Feedback Regulation of Kinase Signaling Pathways by AREs and GREs
Abstract
:1. Introduction
2. AREs and GREs
ARE Sequences | Functional Categories | Cluster | GRE Sequences | Functional Categories |
---|---|---|---|---|
AUUUAUUUAUUUAUUUAUUUA | Cytokines; Growth factors; Cell signaling; Apoptosis | I | GUUUGUUUGUUUGUUUGUUUG | Transcription factors; Cell cycle; Cell metabolism; Cell-cell communication |
AUUUAUUUAUUUAUUUA | II | GUUUGUUUGUUUGUUUG | ||
WAUUUAUUUAUUUAW | III | GUKUGUUUGUKUG | ||
WWAUUUAUUUAWW | IV | KKGUUUGUUUGKK | ||
WWWWAUUUAWWWW | V | KKKU/GUKUG/UKKK |
3. Regulation of ZFP36 Function by Phosphorylation
4. Regulation of CELF1 Function by Phosphorylation
5. Regulation of ELAVL1 Function by Phosphorylation
6. Regulation of Expression of KSP Components by RNA-BPs
7. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
ARE | AU-rich element |
GRE | GU-rich element |
RNA-BP | RNA-binding protein |
UTR | 3’ untranslated region |
KSP | kinase-signaling pathway |
RRM | RNA-Recognition Motif |
CHK2 | cell cycle checkpoint kinase |
PI3K | phosphatidylinositol 3-kinase |
PKB | protein kinase B |
PKC | Protein Kinase C |
MEK1 | mitogen-activated protein kinase kinase 1 |
MAPKs | mitogen-activated protein kinases |
AMPK | AMP-activated kinase |
CDK1 | cyclin-dependent kinase 1 |
CHK2 | cell cycle checkpoint kinase 2 |
DMPK | dystrophia myotonica protein kinase |
TGFα/β | transforming growth factors-alpha and beta |
GPCR | G protein-coupled receptor |
References
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The mapk cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [PubMed]
- Kyriakis, J.M.; Avruch, J. Mammalian mapk signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 2012, 92, 689–737. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.; Dawes, I.W. Redox control of cell proliferation. Trends Cell Biol. 2012, 22, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Gwathmey, T.M.; Alzayadneh, E.M.; Pendergrass, K.D.; Chappell, M.C. Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R518–R530. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Crowe, P.; Yang, J.L. Current clinical regulation of pi3k/pten/akt/mtor signalling in treatment of human cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 671–689. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, I.A.; Bohjanen, P.R. Posttranscriptional regulation of gene networks by gu-rich elements and celf proteins. RNA Biol. 2008, 5, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Simone, L.E.; Keene, J.D. Mechanisms coordinating elav/hu mRNA regulons. Curr. Opin. Genet. Dev. 2013, 23, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.R.; Mukherjee, N.; Keene, J.D. Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 2014, 14, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Schwerk, J.; Savan, R. Translating the untranslated region. J. Immunol. 2015, 195, 2963–2971. [Google Scholar] [CrossRef] [PubMed]
- Vindry, C.; Vo Ngoc, L.; Kruys, V.; Gueydan, C. Rna-binding protein-mediated post-transcriptional controls of gene expression: Integration of molecular mechanisms at the 3’ end of mRNAs? Biochem. Pharmacol. 2014, 89, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Bergalet, J.; Fawal, M.; Morello, D.; Espinos, E. Alk-mediated post-transcriptional regulation: Focus on rna-binding proteins. Front. Biosci. (Landmark Ed.) 2015, 20, 1250–1258. [Google Scholar] [PubMed]
- Prabhala, P.; Ammit, A.J. Tristetraprolin and its role in regulation of airway inflammation. Mol. Pharmacol. 2015, 87, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.M.; Agosto, L.; Qiu, J.; Mallory, M.J.; Gazzara, M.R.; Barash, Y.; Fu, X.D.; Lynch, K.W. Widespread JNK-dependent alternative splicing induces a positive feedback loop through celf2-mediated regulation of MKK7 during t-cell activation. Genes Dev. 2015, 29, 2054–2066. [Google Scholar] [CrossRef] [PubMed]
