The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Histology Classification of Endometrial Cancer and Stemness
Stem Cells and Endometrium
4. Pathways in Endometrial Cancer Stemness
4.1. Hippo
4.2. Nanog
4.3. Wingless Int-1 Wnt Signaling
4.4. NF-κB Pathway
4.5. Notch Pathway
4.6. Hedgehog (Hh)
4.7. The TME, Oxidative Stress
4.8. The Epithelial–Mesenchymal Transition (EMT)
4.9. The PTEN/Phosphoinositide 3 Kinase (PI3K)/Protein Kinase B (AKT)/Mammalian Target of Rapamycin (mTOR) Pathway
4.10. Associated Factors Linked to Stemness Pathways
5. Treatments Based on Targeting Stemness Pathways and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giannone, G.; Attademo, L.; Scotto, G.; Genta, S.; Ghisoni, E.; Tuninetti, V.; Aglietta, M.; Pignata, S.; Valabrega, G. Endometrial cancer stem cells: Role, characterization and therapeutic implications. Cancers 2019, 11, 1820. [Google Scholar] [CrossRef] [PubMed]
- Frąszczak, K.; Barczyński, B. Characteristics of Cancer Stem Cells and Their Potential Role in Endometrial Cancer. Cancers 2024, 16, 1083. [Google Scholar] [CrossRef]
- Fung-Kee-Fung, M.; Dodge, J.; Elit, L.; Lukka, H.; Chambers, A.; Oliver, T. Cancer Care Ontario Program in Evidence-based Care Gynecology Cancer Disease Site Group. Follow-up after primary therapy for endometrial cancer: A systematic review. Gynecol. Oncol. 2006, 101, 520–529. [Google Scholar] [CrossRef]
- Giannone, G.; Ghisoni, E.; Genta, S.; Scotto, G.; Tuninetti, V.; Turinetto, M.; Valabrega, G. Immuno-metabolism and microenvironment in cancer: Key players for immunotherapy. Int. J. Mol. Sci. 2020, 21, 4414. [Google Scholar] [CrossRef] [PubMed]
- Takao, T.; Masuda, H.; Kajitani, T.; Miki, F.; Miyazaki, K.; Yoshimasa, Y.; Katakura, S.; Tomisato, S.; Uchida, S.; Uchida, H.; et al. Sorafenib targets and inhibits the oncogenic properties of endometrial cancer stem cells via the RAF/ERK pathway. Stem Cell Res. Ther. 2022, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Kaufmann, A.M. The significance of cancer stem cells and epithelial–mesenchymal transition in metastasis and anti-cancer therapy. Int. J. Mol. Sci. 2023, 24, 2555. [Google Scholar] [CrossRef]
- Keyvani, V.; Riahi, E.; Yousefi, M.; Esmaeili, S.A.; Shafabakhsh, R.; Moradi Hasan-Abad, A.; Mahjoubin-Tehran, M.; Hamblin, M.R.; Mollazadeh, S.; Mirzaei, H. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front. Pharmacol. 2022, 13, 823572. [Google Scholar] [CrossRef]
- Song, Y.; Pan, S.; Li, K.; Chen, X.; Wang, Z.P.; Zhu, X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2022; Volume 85, pp. 219–233. [Google Scholar]
- Rethlefsen, M.L.; Page, M.J. PRISMA 2020 and PRISMA-S: Common questions on tracking records and the flow diagram. J. Med. Libr. Assoc. 2022, 110, 253. [Google Scholar] [CrossRef]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Marzagalli, M.; Raimondi, M.; Fontana, F.; Montagnani Marelli, M.; Moretti, R.M.; Limonta, P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin. Cancer Biol. 2019, 59, 221–235. [Google Scholar] [CrossRef]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [PubMed]
- Mittica, G.; Ghisoni, E.; Giannone, G.; Aglietta, M.; Genta, S.; Valabrega, G. Checkpoint inhibitors in endometrial cancer: Preclinical rationale and clinical activity. Oncotarget 2017, 8, 90532–90544. [Google Scholar] [CrossRef] [PubMed]
- Friel, A.M.; Sergent, P.A.; Patnaude, C.; Szotek, P.P.; Oliva, E.; Scadden, D.T.; Seiden, M.V.; Foster, R.; Rueda, B.R. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle 2008, 7, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Laranjo, M.; Abrantes, A.M.; Casalta-Lopes, J.; Sarmento-Santos, D.; Costa, T.; Serambeque, B.; Almeida, N.; Gonçalves, T.; Mamede, C.; et al. Endometrial Cancer Spheres Show Cancer Stem Cells Phenotype and Preference for Oxidative Metabolism. Pathol. Oncol. Res. 2019, 25, 1163–1174. [Google Scholar] [CrossRef]
