Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain
Abstract
:1. Introduction
1.1. Antipsychotic Treatment for Schizophrenia and Other Mental Illnesses: First- Versus Second-Generation Antipsychotics
1.2. Are the Metabolic-Side Effects in Patients with Severe Mental Illness Due to Schizophrenia, SGAs or Other Factors?
1.3. Elucidation of SGAs Effects on Glucose Tolerance, Insulin Resistance and Body Weight Gain: Acute Studies with Healthy Volunteers
2. New Insights into the Molecular Mechanisms by which SGAs Disrupt Whole-Body Glucose Homeostasis: From Cellular and Animal Models to Humans
2.1. Cellular Studies Addressing Dysregulation of Glucose Homeostasis by SGAs
2.1.1. SGA-Mediated Molecular Alterations in Glucose Metabolism in Hepatocytes: In Vitro Studies
2.1.2. Alterations of the Insulin Signaling Pathways and Glucose Transport in Skeletal Muscle Cellular Models
2.1.3. Impact of SGAs on Insulin Secretion and β-Cell Function: Molecular Targets in Cultured β-Cells and Pancreatic Islets
2.2. Animal Studies Addressing Disruption of Whole-Body Glucose Homeostasis by SGAs: Tissue-Specific Effects in Liver, Skeletal muscle and Pancreas
2.2.1. SGAs Induce a Metabolic Shift to Fat Oxidation: Insulin-Resistance Condition
2.2.2. The Role of the Liver in Mediating SGAs-Induced Disturbances in Glucose Metabolism
2.2.3. Effects of SGAs on Insulin Sensitivity and Glucose Transport in the Skeletal Muscle of Animal Models
2.2.4. Effects of SGAs on the Endocrine Pancreas: Impairment of Insulin and Glucagon Secretion
2.3. Completing the Preclinical Model Picture: Genetic and Epigenetic Determinants of SGAs-Induced Metabolic Side-Effects in Humans
3. Concluding Remarks
Funding
Conflicts of Interest
References
- Carton, L.; Cottencin, O.; Lapeyre-Mestre, M.; Geoffroy, P.A.; Favre, J.; Simon, N.; Bordet, R.; Rolland, B. Off-Label Prescribing of Antipsychotics in Adults, Children and Elderly Individuals: A Systematic Review of Recent Prescription Trends. Curr. Pharm. Des. 2015, 21, 3280–3297. [Google Scholar] [CrossRef] [PubMed]
- Lauriello, J.; Perkins, D.O. Enhancing the Treatment of Patients With Schizophrenia Through Continuous Care. J. Clin. Psychiatry 2019, 80. [Google Scholar] [CrossRef] [PubMed]
- Nesvag, R.; Hartz, I.; Bramness, J.G.; Hjellvik, V.; Handal, M.; Skurtveit, S. Mental disorder diagnoses among children and adolescents who use antipsychotic drugs. Eur. Neuropsychopharmacol. 2016, 26, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.A. Fifty years chlorpromazine: A historical perspective. Neuropsychiatr. Dis. Treat. 2007, 3, 495–500. [Google Scholar] [PubMed]
- Shen, W.W. A history of antipsychotic drug development. Compr. Psychiatry 1999, 40, 407–414. [Google Scholar] [CrossRef]
- Seeman, P. Clozapine, a fast-off-D2 antipsychotic. ACS Chem. Neurosci. 2014, 5, 24–29. [Google Scholar] [CrossRef]
- Nucifora, F.C., Jr.; Mihaljevic, M.; Lee, B.J.; Sawa, A. Clozapine as a Model for Antipsychotic Development. Neurotherapeutics 2017, 14, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Mailman, R.B.; Murthy, V. Third generation antipsychotic drugs: Partial agonism or receptor functional selectivity? Curr. Pharm. Des. 2010, 16, 488–501. [Google Scholar] [CrossRef]
- Tuplin, E.W.; Holahan, M.R. Aripiprazole, A Drug that Displays Partial Agonism and Functional Selectivity. Curr. Neuropharmacol. 2017, 15, 1192–1207. [Google Scholar] [CrossRef] [Green Version]
- De Greef, R.; Maloney, A.; Olsson-Gisleskog, P.; Schoemaker, J.; Panagides, J. Dopamine D2 occupancy as a biomarker for antipsychotics: Quantifying the relationship with efficacy and extrapyramidal symptoms. AAPS J. 2011, 13, 121–130. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Zai, C.C.; Hwang, R.; Mann, S.; Arenovich, T.; Remington, G.; Daskalakis, Z.J. Antipsychotics, dopamine D(2) receptor occupancy and clinical improvement in schizophrenia: A meta-analysis. Schizophr. Res. 2012, 140, 214–220. [Google Scholar] [CrossRef]
