IL-6 | [70] | ||||||
miR-182-5p | ↑ | Serum | HF, n = 42 | Healthy, n = 15 | [48] | ||
↑ | Serum | HF, n = 82 | Healthy, n = 78 | [71] | |||
PF (lungs): silencing miR-182-5p reduced pathological remodelling via TGF-β/Smad pathway in human embryonic fibroblasts and bleomycin-treated mice | [72] | ||||||
Regulated myocardial proliferation, migration, hypoxia, apoptosis, and hypertrophy | [73] | ||||||
miR-328 | ↓ (all HF) | Serum | HFrEF, n = 75 HFpEF, n = 75 | Non-HF, n = 75 | [43] | ||
↑ | Plasma | AMI (high risk of HF), n = 359 | Healthy, n = 30 | [74] | |||
PF: induced cardiac fibrosis via paracrine regulation of neighbouring fibroblasts in mice | [75] | ||||||
Exosomal miR-328-3p from MI mice cardiomyocytes promoted apoptosis through caspase signalling | [76] | ||||||
miR-375 | ↑ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↓ (HFrEF relative to HFpEF and non-HF) | Serum | HFrEF, n = 75 HFpEF, n = 75 | Non-HF, n = 75 | [43] | |||
AF (lungs): inhibited Wnt/β-catenin pathway in rat alveolar epithelial cells | [77] | ||||||
Protected cardiomyocytes following hypoxic injury by reducing caspase-3 activity in mice | [78] | ||||||
miR-423-5p | ↑ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
↑ | Serum | CHF, n = 30 | Non-CHF, n = 30 | [41] | |||
↑ (all HF relative to healthy and non-HF) | Plasma | HF, n = 30 | Healthy, n = 39 Non-HF (dyspoenic), n = 20 | [79] | |||
Potentially PF: promoted airway fibrosis via upregulation of TGF-β in human epithelial cells | [80] | ||||||
Silencing of miR-423-5p in rat H9c2 cells reduced cardiomyocyte apoptosis by activating Wnt/β-catenin signalling pathway | [81] | ||||||
miR-497-5p | ↑ (all HF) | Plasma | HFrEF, n = 180 HFpEF, n = 158 | Healthy, n = 208 | [38] | ||
PF: targeted Mmp2 and Mmp9 in mice to promote pulmonary fibrosis | [82] | ||||||
Circulating biomarker of cardiac fibrosis in AVS patients | [83] |
lncRNA | Change in Expression | Sample Type (Human) | Patient Experimental Group | Patient Control Group | Fibrosis | Other Functions | Study |
---|---|---|---|---|---|---|---|
ANRIL (CDKN2B-AS1) | ↑ (stable angina and MI) | Plasma | Stable angina, n = 59 MI, n = 62 | Healthy, n = 48 | [95] | ||
↑ | PBMC | Non-end-stage IDC HF, n = 25 | Healthy, n = 18 | [96] | |||
AF: ANRIL epigenetic silencing promoted cardiac fibrosis in mice | [97] | ||||||
A potential biomarker in CAD, contributes to atherosclerosis development | [98] | ||||||
BACE1-AS | ↑ (CAD and ACS) | PBMC | CAD, n = 90 ACS, n = 85 | Non-CVD, n = 259 | [99] | ||
PF: elevated in LV biopsies of HF patients compared to non-CVD donors | Transcriptomic analysis of cells overexpressing BACE1-AS highlighted alterations in TGFβ-, TNFα-, p38-, and EGFR signalling pathways | [100,101] | |||||
CARMEN | ↑ (compared to healthy, but not EH, no HFpEF) | PBMC | EH + HFpEF, n = 55 | EH, no HFpEF, n = 23 Healthy, n = 25 | [102] | ||
CARMEN expression was increased during pathological remodelling in mouse and human hearts | CARMEN plays a crucial role in the differentiation of cardiac precursor cells into cardiomyocytes in humans and mice | [103] | |||||
CASC7 | ↑ (all HF, in both PBMC and plasma) | PBMC and plasma | HFpEF, n = 62 HFrEF, n = 62 | Healthy, n = 62 | AF: overexpression repressed miR-30c in rat H9c2 cells, inhibiting pro-fibrotic cytokine IL-11 | [104] | |
Reduced myocardial apoptosis in rats by regulating miR-21 | [105] | ||||||