- Gargett, C.E.; Nguyen, H.P.; Ye, L. Endometrial regeneration and endometrial stem/progenitor cells. Rev. Endocr. Metab. Disord. 2012, 13, 235–251. [Google Scholar] [CrossRef]
- Lu, H.; Ju, D.D.; Yang, G.D.; Zhu, L.Y.; Yang, X.M.; Li, J.; Song, W.W.; Wang, J.H.; Zhang, C.C.; Zhang, Z.G.; et al. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine 2019, 40, 276–289. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Cao, M.; Liu, Z.; You, D.; Pan, Y.; Zhang, Q. TMT-based quantitative proteomic analysis of spheroid cells of endometrial cancer possessing cancer stem cell properties. Stem Cell Res. Ther. 2023, 14, 119. [Google Scholar] [CrossRef]
- Espinosa-Sánchez, A.; Suárez-Martínez, E.; Sánchez-Díaz, L.; Carnero, A. Therapeutic targeting of signaling pathways related to cancer stemness. Front. Oncol. 2020, 10, 1533. [Google Scholar] [CrossRef]
- Giuli, M.V.; Mancusi, A.; Giuliani, E.; Screpanti, I.; Checquolo, S. Notch signaling in female cancers: A multifaceted node to overcome drug resistance. Cancer Drug Resist. 2021, 4, 805–836. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Yong, X.; Tang, B.; Qin, Y.; Zhang, J.W.; Zhang, D.; Xie, R.; Yang, S.M. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets. Int. J. Oncol. 2016, 48, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, Y.P.; Huang, G.R.; Gong, B.L.; Yang, B.; Zhang, D.X.; Hu, P.; Xu, S.R. Expression of the stem cell marker, Nanog, in human endometrial adenocarcinoma. Int. J. Gynecol. Pathol. 2011, 30, 262–270. [Google Scholar] [CrossRef]
- Lai, L.; Miao, Q. TFDP1 transcriptionally activates KIF22 to enhance aggressiveness and stemness in endometrial cancer: Implications for prognosis and targeted therapy. J. Mol. Histol. 2025, 56, 40. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, S.J.; Chung, H.W.; Kwon, S.H.; Cha, S.D.; Lee, J.E.; Cho, C.H. Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J. Gynecol. Oncol. 2017, 28, e14. [Google Scholar] [CrossRef]
- Kusunoki, S.; Kato, K.; Tabu, K.; Inagaki, T.; Okabe, H.; Kaneda, H.; Suga, S.; Terao, Y.; Taga, T.; Takeda, S. The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecol. Oncol. 2013, 129, 598–605. [Google Scholar] [CrossRef]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.; Chandra, V. Targeting Wnt signaling in endometrial cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef] [PubMed]
- Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef]
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Mirza-Aghazadeh-Attari, M.; Ostadian, C.; Saei, A.A.; Mihanfar, A.; Darband, S.G.; Sadighparvar, S.; Kaviani, M.; Kafil, H.S.; Yousefi, B.; Majidinia, M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair 2019, 80, 59–84. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Aster, J.C.; Pear, W.S.; Blacklow, S.C. The varied roles of notch in cancer. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 245–275. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tang, P.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med. Oncol. 2017, 34, 180. [Google Scholar] [CrossRef]
- Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018, 5, 5. [Google Scholar] [CrossRef]
- Jonusiene, V.; Sasnauskiene, A. Notch and endometrial cancer. In Notch Signaling in Embryology and Cancer: Notch Signaling in Cancer; Springer: Berlin/Heidelberg, Germany, 2021; pp. 47–57. [Google Scholar]
- Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci. 2018, 18, 8–20. [Google Scholar] [CrossRef]