- Muto, J.; Imai, T.; Ogawa, D.; Nishimoto, Y.; Okada, Y.; Mabuchi, Y.; Kawase, T.; Iwanami, A.; Mischel, P.S.; Saya, H.; et al. Rna-binding protein musashi1 modulates glioma cell growth through the post-transcriptional regulation of notch and PI3 kinase/AKT signaling pathways. PLoS ONE 2012, 7, e33431. [Google Scholar]
- Sandler, H.; Stoecklin, G. Control of mRNA decay by phosphorylation of tristetraprolin. Biochem. Soc. Trans. 2008, 36, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, O.; Jouandin, P.; Rottier, J.; Bourcier, C.; Pages, G.; Gimond, C. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J. Cell. Physiol. 2011, 226, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, C.; Griseri, P.; Grepin, R.; Bertolotto, C.; Mazure, N.; Pages, G. Constitutive erk activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/cxcl8 mRNA stability in melanoma cells. Am. J. Physiol. Cell Physiol. 2011, 301, C609–C618. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, S.; Lee, B.S. Adaptive and maladaptive expression of the mRNA regulatory protein hur. World J. Biol. Chem. 2013, 4, 111–118. [Google Scholar] [PubMed]
- Chen, C.Y.; Shyu, A.B. Au-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 1995, 20, 465–470. [Google Scholar] [CrossRef]
- Gruber, A.R.; Fallmann, J.; Kratochvill, F.; Kovarik, P.; Hofacker, I.L. Aresite: A database for the comprehensive investigation of au-rich elements. Nucleic Acids Res. 2011, 39, D66–D69. [Google Scholar] [CrossRef] [PubMed]
- Beisang, D.; Bohjanen, P.R. Perspectives on the are as it turns 25 years old. Wiley Interdiscip. Rev. RNA 2012, 3, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, T.; Williams, B.R.; Khabar, K.S. Ared 3.0: The large and diverse au-rich transcriptome. Nucleic Acids Res. 2006, 34, D111–D114. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, T.; Williams, B.R.; Khabar, K.S. Ared 2.0: An update of au-rich element mRNA database. Nucleic Acids Res. 2003, 31, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Halees, A.S.; El-Badrawi, R.; Khabar, K.S. Ared organism: Expansion of ared reveals au-rich element cluster variations between human and mouse. Nucleic Acids Res. 2008, 36, D137–D140. [Google Scholar] [CrossRef] [PubMed]
- Halees, A.S.; Hitti, E.; Al-Saif, M.; Mahmoud, L.; Vlasova-St Louis, I.A.; Beisang, D.J.; Bohjanen, P.R.; Khabar, K. Global assessment of gu-rich regulatory content and function in the human transcriptome. RNA Biol. 2011, 8, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Vlasova-St Louis, I.; Dickson, A.M.; Bohjanen, P.R.; Wilusz, C.J. Celfish ways to modulate mRNA decay. Biochim. Biophys. Acta 2013, 1829, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Vlasova-St Louis, I.; Bohjanen, P.R. Coordinate regulation of mRNA decay networks by gu-rich elements and celf1. Curr. Opin. Genet. Dev. 2011, 21, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N.; Lager, P.J.; Friedersdorf, M.B.; Thompson, M.A.; Keene, J.D. Coordinated posttranscriptional mRNA population dynamics during t-cell activation. Mol. Syst. Biol. 2009, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Lee, J.Y.; Wilusz, J.; Tian, B.; Wilusz, C.J. Systematic analysis of cis-elements in unstable mRNAs demonstrates that cugbp1 is a key regulator of mRNA decay in muscle cells. PLoS ONE 2010, 5, e11201. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N.; Corcoran, D.L.; Nusbaum, J.D.; Reid, D.W.; Georgiev, S.; Hafner, M.; Ascano, M., Jr.; Tuschl, T.; Ohler, U.; Keene, J.D. Integrative regulatory mapping indicates that the rna-binding protein hur couples pre-mRNA processing and mRNA stability. Mol. Cell. 2011, 43, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, S.; Jens, M.; Theil, K.; Schwanhausser, B.; Selbach, M.; Landthaler, M.; Rajewsky, N. Transcriptome-wide analysis of regulatory interactions of the rna-binding protein hur. Mol. Cell. 2011, 43, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Khabar, K.S. Post-transcriptional control during chronic inflammation and cancer: A focus on au-rich elements. Cell. Mol. Life Sci. 2010, 67, 2937–2955. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.S.; Chen, C.Y.; Xu, N.; Shyu, A.B. RNA stabilization by the au-rich element binding protein, hur, an elav protein. EMBO J. 1998, 17, 3461–3470. [Google Scholar] [CrossRef] [PubMed]
- Vlasova-St Louis, I.; Bohjanen, P.R. Post-transcriptional regulation of cytokine signaling by au-rich and gu-rich elements. J. Interferon Cytokine Res. 2014, 34, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.A.; Blackshear, P.J. Tristetraprolin (ttp): Interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim. Biophys. Acta 2013, 1829, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Blackshear, P.J. Tristetraprolin and other ccch tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. 2002, 30, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, R.L.; Abelson, M.; Hau, H.H.; Vlasova, I.; Blackshear, P.J.; Bohjanen, P.R. Tristetraprolin down-regulates IL-2 gene expression through au-rich element-mediated mRNA decay. J. Immunol. 2005, 174, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, R.L.; Sternjohn, J.R.; Rattenbacher, B.; Vlasova, I.A.; Williams, D.A.; Hau, H.H.; Blackshear, P.J.; Bohjanen, P.R. Tristetraprolin mediates interferon-gamma mRNA decay. J. Biol. Chem. 2009, 284, 11216–11223. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, A.; Robison, R.L.; McNabb, J.; Miller, C.R.; Williams, D.A.; Bohjanen, P.R. Hua and tristetraprolin are induced following t cell activation and display distinct but overlapping RNA binding specificities. J. Biol. Chem. 2001, 276, 47958–47965. [Google Scholar] [PubMed]
- Blackshear, P.J.; Lai, W.S.; Kennington, E.A.; Brewer, G.; Wilson, G.M.; Guan, X.; Zhou, P. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with au-rich element-containing RNA substrates. J. Biol. Chem. 2003, 278, 19947–19955. [Google Scholar] [CrossRef] [PubMed]
- Maris, C.; Dominguez, C.; Allain, F.H. The RNA recognition motif, a plastic rna-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005, 272, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- Lykke-Andersen, J.; Wagner, E. Recruitment and activation of mRNA decay enzymes by two are-mediated decay activation domains in the proteins ttp and brf-1. Genes Dev. 2005, 19, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Hau, H.H.; Walsh, R.J.; Ogilvie, R.L.; Williams, D.A.; Reilly, C.S.; Bohjanen, P.R. Tristetraprolin recruits functional mRNA decay complexes to are sequences. J. Cell. Biochem. 2007, 100, 1477–1492. [Google Scholar] [CrossRef] [PubMed]
- Franks, T.M.; Lykke-Andersen, J. Ttp and brf proteins nucleate processing body formation to silence mRNAs with au-rich elements. Genes Dev. 2007, 21, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Hitti, E.; Iakovleva, T.; Brook, M.; Deppenmeier, S.; Gruber, A.D.; Radzioch, D.; Clark, A.R.; Blackshear, P.J.; Kotlyarov, A.; Gaestel, M. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol. 2006, 26, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Clement, S.L.; Scheckel, C.; Stoecklin, G.; Lykke-Andersen, J. Phosphorylation of tristetraprolin by mk2 impairs au-rich element mRNA decay by preventing deadenylase recruitment. Mol. Cell. Biol. 2011, 31, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Stoecklin, G.; Van Way, S.; Hinkovska-Galcheva, V.; Guo, R.F.; Anderson, P.; Shanley, T.P. Tristetraprolin (ttp)-14–3-3 complex formation protects ttp from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J. Biol. Chem. 2007, 282, 3766–3777. [Google Scholar] [CrossRef] [PubMed]