CHAST | ↑ | Whole blood | AMI, n = 53 | Non-AMI, n = 90 | [106] | ||
Repressed autophagy regulator Plekhm1, preventing cardiomyocyte autophagy and facilitating hypertrophy in TAC mice | [107] | ||||||
FENDRR | ↑ (compared to healthy, but not EH, no HFpEF) | PBMC | EH + HFpEF, n = 55 | EH, no HFpEF, n = 23 Healthy, n = 25 | [102] | ||
PF: silencing FENDRR reduced fibrosis via miR-106b/ Smad3 pathway in TAC mice | [108] | ||||||
Cardioprotective, as overexpression mitigated H2O2-induced damage in H9c2 rat cardiomyocytes | [109] | ||||||
H19 | ↑ | PBMC | AMI, n = 132 | Healthy, n = 104 | [110] | ||
↑ (all idiopathic PAH; discovery and validation cohorts) | Plasma | Idiopathic PAH, n = 52 | Controls with normal RV functions, n = 57 | [111] | |||
↑ | Plasma | CAD, n = 300 | Controls with normal coronary arteries, n = 180 | [112] | |||
PF: upregulation enhances the synthesis of ECM proteins by inhibiting miR-29b-3p/ VEGFA/ TGF-β and DUSP5/ERK1/2 axis in rats | [59] | ||||||
H19-miR-675 axis targeting CaMKIIδ in mice acted as a negative regulator of cardiac hypertrophy | [113] | ||||||
HEAT2 | ↑ (HFrEF + DCM and HFrEF + ICM) | Whole blood | HFrEF + DCM, n = 6 HFrEF + ICM, n = 10 | Healthy, n = 8 | HEAT2 expression levels had the power to predict the presence of HFpEF and mortality of HF patients | [92] | |
↑ | Whole blood | HFrEF, n = 69 | Individuals without obvious risk of developing HF, n = 38 | [92] | |||
HOTAIR | ↓ | PBMC | Non-end-stage IDC HF, n = 25 | Healthy, n = 18 | [96] | ||
↓ | Plasma | AMI, n = 50 | Healthy, n = 50 | [93] | |||
PF: enhanced fibrosis by activating Wnt pathway in mice | [114] | ||||||
Improved cardiac function via miR-17-5p/RORA and miR-34a/SIRT1 axis in murine models | [115,116] | ||||||
KCNQ1OT1 | ↑ | Serum | Diabetic cardiomyopathy, n = 6 | Healthy, n = 6 | Silencing KCNQ1OT1 reduced pyroptosis and fibrosis via miR-214-3p/ caspase-1/ TGF-β1 pathway in mice | [117] | |
↑ | PBMC | CHD, n = 267 | Unexplained chest pain, n = 50 Healthy, n = 50 | [118] | |||
Promoted cardiomyocyte apoptosis by targeting FUS in HF mice | [119] | ||||||
LIPCAR | ↑ | Plasma | Post MI with LV remodelling, n = 87 | Post MI without LV remodelling, n = 139 | Potentially PF: upregulated in humans during the late stages of post-MI remodelling | [120] | |
↑ | Plasma | HF (cardiovascular death), n = 99 | HF (no cardiovascular death), n = 99 | [120] | |||
↑ (increased in HF patients with higher NYHA class, impaired kidney function, and lower hemoglobin) | Plasma | CHF, n = 967 | - | [121] | |||
↑ | Whole blood | HF post AMI, n = 59 | Non-HF post AMI, n = 68 | [122] | |||
↑ | Plasma exosomes | One year post MI with LV remodelling, n = 5 | One year post MI without LV remodelling, n = 5 | [123] | |||
Overexpression in human VSMCs promoted cell proliferation and migration and enhanced the expression levels of MMP2 and MMP9 | [124] | ||||||
MALAT1 | ↑ | PBMC | AMI, n = 132 | Healthy, n = 104 | [110] | ||
↑ | PBMC | AMI, n = 160 | Angina pectoris, n = 50 | [125] | |||
PF: MALAT1 knockdown attenuated cardiac fibrosis via miR-145 in mice Promoted nuclear translocation of YAP in diabetic cardiomyopathy, facilitating cardiac fibrosis in mice | [126,127] | ||||||
Promoted cardiomyocyte apoptosis after MI via sponging miR-144-3p in mice | [128] | ||||||
MHRT | ↑ (compared to healthy, but not EH, no HFpEF) | PBMC | EH + HFpEF, n = 55 | EH, no HFpEF, n = 23 Healthy, n = 25 | [102] | ||
↓ | Plasma | CHF, n = 88 | Healthy, n = 65 | [129] | |||