- Cochrane, C.R.; Szczepny, A.; Watkins, D.N.; Cain, J.E. Hedgehog signaling in the maintenance of cancer stem cells. Cancers 2015, 7, 1554–1585. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, J.; Mishra, R.; Varshney, S.; Mazumder, R.; Mazumder, A.; Chauhan, A.; Chaitanya, M.; Tyagi, P.K. An Insight into Signalling Pathways in Cancer: Hedgehog, PI3K, and Notch Pathways and Therapeutic Perspectives. Lett. Drug Des. Discov. 2024, 22. [Google Scholar] [CrossRef]
- Ingham, P.W.; McMahon, A.P. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 2001, 15, 3059–3087. [Google Scholar] [CrossRef]
- Kotulak-Chrząszcz, A.; Kmieć, Z.; Wierzbicki, P.M. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer. Int. J. Mol. Med. 2021, 47, 106. [Google Scholar] [CrossRef]
- Jiao, Y.; Geng, R.; Zhong, Z.; Ni, S.; Liu, W.; He, Z.; Gan, S.; Huang, Q.; Liu, J.; Bai, J. A hypoxia molecular signature-based prognostic model for endometrial cancer patients. Int. J. Mol. Sci. 2023, 24, 1675. [Google Scholar] [CrossRef]
- Salinas-Vera, Y.M.; Gallardo-Rincón, D.; Ruíz-García, E.; Silva-Cázares, M.B.; de la Peña-Cruz, C.S.; López-Camarillo, C. The role of hypoxia in endometrial cancer. Curr. Pharm. Biotechnol. 2022, 23, 221–234. [Google Scholar] [CrossRef]
- Ghanbari Movahed, Z.; Rastegari-Pouyani, M.; Mohammadi, M.H.; Mansouri, K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed. Pharmacother. 2019, 112, 108690. [Google Scholar] [CrossRef]
- Vallee, A.; Lecarpentier, Y. Crosstalk between peroxisome proliferatoractivated receptor γ and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol. 2018, 9, 745. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Anastasiou, D.; Poulogiannis, G.; Asara, J.M.; Boxer, M.B.; Jiang, J.-K.; Shen, M.; Bellinger, G.; Sasaki, A.T.; Locasale, J.W.; Auld, D.S.; et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Pandita, P.; Wang, X.; Jones, D.E.; Collins, K.; Hawkins, S.M. Unique molecular features in high-risk histology endometrial cancers. Cancers 2019, 11, 1665. [Google Scholar] [CrossRef]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Diepenbruck, M.; Christofori, G. Epithelial–mesenchymal transition (EMT) and metastasis: Yes, no, maybe? Curr. Opin. Cell Biol. 2016, 43, 7–13. [Google Scholar] [CrossRef]
- Zaravinos, A. The Regulatory Role of MicroRNAs in EMT and Cancer. J. Oncol. 2015, 2015, 865816. [Google Scholar] [CrossRef]
- Opławski, M.; Nowakowski, R.; Średnicka, A.; Ochnik, D.; Grabarek, B.O.; Boroń, D. Molecular Landscape of the Epithelial–Mesenchymal Transition in Endometrioid Endometrial Cancer. J. Clin. Med. 2021, 10, 1520. [Google Scholar] [CrossRef]
- Mortezaee, K.; Majidpoor, J.; Kharazinejad, E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: Updated. Med. Oncol. 2022, 39, 193. [Google Scholar] [CrossRef] [PubMed]
- Manni, W.; Min, W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm 2022, 3, e176. [Google Scholar] [CrossRef] [PubMed]
- Schoning, J.P.; Monteiro, M.; Gu, W. Drug resistance and cancer stem cells: The shared but distinct roles of hypoxia-inducible factors HIF1alpha and HIF2alpha. Clin. Exp. Pharmacol. Physiol. 2017, 44, 153–161. [Google Scholar] [CrossRef]
- Seo, E.J.; Kim, D.K.; Jang, I.H.; Choi, E.J.; Shin, S.H.; Lee, S.I.; Kwon, S.-M.; Kim, K.-H.; Suh, D.-S.; Kim, J.H. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 2016, 7, 55624–55638. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Konno, Y.; Watari, H.; Hosaka, M.; Noguchi, M.; Sakuragi, N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J. Transl. Med. 2014, 12, 231. [Google Scholar] [CrossRef]
- Nachiyappan, A.; Gupta, N.; Taneja, R. EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging evidence and mechanisms. FEBS J. 2022, 289, 1329–1351. [Google Scholar] [CrossRef]