- Ronkina, N.; Menon, M.B.; Schwermann, J.; Tiedje, C.; Hitti, E.; Kotlyarov, A.; Gaestel, M. Mapkap kinases mk2 and mk3 in inflammation: Complex regulation of tnf biosynthesis via expression and phosphorylation of tristetraprolin. Biochem. Pharmacol. 2010, 80, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Romero, M.; Landin, A.M.; Diaz, A.; Riley, R.L.; Blomberg, B.B. Protein phosphatase 2a (pp2a) is increased in old murine b cells and mediates p38 mapk/tristetraprolin dephosphorylation and e47 mRNA instability. Mech Ageing Dev. 2010, 131, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Carrick, D.M.; Chulada, P.; Donn, R.; Fabris, M.; McNicholl, J.; Whitworth, W.; Blackshear, P.J. Genetic variations in zfp36 and their possible relationship to autoimmune diseases. J. Autoimmun. 2006, 26, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.A.; Smallie, T.; Ding, Q.; O'Neil, J.D.; Cunliffe, H.E.; Tang, T.; Rosner, D.R.; Klevernic, I.; Morrice, N.A.; Monaco, C.; et al. Dominant suppression of inflammation via targeted mutation of the mRNA destabilizing protein tristetraprolin. J. Immunol. 2015, 195, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, C.; Ronkina, N.; Tehrani, M.; Dhamija, S.; Laass, K.; Holtmann, H.; Kotlyarov, A.; Gaestel, M. The p38/mk2-driven exchange between tristetraprolin and hur regulates au-rich element-dependent translation. PLoS Genet. 2012, 8, e1002977. [Google Scholar] [CrossRef] [PubMed]
- Mahat, D.B.; Brennan-Laun, S.E.; Fialcowitz-White, E.J.; Kishor, A.; Ross, C.R.; Pozharskaya, T.; Rawn, J.D.; Blackshear, P.J.; Hassel, B.A.; Wilson, G.M. Coordinated expression of tristetraprolin post-transcriptionally attenuates mitogenic induction of the oncogenic ser/thr kinase pim-1. PLoS ONE 2012, 7, e33194. [Google Scholar] [CrossRef] [PubMed]
- Beisang, D.; Bohjanen, P.R.; Vlasova-StLouis, I.A. CELF1, a multifunctional regulator of posttranscriptional networks. In Binding Protein; Abdelmohsen, K., Ed.; INTECH Open Access Publisher: Rijeka, Croatia, 2012; pp. 181–195. [Google Scholar]
- Tsuda, K.; Kuwasako, K.; Takahashi, M.; Someya, T.; Inoue, M.; Terada, T.; Kobayashi, N.; Shirouzu, M.; Kigawa, T.; Tanaka, A.; et al. Structural basis for the sequence-specific rna-recognition mechanism of human cug-bp1 rrm3. Nucleic Acids Res. 2009, 37, 5151–5166. [Google Scholar] [CrossRef] [PubMed]
- Teplova, M.; Song, J.; Gaw, H.Y.; Teplov, A.; Patel, D.J. Structural insights into RNA recognition by the alternate-splicing regulator cug-binding protein 1. Structure 2010, 18, 1364–1377. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, T.; Ladd, A.N. The importance of celf control: Molecular and biological roles of the cug-bp, elav-like family of rna-binding proteins. Wiley Interdiscip. Rev. RNA 2012, 3, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.M.; Long, J.; de Moor, C.H.; Emsley, J.; Searle, M.S. Structural insights into the targeting of mRNA gu-rich elements by the three RRMs of CELF1. Nucleic Acids Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Daughters, R.S.; Tuttle, D.L.; Gao, W.; Ikeda, Y.; Moseley, M.L.; Ebner, T.J.; Swanson, M.S.; Ranum, L.P. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009, 5, e1000600. [Google Scholar] [CrossRef] [PubMed]
- Beisang, D.; Rattenbacher, B.; Vlasova-St Louis, I.A.; Bohjanen, P.R. Regulation of cug-binding protein 1 (cugbp1) binding to target transcripts upon t cell activation. J. Biol. Chem. 2012, 287, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Rattenbacher, B.; Beisang, D.; Wiesner, D.L.; Jeschke, J.C.; von Hohenberg, M.; St Louis-Vlasova, I.A.; Bohjanen, P.R. Analysis of cugbp1 targets identifies gu-repeat sequences that mediate rapid mRNA decay. Mol. Cell. Biol. 2010, 30, 3970–3980. [Google Scholar] [CrossRef] [PubMed]