↑ | Plasma | HF, n = 72 | Non-HF, n = 60 | [130] | |||
↑ | Plasma | AMI, n = 47 | Healthy, n = 28 | Inhibited apoptosis in rat cardiomyocytes | [131] | ||
AF: in pressure overload TAC mouse model by inhibiting Brg1 PF: overexpression promoted collagen production via miR-3185 in MI mice | [132,133] | ||||||
MIAT | ↓ | PBMC | STEMI, n = 274 | NSTEMI, n = 140 | [134] | ||
↑ | PBMC | AMI, n = 132 | Healthy, n = 104 | [110] | |||
PF: MIAT silencing reduced cardiac fibrosis and alleviated HF via the PI3K/Akt pathway in human CFs and rats | [135] | ||||||
Contributed to the increase in proinflammatory IL-17 expression in diabetic cardiomyopathy mice | [136] | ||||||
NRF | ↑ | Whole blood | AMI with HF, n = 76 | AMI without HF, n = 58 | [137] | ||
NRF silencing diminished myocardial necrosis via miR-873/RIPK1-RIPK3 axis in murine cardiomyocytes | [138] | ||||||
NRON | ↑ | Plasma | HF, n = 72 | Non-HF, n = 60 | [130] | ||
↓ | Whole blood | AIS, n = 65 | Healthy, n = 65 | [139] | |||
AF: mitigated atrial fibrosis by suppressing rat M1 macrophages and promoting NFATc3 phosphorylation in rat atrial fibroblasts | [140,141] | ||||||
Contributed to the progression of cardiac hypertrophy in the mouse heart | [142] | ||||||
PVT1 | ↑ | Serum | CHF, n = 92 | Healthy, n = 60 | [143] | ||
PF: via miR-145/HCN1 and miR-128-3p/SP1/ TGF-β1 axis in human CFs | [144,145] | ||||||
Intensified murine cardiomyocyte apoptosis via miR-216/Ccnd3 signalling axis | [146] | ||||||
SARRAH | ↑ | Serum | AF, n = 95 | Non-AF, n = 66 | [147] | ||
Overexpression in mice facilitated recovery following AMI | [148] | ||||||
SRA1 | ↑ | Plasma | CHF, n = 93 | Healthy, n = 62 | [149] | ||
PF: SRA1 facilitated the activation of rat cardiac myofibroblasts by downregulating miR-148b | [150] | ||||||
Reduced hypoxia-induced damage in rat H9c2 cardiomyocytes by modulating the PPARγ/NF-κB signalling pathway | [151] | ||||||
TUG1 | ↑ | Serum | Hypertensive with HFpEF, n = 80 | Hypertensive, without HF, n = 80 | [152] | ||
↑ | Serum | CHF, n = 98 | Non-CHF, n = 86 | [153] | |||
↑ | Plasma | AMI, n = 15 | Healthy, n = 18 | [154] | |||
PF: via CHI3L1/TUG1/ miR-495-3p/ ETS1 axis in mice and TUG1/ miR-29b-3p /TGF-β1 axis in human CFs | [58,155] | ||||||
Reduced cardiomyocyte apoptosis by regulating miR-9/KLF5 and miR-132-3p/HDAC3 in rodents | [156,157] | ||||||
TUSC7 (LOC285194) | ↓ | PBMC | Non-end-stage IDC HF, n = 25 | Healthy, n = 18 | [96] | ||
Targeting LOC285194 promoted proliferation and inhibited apoptosis in human VSMCs | [158] | ||||||
UCA1 | ↑ | Serum | AF, n = 96 | Non-AF, n = 67 | [147] | ||
↓ (2–48 h after AMI) | Plasma | AMI, n = 49 | Non-AMI, n = 15 | [159] | |||
Potentially PF: promoted progression of liver fibrosis in mice via miR18a/Smad3/TGF-β1 pathway | [160] | ||||||
Facilitated mouse cardiomyocyte hypertrophy via miR-184/HOXA9 axis, and enhanced rat cardiomyocyte proliferation by suppressing the miR-128/SUZ12/P27 pathway | [161,162] |
circRNA | Change in Expression | Sample Type (Human) | Patient Experimental Group | Patient Control Group | Fibrosis | Other Functions | Study |
---|---|---|---|---|---|---|---|
circDEPC5 (hsa_circ_0062960) | ↑ | Plasma | HFrEF, n = 30 | Healthy, n = 30 | [171] | ||
Host gene Depc5 knockout is linked with vascular defects in mice | [172] | ||||||
circHECW2 (hsa_circ_0118464) | ↑ | Epicardial adipose tissue | HFpEF, n = 5 | Non-HF control, n = 5 | [173] | ||