- Mitranovici, M.-I.; Costachescu, D.; Voidazan, S.; Munteanu, M.; Buicu, C.-F.; Oală, I.E.; Ivan, V.; Apostol, A.; Melinte, I.M.; Crisan, A.; et al. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 12749. [Google Scholar] [CrossRef]
- Lu, X.; Ying, Y.; Zhang, W.; Li, R.; Wang, W. Identification of stemness subtypes and features to improve endometrial cancer treatment using machine learning. Artif. Cells Nanomed. Biotechnol. 2023, 51, 57–73. [Google Scholar] [CrossRef]
- Banz-Jansen, C.; Helweg, L.P.; Kaltschmidt, B. Endometrial cancer stem cells: Where do we stand and where should we go? Int. J. Mol. Sci. 2022, 23, 3412. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, R.; Ma, X.; Wei, L.; Hou, Y.; Song, K.; Jiang, J. Overexpression of LPCAT1 enhances endometrial cancer stemness and metastasis by changing lipid components and activating TGF-β/Smad2/3 signaling pathway: Tumor-promoting effect of LPCAT1 in endometrial cancer. Acta Biochim. Biophys. Sin. 2022, 54, 904. [Google Scholar] [CrossRef]
- Qin, X.; Yan, L.; Zhao, X.; Li, C.; Fu, Y. microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol. Lett. 2012, 4, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Niebora, J.; Woźniak, S.; Domagała, D.; Data, K.; Farzaneh, M.; Zehtabi, M.; Dari, M.A.G.; Pour, F.K.; Bryja, A.; Kulus, M.; et al. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front. Oncol. 2024, 14, 1418005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, F.; Tong, Y.; Shi, D.; Zhang, J. CHD4 R975H mutant activates tumorigenic pathways and promotes stemness and M2-like macrophage polarization in endometrial cancer. Sci. Rep. 2024, 14, 18617. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, F.; Tong, Y.; Shi, D.; Zhang, J. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J. Hepatol. 2017, 66, 102–115. [Google Scholar]
- Guo, X.; Zhao, Y.; Yan, H.; Yang, Y.; Shen, S.; Dai, X.; Ji, X.; Ji, F.; Gong, X.-G.; Li, L.; et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 2017, 31, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Wei, J.; Kong, L.-Y.; Wang, Y.; Priebe, W.; Qiao, W.; Sawaya, R.; Heimberger, A.B. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology 2010, 12, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Zhao, E.; Kryczek, I.; Vatan, L.; Sadovskaya, A.; Ludema, G.; Simeone, D.M.; Zou, W.; Welling, T.H. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 2014, 147, 1393–1404. [Google Scholar] [CrossRef]
- Tang, B.F.; Yan, R.C.; Wang, S.W.; Zeng, Z.C.; Du, S.S. Maternal embryonic leucine zipper kinase in tumor cells and tumor microenvironment: An emerging player and promising therapeutic opportunity. Cancer Lett. 2023, 560, 216126. [Google Scholar] [CrossRef]
- Yin, S.; Guo, Y.E.; Wen, X.; Zeng, H.; Chen, G. Increased expression of PD-L1 in endometrial cancer stem-like cells is regulated by hypoxia. Front. Biosci.-Landmark 2022, 27, 23. [Google Scholar] [CrossRef]
- Ciccone, V.; Morbidelli, L.; Ziche, M.; Donnini, S. How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist. 2020, 3, 26. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Zhang, L.; Zhang, S.; Dai, Y. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed. Pharmacother. 2023, 161, 114526. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Ueda, H.; Mori, Y.; Yamawaki, K.; Enomoto, T.; Yoshihara, K.; Okamoto, K. Glycolysis-mTORC1 crosstalk drives rapid proliferation in patient-derived endometrial cancer spheroids with ALDH activity. Cell Death Discov. 2023, 10, 435. [Google Scholar]