- Bohjanen, P.R.; Moua, M.L.; Guo, L.; Taye, A.; Vlasova-St Louis, I.A. Altered celf1 binding to target transcripts in malignant t cells. RNA 2015, 21, 1757–1769. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Timchenko, N.A.; Miller, J.W.; Reddy, S.; Caskey, C.T.; Swanson, M.S.; Timchenko, L.T. Altered phosphorylation and intracellular distribution of a (cug)n triplet repeat rna-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc. Natl. Acad. Sci. USA 1997, 94, 13221–13226. [Google Scholar] [CrossRef] [PubMed]
- Timchenko, N.A.; Wang, G.L.; Timchenko, L.T. RNA cug-binding protein 1 increases translation of 20-kda isoform of ccaat/enhancer-binding protein beta by interacting with the alpha and beta subunits of eukaryotic initiation translation factor 2. J. Biol. Chem. 2005, 280, 20549–20557. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu-Martinez, N.M.; Wang, G.S.; Cooper, T.A. Increased steady-state levels of cugbp1 in myotonic dystrophy 1 are due to pkc-mediated hyperphosphorylation. Mol. Cell 2007, 28, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Orengo, J.P.; Ward, A.J.; Cooper, T.A. Alternative splicing dysregulation secondary to skeletal muscle regeneration. Ann. Neurol. 2011, 69, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Timchenko, L.T.; Salisbury, E.; Wang, G.L.; Nguyen, H.; Albrecht, J.H.; Hershey, J.W.; Timchenko, N.A. Age-specific cugbp1-eif2 complex increases translation of ccaat/enhancer-binding protein beta in old liver. J. Biol. Chem. 2006, 281, 32806–32819. [Google Scholar] [CrossRef] [PubMed]
- Huichalaf, C.; Sakai, K.; Jin, B.; Jones, K.; Wang, G.L.; Schoser, B.; Schneider-Gold, C.; Sarkar, P.; Pereira-Smith, O.M.; Timchenko, N.; et al. Expansion of cug RNA repeats causes stress and inhibition of translation in myotonic dystrophy 1 (dm1) cells. FASEB J. 2010, 24, 3706–3719. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, E.; Sakai, K.; Schoser, B.; Huichalaf, C.; Schneider-Gold, C.; Nguyen, H.; Wang, G.L.; Albrecht, J.H.; Timchenko, L.T. Ectopic expression of cyclin d3 corrects differentiation of dm1 myoblasts through activation of RNA cug-binding protein, cugbp1. Exp. Cell. Res. 2008, 314, 2266–2278. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Deshmukh, V.; Liu, P.; Nutter, C.A.; Espejo, R.; Hung, M.L.; Wang, G.S.; Yeo, G.W.; Kuyumcu-Martinez, M.N. Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase c signaling. J. Biol. Chem. 2013, 288, 35372–35386. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.N.; Cantrell, D.A. Serine-threonine kinases in tcr signaling. Nat. Immunol. 2014, 15, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Schoser, B.; Timchenko, L. Myotonic dystrophies 1 and 2: Complex diseases with complex mechanisms. Curr. Genomics 2010, 11, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Orengo, J.P.; Chambon, P.; Metzger, D.; Mosier, D.R.; Snipes, G.J.; Cooper, T.A. Expanded ctg repeats within the dmpk 3’ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA 2008, 105, 2646–2651. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Kuyumcu-Martinez, M.N.; Sarma, S.; Mathur, N.; Wehrens, X.H.; Cooper, T.A. Pkc inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1. J. Clin. Investig. 2009, 119, 3797–3806. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.; Daily, K.; Nguyen, V.T.; Wang, C.; Lewandowska, M.A.; Bensaude, O.; Huang, S. Characterization of mrp rna-protein interactions within the perinucleolar compartment. Mol. Biol. Cell 2011, 22, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Gareau, C.; Fournier, M.J.; Filion, C.; Coudert, L.; Martel, D.; Labelle, Y.; Mazroui, R. P21(waf1/cip1) upregulation through the stress granule-associated protein cugbp1 confers resistance to bortezomib-mediated apoptosis. PLoS ONE 2011, 6, e20254. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, B.R.; Timchenko, N.A.; Zahnow, C.A. Epidermal growth factor receptor stimulation activates the RNA binding protein cug-bp1 and increases expression of c/ebpbeta-lip in mammary epithelial cells. Mol. Cell. Biol. 2004, 24, 3682–3691. [Google Scholar] [CrossRef] [PubMed]