(hsa_circ_0057576) | ↑ | Plasma | CAD, n = 3 | Healthy, n = 3 | PF: targets AF miR-130a-3p in humans | [174] | |
(mmu_Hecw2_0009) | PF: promoted fibrosis and hypertrophy in mice | [175] | |||||
Host gene HECW2 variant is linked with congenital long QT syndrome | [176] | ||||||
circSMARCA5 (hsa_circ_0001445) | ↓ | Plasma | CAD, n = 200 | -- | circSMARCA5 is reduced in atherosclerosis | circSMARCA5 was stable in blood plasma after 72 h of storing at room temperature | [177] |
(hsa_circ_0001445) | ↓ | Peripheral blood leukocytes | CHD, n = 94 | Healthy, n = 126 | [178] | ||
circAMOTL1 | ↑ (Young patients) | Heart tissues | Tissue mix from 3 patients under one year old, n = 1 | Tissue mix from 3 elderly patients, n = 1 | [179] | ||
PF: interacted with EIF4A3 and stabilized MARCKS in diabetic cardiomyopathy mice | Silencing circAmotl1 decreased cell proliferation and levels of reactive oxygen species (ROS) in vitro | [180] | |||||
circFOXO3 | ↑ (Humans > 50 years old) | Heart tissues | Humans > 50 years old, n = 11 | Humans < 50 years old, n = 9 | PF: reduced activity of anti-stress proteins HIF1α, FAK, and E2F1 in mouse embryonic fibroblasts | [181] | |
Promoted senescence, alleviated I/R injury | [182] | ||||||
circZNF609 (hsa_circ_0000615) | ↓ | Peripheral blood leukocytes | CAD, n = 330 | Healthy, n = 209 | Overexpression in mouse macrophages is anti-inflammatory (decreases IL-6 and TNF-α, increases IL-10) | [183] | |
MICRA (hsa_circ_0000615) | ↓ | Peripheral blood | AMI, n = 642 | Healthy, n = 86 | [184] | ||
↓ (AMI with rEF) | Whole blood | AMI, rEF ≤ 40%, n = 87 mrEF = 41–49%, n = 106 pEF ≥ 50%, n = 279 | — | [166] | |||
Potentially AF: reduced lung fibrosis in mice via miR-145-5p/KLF4 axis | [185] | ||||||
circBPTF (hsa_circ_0000799) | ↑ (DCM and ICM) | LV tissue | DCM, n = 26 ICM, n = 17 | Non-failing heart donor, n = 23 | [186] | ||
(hsa_circ_0000799) | ↑ | LV tissue | Non-end-stage IHF, n = 12 | Healthy, n = 12 | [165] | ||
(hsa_circ_0000799) | ↑ | LV tissue | End-stage IHF, n = 36 | Healthy, n = 44 | [165] | ||
(hsa_circ_0045462) | Potentially PF: sponges miR-486-5p (AF in heart) in human arterial smooth muscle cell | [187,188] | |||||
Knockdown of circBPTF reduced inflammation and oxidative stress in HUVEC cells via miR-384/LIN28B pathway | [189] | ||||||
circPRDM5 (hsa_circ_0005654) | ↑ (DCM and ICM) | LV tissue | DCM, n = 26 ICM, n = 17 | Non-failing heart donor, n = 23 | [186] | ||
(hsa_circ_0005654) | ↓ | Serum | AMI, n = 118 | Healthy, n = 60 | Potential biomarker for dynamic post-surgery monitoring | [190] | |
(hsa_circ_0070820) | PF: in human lens epithelial cells | [191] | |||||
circFNDC3B (hsa_circ_0006156) | ↑ (DCM and ICM) | LV tissue | DCM, n = 26 ICM, n = 17 | Non-failing heart donor, n = 23 | [186] | ||
AF: AAV9-driven circFNDRC3B overexpression attenuates fibrosis following MI in mice | [192] | ||||||
circFNDRC3B in mouse cardiac endothelial cells improved endothelial function and protected cardiomyocytes from death | [193] | ||||||
circHIPK3 (circR-284) | ↑ (circR-284 to miR-221 ratio) | Serum | Urgent ICD, n = 41 Symptomatic ICD, n = 24 | Asymptomatic disease, n = 47 | [194] | ||
(hsa_circ_0000284) | ↑ | Plasma exosomes | Chronic coronary syndrome, n = 135 | Non-cardiac chest pain, n = 83 | [195] | ||
(hsa_circ_0000284) | ↑ | Peripheral blood | Hypertension, n = 100 Prehypertension, n = 100 | Non-hypertensive, n = 100 | [196] | ||