- Mori, Y.; Yamawaki, K.; Ishiguro, T.; Yoshihara, K.; Ueda, H.; Sato, A.; Ohata, H.; Yoshida, Y.; Minamino, T.; Okamoto, K.; et al. ALDH-dependent glycolytic activation mediates stemness and paclitaxel resistance in patient-derived spheroid models of uterine endometrial cancer. Stem Cell Rep. 2019, 13, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Kitson, S.J.; Rosser, M.; Fischer, D.P.; Marshall, K.M.; Clarke, R.B.; Crosbie, E.J. Targeting endometrial cancer stem cell activity with metformin is inhibited by patient-derived adipocyte-secreted factors. Cancers 2019, 11, 653. [Google Scholar] [CrossRef]
- Nuñez-Olvera, S.I.; Gallardo-Rincón, D.; Puente-Rivera, J.; Salinas-Vera, Y.M.; Marchat, L.A.; Morales-Villegas, R.; López-Camarillo, C. Autophagy machinery as a promising therapeutic target in endometrial cancer. Front. Oncol. 2019, 9, 1326. [Google Scholar] [CrossRef]
- Hsin, I.-L.; Shen, H.-P.; Chang, H.-Y.; Ko, J.-L.; Wang, P.-H. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop induces cell cycle arrest by dual PI3K/mTOR inhibitor PQR309 in endometrial cancer cell lines. Cells 2021, 10, 2916. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Kong, F.; Song, N.; Wang, C.; Ma, X. UPF1 contributes to the maintenance of endometrial cancer stem cell phenotype by stabilizing LINC00963. Cell Death Dis. 2022, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liao, W.; Xu, N.; Li, B.; Liu, F.; Zhang, S.; Wang, Y.; Wang, S.; Zhu, Y.; Chen, D.; et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine 2019, 41, 200–213. [Google Scholar] [CrossRef]
- Bi, X.; Guo, X.H.; Mo, B.Y.; Wang, M.L.; Luo, X.Q.; Chen, Y.X.; Liu, F.; Olsen, N.; Pan, Y.F.; Zheng, S.G. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 2019, 50, 408–420. [Google Scholar] [CrossRef]
- Cheng, D.; Deng, J.; Zhang, B.; He, X.; Meng, Z.; Li, G.; Ye, H.; Zheng, S.; Wei, L.; Deng, X.; et al. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine 2018, 36, 159–170. [Google Scholar] [CrossRef]
- Son, B.; Lee, W.; Kim, H.; Shin, H.; Park, H.H. Targeted therapy of cancer stem cells: Inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis. 2024, 15, 696. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.C.; Mao, M.; de Abreu, A.L.P.; Ansenberger-Fricano, K.; Ekoue, D.N.; Ganini, D.; Kajdacsy-Balla, A.; Diamond, A.M.; Minshall, R.D.; Consolaro, M.E.L.; et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat. Commun. 2015, 6, 6053. [Google Scholar] [CrossRef]
- Song, C.W.; Lee, H.; Dings, R.P.M.; Williams, B.; Powers, J.; Dos Santos, T.; Choi, B.-H.; Park, H.J. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci. Rep. 2012, 2, 362. [Google Scholar] [CrossRef]
- Soo, J.S.-S.; Ng, C.-H.; Tan, S.H.; Malik, R.A.; Teh, Y.-C.; Tan, B.-S.; Ho, G.-F.; See, M.-H.; Taib, N.A.M.; Yip, C.-H.; et al. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis 2015, 20, 1373–1387. [Google Scholar] [CrossRef] [PubMed]
- Rozenblit, M.; Mun, S.; Soulos, P.; Adelson, K.; Pusztai, L.; Mougalian, S. Patterns of treatment with everolimus exemestane in hormone receptor-positive HER2-negative metastatic breast cancer in the era of targeted therapy. Breast Cancer Res. 2021, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Cheng, H.; Liu, Y.; Liu, S.; Lowe, S.; Li, Y.; Bentley, R.; King, B.; Tuason, J.P.W.; Zhou, Q.; et al. Metformin anticancer: Reverses tumor hypoxia induced by bevacizumab and reduces the expression of cancer stem cell markers CD44/CD117 in human ovarian cancer SKOV3 cells. Front. Pharmacol. 2022, 13, 955984. [Google Scholar] [CrossRef]
- Yang, X.; Huang, M.; Zhang, Q.; Chen, J.; Li, J.; Han, Q.; Zhang, L.; Li, J.; Liu, S.; Ma, Y.; et al. Metformin antagonizes ovarian cancer cells malignancy through MSLN mediated IL-6/STAT3 signaling. Cell Transplant. 2021, 30, 09636897211027819. [Google Scholar] [CrossRef]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef]