- Timchenko, N.A.; Cai, Z.J.; Welm, A.L.; Reddy, S.; Ashizawa, T.; Timchenko, L.T. RNA cug repeats sequester cugbp1 and alter protein levels and activity of cugbp1. J. Biol. Chem. 2001, 276, 7820–7826. [Google Scholar] [CrossRef] [PubMed]
- Iakova, P.; Wang, G.L.; Timchenko, L.; Michalak, M.; Pereira-Smith, O.M.; Smith, J.R.; Timchenko, N.A. Competition of cugbp1 and calreticulin for the regulation of p21 translation determines cell fate. EMBO J. 2004, 23, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Srikantan, S.; Gorospe, M. Hur function in disease. Front. Biosci. 2012, 17, 189–205. [Google Scholar] [CrossRef]
- Scheiba, R.M.; de Opakua, A.I.; Diaz-Quintana, A.; Cruz-Gallardo, I.; Martinez-Cruz, L.A.; Martinez-Chantar, M.L.; Blanco, F.J.; Diaz-Moreno, I. The c-terminal RNA binding motif of hur is a multi-functional domain leading to hur oligomerization and binding to u-rich RNA targets. RNA Biol. 2014, 11, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Datta, D.; Zurakowski, D.; Pal, S. Altered VEGF mRNA stability following treatments with immunosuppressive agents: Implications for cancer development. J. Biol. Chem. 2010, 285, 25196–25202. [Google Scholar] [CrossRef] [PubMed]
- Roche, E.; Lascombe, I.; Bittard, H.; Mougin, C.; Fauconnet, S. The pparbeta agonist l-165041 promotes vegf mRNA stabilization in hpv18-harboring hela cells through a receptor-independent mechanism. Cell. Signal. 2014, 26, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Gallouzi, I.E.; Brennan, C.M.; Stenberg, M.G.; Swanson, M.S.; Eversole, A.; Maizels, N.; Steitz, J.A. Hur binding to cytoplasmic mRNA is perturbed by heat shock. Proc. Natl. Acad. Sci. USA 2000, 97, 3073–3078. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Maurer, F.; Nagamine, Y. Stabilization of urokinase and urokinase receptor mRNAs by hur is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol. Cell. Biol. 2003, 23, 7177–7188. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, V.; Cuadrado, A.; Lopez de Silanes, I.; Bengoechea, R.; Fernandez-Capetillo, O.; Nebreda, A.R. P38 mitogen-activated protein kinase- and hur-dependent stabilization of p21(cip1) mRNA mediates the g(1)/s checkpoint. Mol. Cell. Biol 2009, 29, 4341–4351. [Google Scholar] [CrossRef] [PubMed]
- Rhee, W.J.; Ni, C.W.; Zheng, Z.; Chang, K.; Jo, H.; Bao, G. Hur regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. USA 2010, 107, 6858–6863. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Abdelmohsen, K.; Gorospe, M. Regulation of hur by DNA damage response kinases. J. Nucleic Acids 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, K.; Pullmann, R., Jr.; Lal, A.; Kim, H.H.; Galban, S.; Yang, X.; Blethrow, J.D.; Walker, M.; Shubert, J.; Gillespie, D.A.; et al. Phosphorylation of hur by chk2 regulates sirt1 expression. Mol. Cell 2007, 25, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Abdelmohsen, K.; Lal, A.; Pullmann, R., Jr.; Yang, X.; Galban, S.; Srikantan, S.; Martindale, J.L.; Blethrow, J.; Shokat, K.M.; et al. Nuclear hur accumulation through phosphorylation by cdk1. Genes Dev. 2008, 22, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Blethrow, J.D.; Glavy, J.S.; Morgan, D.O.; Shokat, K.M. Covalent capture of kinase-specific phosphopeptides reveals cdk1-cyclin b substrates. Proc. Natl. Acad. Sci. USA 2008, 105, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Filippova, N.; Yang, X.; King, P.; Nabors, L.B. Phosphoregulation of the rna-binding protein hu antigen r (hur) by cdk5 affects centrosome function. J. Biol. Chem. 2012, 287, 32277–32287. [Google Scholar] [CrossRef] [PubMed]