- Nordstrom, A.L.; Farde, L. Plasma prolactin and central D2 receptor occupancy in antipsychotic drug-treated patients. J. Clin. Psychopharmacol. 1998, 18, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Pani, L.; Pira, L.; Marchese, G. Antipsychotic efficacy: Relationship to optimal D2-receptor occupancy. Eur. Psychiatry 2007, 22, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Sykes, D.A.; Moore, H.; Stott, L.; Holliday, N.; Javitch, J.A.; Lane, J.R.; Charlton, S.J. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat. Commun. 2017, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 2005, 10, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Mauri, M.C.; Paletta, S.; Maffini, M.; Colasanti, A.; Dragogna, F.; Di Pace, C.; Altamura, A.C. Clinical pharmacology of atypical antipsychotics: An update. EXCLI J. 2014, 13, 1163–1191. [Google Scholar]
- Kusumi, I.; Boku, S.; Takahashi, Y. Psychopharmacology of atypical antipsychotic drugs: From the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin. Neurosci. 2015, 69, 243–258. [Google Scholar] [CrossRef]
- Brown, S. Excess mortality of schizophrenia. A meta-analysis. Br. J. Psychiatry 1997, 171, 502–508. [Google Scholar] [CrossRef]
- Correll, C.U.; Solmi, M.; Veronese, N.; Bortolato, B.; Rosson, S.; Santonastaso, P.; Thapa-Chhetri, N.; Fornaro, M.; Gallicchio, D.; Collantoni, E.; et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry 2017, 16, 163–180. [Google Scholar] [CrossRef]
- Westman, J.; Eriksson, S.V.; Gissler, M.; Hallgren, J.; Prieto, M.L.; Bobo, W.V.; Frye, M.A.; Erlinge, D.; Alfredsson, L.; Osby, U. Increased cardiovascular mortality in people with schizophrenia: A 24-year national register study. Epidemiol. Psychiatr. Sci. 2018, 27, 519–527. [Google Scholar] [CrossRef]
- Hayes, J.F.; Marston, L.; Walters, K.; King, M.B.; Osborn, D.P.J. Mortality gap for people with bipolar disorder and schizophrenia: UK-based cohort study 2000–2014. Br. J. Psychiatry 2017, 211, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, A.; Kosir, U.; Tek, C. Prevalence of obesity and diabetes in patients with schizophrenia. World J. Diabetes 2017, 8, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Cather, C.; Pachas, G.N.; Cieslak, K.M.; Evins, A.E. Achieving Smoking Cessation in Individuals with Schizophrenia: Special Considerations. CNS Drugs 2017, 31, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, J.C.; Palmese, L.B.; Reutenauer, E.L.; Liskov, E.; Grilo, C.M.; Tek, C. The effect of dietary and physical activity pattern on metabolic profile in individuals with schizophrenia: A cross-sectional study. Compr. Psychiatry 2012, 53, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Correll, C.U.; Galling, B.; Probst, M.; De Hert, M.; Ward, P.B.; Rosenbaum, S.; Gaughran, F.; Lally, J.; Stubbs, B. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry 2016, 15, 166–174. [Google Scholar] [CrossRef]
- Gatov, E.; Rosella, L.; Chiu, M.; Kurdyak, P.A. Trends in standardized mortality among individuals with schizophrenia, 1993–2012: A population-based, repeated cross-sectional study. CMAJ 2017, 189, E1177–E1187. [Google Scholar] [CrossRef]
- Fleischhacker, W.W.; Siu, C.O.; Boden, R.; Pappadopulos, E.; Karayal, O.N.; Kahn, R.S.; EUFEST Study Group. Metabolic risk factors in first-episode schizophrenia: Baseline prevalence and course analysed from the European First-Episode Schizophrenia Trial. Int. J. Neuropsychopharmacol. 2013, 16, 987–995. [Google Scholar] [CrossRef]
- Vancampfort, D.; Wampers, M.; Mitchell, A.J.; Correll, C.U.; De Herdt, A.; Probst, M.; De Hert, M. A meta-analysis of cardio-metabolic abnormalities in drug naive, first-episode and multi-episode patients with schizophrenia versus general population controls. World Psychiatry 2013, 12, 240–250. [Google Scholar] [CrossRef]
- Venkatasubramanian, G.; Chittiprol, S.; Neelakantachar, N.; Naveen, M.N.; Thirthall, J.; Gangadhar, B.N.; Shetty, K.T. Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am. J. Psychiatry 2007, 164, 1557–1560. [Google Scholar] [CrossRef]