- Lu, Y.; Mao, J.; Xu, Y.; Pan, H.; Wang, Y.; Li, W. Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum. Exp. Toxicol. 2022, 41, 09603271221120652. [Google Scholar] [CrossRef]
- Tang, W.; Ramasamy, K.; Pillai, S.M.A.; Santhamma, B.; Konda, S.; Venkata, P.P.; Blankenship, L.; Liu, J.; Liu, Z.; Altwegg, K.A.; et al. LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer. Cell Death Discov. 2021, 7, 216. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Viswanadhapalli, S.; Pratap, U.P.; Rahul, G.; Yang, X.; Venkata, P.P.; Drel, V.; Santhamma, B.; Konda, S.; Li, X.; et al. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis. Oncol. 2024, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Hsin, M.C.; Hsieh, Y.H.; Wang, P.H.; Ko, J.L.; Hsin, I.L.; Yang, S.F. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis. 2017, 8, e3089. [Google Scholar] [CrossRef]
- Wang, Y.; Hanifi-Moghaddam, P.; Hanekamp, E.E.; Kloosterboer, H.J.; Franken, P.; Veldscholte, J.; van Doorn, H.C.; Ewing, P.C.; Kim, J.J.; Grootegoed, J.A.; et al. Progesterone inhibition of Wnt/β-catenin signaling in normal endometrium and endometrial cancer. Clin. Cancer Res. 2009, 15, 5784–5793. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Luo, J.; Xu, K.; Tian, P.; Lu, C.; Song, J. Blocking the WNT/β-catenin pathway in cancer treatment: Pharmacological targets and drug therapeutic potential. Heliyon 2024, 10, e35989. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kim, N.H.; Lee, K.; Cha, Y.H.; Yang, J.H.; Cha, S.Y.; Cho, E.S.; Lee, Y.; Cha, J.S.; Cho, H.S.; et al. Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Axin-GSK3 interaction. Oncotarget 2017, 8, 31842–31855. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway. PLoS ONE 2011, 6, e29290. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.W.; Ngo, M.H.T.; Kuo, Y.C.; Teng, M.H.; Guo, C.L.; Lai, H.C.; Chang, T.S.; Huang, Y.H. Niclosamide revitalizes sorafenib through insulin-like growth factor 1 receptor (IGF-1R)/stemness and metabolic changes in hepatocellular carcinoma. Cancers 2023, 15, 931. [Google Scholar] [CrossRef]
- Chen, J.; Ding, Z.-Y.; Li, S.; Liu, S.; Xiao, C.; Li, Z.; Zhang, B.-X.; Chen, X.-P.; Yang, X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021, 11, 1345. [Google Scholar] [CrossRef]
- Srinivasan, K. Antimutagenic and Cancer Preventive Potential of Culinary Spices and Their Bioactive Compounds. PharmaNutrition 2017, 5, 89–102. [Google Scholar] [CrossRef]
- Nie, M.; Chen, N.; Pang, H.; Jiang, T.; Jiang, W.; Tian, P.; Yao, L.; Chen, Y.; DeBerardinis, R.J.; Li, W.; et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse. J. Clin. Investig. 2022, 132, e160152. [Google Scholar] [CrossRef]
- Ha, T.; Lou, Z.; Baek, S.J.; Lee, S.H. Tolfenamic acid downregulates β-catenin in colon cancer. Int. Immunopharm. 2016, 35, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, X.; Lin, L.; Xu, B.; Zhu, X.; Lin, X. Sesamolin serves as an MYH14 inhibitor to sensitize endometrial cancer to chemotherapy and endocrine therapy via suppressing MYH9/GSK3β/β-catenin signaling. Cell. Mol. Biol. Lett. 2024, 29, 63. [Google Scholar] [CrossRef]
- Diaz-Ruano, A.B.; Martinez-Alarcon, N.; Perán, M.; Benabdellah, K.; Garcia-Martinez, M.D.L.Á.; Preda, O.; Ramirez-Tortosa, C.; Gonzalez-Hernandez, A.; Marchal, J.A.; Picon-Ruiz, M. Estradiol and estrone have different biological functions to induce NF-κB-driven inflammation, EMT and stemness in ER+ cancer cells. Int. J. Mol. Sci. 2023, 24, 1221. [Google Scholar] [CrossRef] [PubMed]
- Andresen, V.; Gjertsen, B.T. Drug repurposing for the treatment of acute myeloid leukemia. Front. Med. 2017, 4, 211. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Shi, Y.; Tibbetts, R.S.; Miyamoto, S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 2006, 311, 1141. [Google Scholar] [CrossRef]
- Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef]
- Stewart, A.K. Medicine. How thalidomide works against cancer. Science 2014, 343, 256–257. [Google Scholar] [CrossRef]
- Jazieh, A.R.; Komrokji, R.; Gupta, A.; Patil, S.; Flora, D.; Knapp, M.; Issa, M.; Karim, N.A. Phase II trial of thalidomide, irinotecan and gemcitabine in chemonaive patients with advanced non-small cell lung cancer. Cancer Investig. 2009, 27, 932–936. [Google Scholar] [CrossRef]
- Wang, W.L.; Chen, S.M.; Lee, Y.C.; Chang, W.W. Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. J. Funct. Foods 2022, 99, 105338. [Google Scholar] [CrossRef]
- Sharpe, H.J.; Pau, G.; Dijkgraaf, G.J.; Basset-Seguin, N.; Modrusan, Z.; Januario, T.; Tsui, V.; Durham, A.B.; Dlugosz, A.A.; Haverty, P.M.; et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 2015, 27, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Rimkus, T.K.; Carpenter, R.L.; Qasem, S.; Chan, M.; Lo, H.W. Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers 2016, 8, 22. [Google Scholar] [CrossRef]
- Yu, D.; Shin, H.S.; Lee, Y.S.; Lee, D.; Kim, S.; Lee, Y.C. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol. Rep. 2014, 31, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Piao, L.S.; Hur, W.; Kim, T.-K.; Hong, S.W.; Kim, S.W.; Choi, J.E.; Sung, P.S.; Song, M.J.; Lee, B.-C.; Hwang, D.; et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012, 315, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Qin, S.; Townsend, D.; Schulte, B.A.; Tew, K.D.; Wang, G.Y. Oxidative stress induces senescence in breast cancer stem cells. Biochem. Biophys. Res. Commun. 2019, 514, 1204–1209. [Google Scholar] [CrossRef]
- Mitranovici, M.-I.; Chiorean, D.M.; Moraru, L.; Moraru, R.; Caravia, L.; Tiron, A.T.; Cotoi, T.C.; Toru, H.S.; Cotoi, O.S. Shared Pathogenic and Therapeutic Characteristics of Endometriosis, Adenomyosis, and Endometrial Cancer: A Comprehensive Literature Review. Pharmaceuticals 2024, 17, 311. [Google Scholar] [CrossRef]
- Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M.; et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12, 329–341. [Google Scholar] [CrossRef]
- Glasauer, A.; Chandel, N.S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Wang, W.; Wang, Z.; Zhang, Y.; Pan, X.; Wen, X.; Leng, H.; Guo, J.; Ma, X.X. WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J. Exp. Clin. Cancer Res. 2024, 43, 204. [Google Scholar] [CrossRef]
- Moraru, L.; Mitranovici, M.I.; Moraru, R.; Voidazan, S.; Munteanu, M.; Georgescu, R.; Costachescu, D.; Turdean, S.G. Combining Molecular and Traditional Prognostic Factors: A Holistic Approach to Breast Cancer Prognostication. Diagnostics 2024, 14, 1449. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, K.; Wu, Y.; Zhou, J.; Jin, H.; Zhang, Y.; Zhu, Y. Comprehensive landscape of the functions and prognostic value of RNA binding proteins in uterine corpus endometrial carcinoma. Front. Mol. Biosci. 2022, 9, 962412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Huang, X.; Tang, X.; Zhang, M.; Li, Z.; Hu, X.; Zhang, M.; Wang, X.; Yan, Y. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res. Ther. 2023, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Mitranovici, M.I.; Caravia, L.G.; Moraru, L.; Pușcașiu, L. Targeting Cancer Stemness Using Nanotechnology in a Holistic Approach: A Narrative Review. Pharmaceutics 2025, 17, 277. [Google Scholar] [CrossRef]
- Jiang, F.; Ahmad, S.; Kanwal, S.; Hameed, Y.; Tang, Q. Key wound healing genes as diagnostic biomarkers and therapeutic targets in uterine corpus endometrial carcinoma: An integrated in silico and in vitro study. Hereditas 2025, 162, 5. [Google Scholar] [CrossRef]