- Doller, A.; Huwiler, A.; Muller, R.; Radeke, H.H.; Pfeilschifter, J.; Eberhardt, W. Protein kinase c alpha-dependent phosphorylation of the mRNA-stabilizing factor hur: Implications for posttranscriptional regulation of cyclooxygenase-2. Mol. Biol. Cell 2007, 18, 2137–2148. [Google Scholar] [CrossRef] [PubMed]
- Amadio, M.; Scapagnini, G.; Lupo, G.; Drago, F.; Govoni, S.; Pascale, A. pkcbetaii/hur/vegf: A new molecular cascade in retinal pericytes for the regulation of vegf gene expression. Pharmacol. Res. 2008, 57, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Amadio, M.; Bucolo, C.; Leggio, G.M.; Drago, F.; Govoni, S.; Pascale, A. The PKCBETA/HUR/VEGF pathway in diabetic retinopathy. Biochem. Pharmacol. 2010, 80, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Doller, A.; Akool el, S.; Huwiler, A.; Muller, R.; Radeke, H.H.; Pfeilschifter, J.; Eberhardt, W. Posttranslational modification of the au-rich element binding protein hur by protein kinase cdelta elicits angiotensin ii-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol. Cell. Biol. 2008, 28, 2608–2625. [Google Scholar] [CrossRef] [PubMed]
- Doller, A.; Schlepckow, K.; Schwalbe, H.; Pfeilschifter, J.; Eberhardt, W. Tandem phosphorylation of serines 221 and 318 by protein kinase cdelta coordinates mRNA binding and nucleocytoplasmic shuttling of hur. Mol. Cell. Biol. 2010, 30, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Yang, X.; Kuwano, Y.; Gorospe, M. Modification at hur(s242) alters hur localization and proliferative influence. Cell Cycle 2008, 7, 3371–3377. [Google Scholar] [CrossRef] [PubMed]
- Doller, A.; Winkler, C.; Azrilian, I.; Schulz, S.; Hartmann, S.; Pfeilschifter, J.; Eberhardt, W. High-constitutive hur phosphorylation at ser 318 by PKCδ propagates tumor relevant functions in colon carcinoma cells. Carcinogenesis 2011, 32, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Gurgis, F.M.; Yeung, Y.T.; Tang, M.X.; Heng, B.; Buckland, M.; Ammit, A.J.; Haapasalo, J.; Haapasalo, H.; Guillemin, G.J.; Grewal, T.; et al. The p38-mk2-hur pathway potentiates EGFRVIII-IL-1beta-driven IL-6 secretion in glioblastoma cells. Oncogene 2015, 34, 2934–2942. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, A.; Ogilvie, R.L.; Reilly, C.; Abelson, M.L.; Raghavan, S.; Vasdewani, J.; Krathwohl, M.; Bohjanen, P.R. Genome-wide analysis of mRNA decay in resting and activated primary human t lymphocytes. Nucleic Acids Res. 2002, 30, 5529–5538. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, A.; Dhalla, M.; Bakheet, T.; Ogilvie, R.L.; Vlasova, I.A.; Khabar, K.S.; Williams, B.R.; Bohjanen, P.R. Patterns of coordinate down-regulation of are-containing transcripts following immune cell activation. Genomics 2004, 84, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N.; Jacobs, N.C.; Hafner, M.; Kennington, E.A.; Nusbaum, J.D.; Tuschl, T.; Blackshear, P.J.; Ohler, U. Global target mRNA specification and regulation by the rna-binding protein zfp36. Genome Biol. 2014, 15, R12. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasova-St. Louis, I.; Bohjanen, P.R. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs. Cells 2016, 5, 4. https://doi.org/10.3390/cells5010004
Vlasova-St. Louis I, Bohjanen PR. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs. Cells. 2016; 5(1):4. https://doi.org/10.3390/cells5010004
Chicago/Turabian StyleVlasova-St. Louis, Irina, and Paul R. Bohjanen. 2016. "Feedback Regulation of Kinase Signaling Pathways by AREs and GREs" Cells 5, no. 1: 4. https://doi.org/10.3390/cells5010004
APA StyleVlasova-St. Louis, I., & Bohjanen, P. R. (2016). Feedback Regulation of Kinase Signaling Pathways by AREs and GREs. Cells, 5(1), 4. https://doi.org/10.3390/cells5010004