- Li, Z.; Chen, P.; Chen, J.; Xu, Y.; Wang, Q.; Li, X.; Li, C.; He, L.; Shi, Y. Glucose and Insulin-Related Traits, Type 2 Diabetes and Risk of Schizophrenia: A Mendelian Randomization Study. EBioMedicine 2018, 34, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.I.; McIntosh, G.; Weich, S.; Singh, S.; Rees, K. The association between first-episode psychosis and abnormal glycaemic control: Systematic review and meta-analysis. Lancet Psychiatry 2016, 3, 1049–1058. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, M.; Deng, Y.; Yi, Z.; Shi, T. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med. Genom. 2013, 6 (Suppl. S1), S17. [Google Scholar] [CrossRef]
- Maciukiewicz, M.; Gorbovskaya, I.; Tiwari, A.K.; Zai, C.C.; Freeman, N.; Meltzer, H.Y.; Kennedy, J.L.; Muller, D.J. Genetic validation study of protein tyrosine phosphatase receptor type D (PTPRD) gene variants and risk for antipsychotic-induced weight gain. J. Neural Transm. (Vienna) 2019, 126, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Chen, J.; Meyer-Lindenberg, A.; Schwarz, E. A polygenic score for schizophrenia predicts glycemic control. Transl. Psychiatry 2017, 7, 1295. [Google Scholar] [CrossRef]
- Padmanabhan, J.L.; Nanda, P.; Tandon, N.; Mothi, S.S.; Bolo, N.; McCarroll, S.; Clementz, B.A.; Gershon, E.S.; Pearlson, G.D.; Sweeney, J.A.; et al. Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. J. Psychiatr. Res. 2016, 77, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Polimanti, R.; Gelernter, J.; Stein, D.J. Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophr. Res. 2018, 195, 286–289. [Google Scholar] [CrossRef]
- Correll, C.U.; Manu, P.; Olshanskiy, V.; Napolitano, B.; Kane, J.M.; Malhotra, A.K. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 2009, 302, 1765–1773. [Google Scholar] [CrossRef]
- Sjo, C.P.; Stenstrom, A.D.; Bojesen, A.B.; Frolich, J.S.; Bilenberg, N. Development of Metabolic Syndrome in Drug-Naive Adolescents After 12 Months of Second-Generation Antipsychotic Treatment. J. Child. Adolesc. Psychopharmacol. 2017, 27, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Polcwiartek, C.; Kragholm, K.; Rohde, C.; Hashemi, N.; Vang, T.; Nielsen, J. Diabetic ketoacidosis and diabetes associated with antipsychotic exposure among a previously diabetes-naive population with schizophrenia: A nationwide nested case-control study. Diabetologia 2017, 60, 1678–1690. [Google Scholar] [CrossRef]
- Rajkumar, A.P.; Horsdal, H.T.; Wimberley, T.; Cohen, D.; Mors, O.; Borglum, A.D.; Gasse, C. Endogenous and Antipsychotic-Related Risks for Diabetes Mellitus in Young People With Schizophrenia: A Danish Population-Based Cohort Study. Am. J. Psychiatry 2017, 174, 686–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.; Skadhede, S.; Correll, C.U. Antipsychotics associated with the development of type 2 diabetes in antipsychotic-naive schizophrenia patients. Neuropsychopharmacology 2010, 35, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Rodriguez, M.; Belmonte, C.; Roman, M.; Ochoa, D.; Jiang-Zheng, C.; Koller, D.; Mejia, G.; Zubiaur, P.; Wojnicz, A.; Abad-Santos, F. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin. Pharmacol. Toxicol. 2018, 123, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Chiliza, B.; Asmal, L.; Oosthuizen, P.; van Niekerk, E.; Erasmus, R.; Kidd, M.; Malhotra, A.; Emsley, R. Changes in body mass and metabolic profiles in patients with first-episode schizophrenia treated for 12 months with a first-generation antipsychotic. Eur. Psychiatry 2015, 30, 277–283. [Google Scholar] [CrossRef]
- Chadda, R.K.; Ramshankar, P.; Deb, K.S.; Sood, M. Metabolic syndrome in schizophrenia: Differences between antipsychotic-naive and treated patients. J. Pharmacol. Pharmacother. 2013, 4, 176–186. [Google Scholar] [CrossRef]
- Sapra, M.; Lawson, D.; Iranmanesh, A. Fat Distribution in Schizophrenia Patients: A Pilot Study Comparing First- and Second-Generation Antipsychotics. J. Clin. Psychopharmacol. 2018, 38, 68–71. [Google Scholar] [CrossRef]
- Ingimarsson, O.; MacCabe, J.H.; Haraldsson, M.; Jonsdottir, H.; Sigurdsson, E. Risk of diabetes and dyslipidemia during clozapine and other antipsychotic drug treatment of schizophrenia in Iceland. Nord. J. Psychiatry 2017, 71, 496–502. [Google Scholar] [CrossRef]