Inhibited development of atherosclerosis, myocardial injury, and MI, but also contributed to cardiomyopathy, myocardial fibrosis, and HF | [197] | ||||||
(mmu_circ_0001052) | AF: silencing circHIPK3 in mice alleviated cardiac fibrosis in vitro and in vivo by releasing AF miR-29b-3p | [198] | |||||
circNFIB (hsa_circ_0086376) | ↓ | Epicardial adipose tissue | CAD with HF, n = 5 | CAD, non-HF, n = 5 | [199] | ||
(mmu_circ_0011794) | AF: upregulation in mouse fibroblasts reduced cardiac fibrosis by sponging miR-433 | [200] | |||||
SO2 enhanced circNFIB expression in neonatal rat CFs, which in turn suppressed the Wnt/β-catenin and p38 MAPK pathways, mitigating cardiac fibrosis | [201] | ||||||
circCDR1as | ↑ | Plasma | CHF, n = 30 | Healthy, n = 30 | [202] | ||
(mmu_circ_001946) | AF: AAV9 circCDR1as administration in vivo (mice) improved %EF and decreased fibrotic area at 3 and 4 weeks post MI | [203] | |||||
circCDR1as levels positively correlated with EF% and LV stroke volume, and negatively correlated with infarct size in heart of post-MI HF pigs, treated with AF agent bufalin | [204] | ||||||
circC12ORF51 (hsa_circ_0097435) | ↑ | Peripheral blood cells and plasma exosomes | HF, n = 40 | Healthy, n = 40 | circC12ORF51 silencing in AC16 human cardiomyocytes inhibited myocardial apoptosis, while hsa_circ_0097435 overexpression promoted cardiomyocyte apoptosis | [205] | |
circLAS1L (hsa_circ_0090876) | ↓ | Whole blood | AMI, n = 30 | Healthy, n = 30 | AF: inhibited expression of pro-fibrotic markers in human CFs: α-SMA, collagen I, collagen III | Overexpression inhibited human fibroblast proliferation and migration, as well as promoted apoptosis | [206] |
circDNAJC6 circTMEM56 circMBOAT2 | ↓ | Serum | HCM, n = 64, among which obstructive HCM, n = 31 | Healthy, n = 53 | circTMEM56 and circDNAJC6 negatively correlated with echocardiographic parameters in HCM | [207] | |
MFACR | ↑ | Plasma | AMI, n = 61 | Healthy, n = 61 | [208] | ||
(mm9_circ_016597) | Regulated mitochondrial fission and apoptosis by targeting miR-652-3p in mice cardiomyocytes | [209] | |||||
circROBO2 (hsa_circ_0124644) | ↑ | Peripheral blood | CAD, n = 137 | Healthy, n = 115 | [210] | ||
circROBO2 knockdown in mice reduced cardiomyocyte apoptosis by upregulating miR-1184 | [211] | ||||||
circMYO9A (hsa_circ_0036176) | ↑ | Myocardial tissue | HF, n = 24 | Healthy donor, n = 18 | AF: suppressed human cardiac fibroblast proliferation via Myo9a-208 | circMYO9A encodes 208 amino acids length protein Myo9a-208 | [212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boichenko, V.; Noakes, V.M.; Reilly-O’Donnell, B.; Luciani, G.B.; Emanueli, C.; Martelli, F.; Gorelik, J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025, 14, 553. https://doi.org/10.3390/cells14070553
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells. 2025; 14(7):553. https://doi.org/10.3390/cells14070553
Chicago/Turabian StyleBoichenko, Veronika, Victoria Maria Noakes, Benedict Reilly-O’Donnell, Giovanni Battista Luciani, Costanza Emanueli, Fabio Martelli, and Julia Gorelik. 2025. "Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity" Cells 14, no. 7: 553. https://doi.org/10.3390/cells14070553
APA StyleBoichenko, V., Noakes, V. M., Reilly-O’Donnell, B., Luciani, G. B., Emanueli, C., Martelli, F., & Gorelik, J. (2025). Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells, 14(7), 553. https://doi.org/10.3390/cells14070553