- Snijesh, V.P.; Krishnamurthy, S.; Bhardwaj, V.; Punya, K.M.; Murthy, A.S.N.; Almutadares, M.; Habhab, W.T.; Nasser, K.K.; Banaganapalli, B.; Shaik, N.A.; et al. SHH Signaling as a Key Player in Endometrial Cancer: Unveiling the Correlation with Good Prognosis, Low Proliferation, and Anti-Tumor Immune Milieu. Int. J. Mol. Sci. 2024, 25, 10443. [Google Scholar] [CrossRef]
References | Pathway | Activity | Connections |
---|---|---|---|
[20,21,22] | Hippo | Influence apoptosis Regulate autophagy Regulate detoxification | Wnt |
[1,23,71,72] | Nanog | Stem cell dormant state preservation | OCT 4, SOX2, PD1-PD-L1, ALDH |
[1,8,20,24,25,26,28] | Wnt signaling pathway | Proliferation, invasion, metastasis | Hedgehog Notch |
[30,31,32] | NF-kB | Proliferation, differentiation, inflammation, immune system response | |
[1,20,36] | Notch | Stem cell dormant state preservation Function as oncogene | Wnt |
[20,40,41] | Hedgehog | Cell proliferation and adhesion | Wnt EMT |
[20,42,43,48,73] | TME, hypoxia | Cancer initiation, abnormal CSC differentiation, DNA and RNA modification, protein and lipid alteration, cancer cell resistance to ROS, proliferation, invasion, apoptosis evasion, angiogenesis | Nanog, OCT4, SOX2, Notch Wnt, NF-kB |
[1,52,53,62] | EMT | Proliferation, invasion, decrease adhesion | TME, hypoxia Notch Metabolic disorder |
[1,58,74] | PI3K-mTOR | Upregulation of EMT inducer, histone regulation, adhesion downregulation, invasion, metastasis, cellular plasticity | EMT, epigenetic regulation, ALDH |
[1,52,64] | Epigenetic modulator, miRNA | PTEN downregulation, cell proliferation | EMT PI3K-mTOR TAM TME |
[54,70] | TAM | Pro-tumorigenic macrophages induce immune evasion | TME, mTOR, NF-kB, Wnt |
Manuscript | Treatment | Target |
---|---|---|
[61] | Immunotherapy | PD-1, PD-L1 |
[76] | Metformin | ALDH |
[78,94] | Bimiralisib | PI3K, mTOR |
[79] | Gedatolisib | PI3K, mTOR |
[83,84] | Rapamicyn | mTOR |
[85,86,87] | Metformin | mTOR |
[83,87] | Everolimus | mTOR, PI3K |
[92] | LIFR inhibitor, EC359 | mTOR |
[20] | LGK974 | Wnt |
[7,95] | Medroxiprogesterone acetate | Wnt |
[28] | Levonorgestre | Wnt |
[96,97,98] | Niclosamide | Wnt, EMT |
[96] | Mebendazole, Albendazole | Wnt |
[26,28,96] | Salinomycin, | Wnt/beta-catenin |
[101] | Salinomycin, | mTOR, PI3K, Wnt |
[96,102] | Darifenacin | Wnt |
[103] | Tolfenamic acid | β-catenin |
[104,105] | Quercetin, Resveratrol, Sesamolin | Wnt |
[109,110] | Thalidomide | NF-kB inhibitor |
[20,33,35] | Enoticumab, Demcizumab | Notch |
[20] | Bortezomib | NF-kB inhibitor |
[112] | Sigmasetrol | mTOR, β-catenin |
[20,113] | Cyclopamine | Hedgehog |
[20,115] | Genistein | Hedgehog |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caravia, L.G.; Mitranovici, M.I.; Oala, I.E.; Tiron, A.T.; Simionescu, A.A.; Borcan, A.M.; Craina, M. The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells 2025, 14, 594. https://doi.org/10.3390/cells14080594
Caravia LG, Mitranovici MI, Oala IE, Tiron AT, Simionescu AA, Borcan AM, Craina M. The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells. 2025; 14(8):594. https://doi.org/10.3390/cells14080594
Chicago/Turabian StyleCaravia, Laura Georgiana, Melinda Ildiko Mitranovici, Ioan Emilian Oala, Andreea Taisia Tiron, Anca Angela Simionescu, Alina Maria Borcan, and Marius Craina. 2025. "The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review" Cells 14, no. 8: 594. https://doi.org/10.3390/cells14080594
APA StyleCaravia, L. G., Mitranovici, M. I., Oala, I. E., Tiron, A. T., Simionescu, A. A., Borcan, A. M., & Craina, M. (2025). The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells, 14(8), 594. https://doi.org/10.3390/cells14080594