- Sacher, J.; Mossaheb, N.; Spindelegger, C.; Klein, N.; Geiss-Granadia, T.; Sauermann, R.; Lackner, E.; Joukhadar, C.; Muller, M.; Kasper, S. Effects of olanzapine and ziprasidone on glucose tolerance in healthy volunteers. Neuropsychopharmacology 2008, 33, 1633–1641. [Google Scholar] [CrossRef]
- Teff, K.L.; Rickels, M.R.; Grudziak, J.; Fuller, C.; Nguyen, H.L.; Rickels, K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes 2013, 62, 3232–3240. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Singareddy, R.; Mauger, D.; Lynch, C.J. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers. PLoS ONE 2011, 6, e22662. [Google Scholar] [CrossRef]
- Daurignac, E.; Leonard, K.E.; Dubovsky, S.L. Increased lean body mass as an early indicator of olanzapine-induced weight gain in healthy men. Int. Clin. Psychopharmacol. 2015, 30, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Seyoum, B.; Mallisho, A.; Burghardt, P.R.; Kowluru, R.A.; Yi, Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 83, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tek, C.; Kucukgoncu, S.; Guloksuz, S.; Woods, S.W.; Srihari, V.H.; Annamalai, A. Antipsychotic-induced weight gain in first-episode psychosis patients: A meta-analysis of differential effects of antipsychotic medications. Early Interv. Psychiatry 2016, 10, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; Velasco, C.; Merchan-Naranjo, J.; Garcia-Peris, P.; Arango, C. The effects of second-generation antipsychotics on food intake, resting energy expenditure and physical activity. Eur. J. Clin. Nutr. 2014, 68, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Salvi, V.; Mencacci, C.; Barone-Adesi, F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur. Neuropsychopharmacol. 2016, 26, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.S.; Park, T. Searching susceptibility genes for antipsychotic-induced weight gain: Is the 5-HT2C receptor gene a promising candidate? Pers. Med. 2007, 4, 357–361. [Google Scholar] [CrossRef]
- Templeman, L.A.; Reynolds, G.P.; Arranz, B.; San, L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet. Genom. 2005, 15, 195–200. [Google Scholar] [CrossRef]
- Baik, J.H. Dopamine signaling in food addiction: Role of dopamine D2 receptors. BMB Rep. 2013, 46, 519–526. [Google Scholar] [CrossRef]
- Coleman, R.A.; Mashek, D.G. Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling. Chem. Rev. 2011, 111, 6359–6386. [Google Scholar] [CrossRef]
- Canfran-Duque, A.; Casado, M.E.; Pastor, O.; Sanchez-Wandelmer, J.; de la Pena, G.; Lerma, M.; Mariscal, P.; Bracher, F.; Lasuncion, M.A.; Busto, R. Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. J. Lipid Res. 2013, 54, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Ferno, J.; Raeder, M.B.; Vik-Mo, A.O.; Skrede, S.; Glambek, M.; Tronstad, K.J.; Breilid, H.; Lovlie, R.; Berge, R.K.; Stansberg, C.; et al. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: A novel mechanism of action? Pharm. J. 2005, 5, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Catafau, A.M.; Penengo, M.M.; Nucci, G.; Bullich, S.; Corripio, I.; Parellada, E.; Garcia-Ribera, C.; Gomeni, R.; Merlo-Pich, E.; Barcelona Clinical Imaging in Psychiatry Group. Pharmacokinetics and time-course of D(2) receptor occupancy induced by atypical antipsychotics in stabilized schizophrenic patients. J. Psychopharmacol. 2008, 22, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Aravagiri, M.; Teper, Y.; Marder, S.R. Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm. Drug Dispos. 1999, 20, 369–377. [Google Scholar] [CrossRef]
- Ikemura, M.; Nakagawa, Y.; Shinone, K.; Inoue, H.; Nata, M. The blood concentration and organ distribution of haloperidol at therapeutic and toxic doses in severe fatty liver disease. Leg. Med. (Tokyo) 2012, 14, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef]
- Tudhope, S.J.; Wang, C.C.; Petrie, J.L.; Potts, L.; Malcomson, F.; Kieswich, J.; Yaqoob, M.M.; Arden, C.; Hampson, L.J.; Agius, L. A novel mechanism for regulating hepatic glycogen synthesis involving serotonin and cyclin-dependent kinase-5. Diabetes 2012, 61, 49–60. [Google Scholar] [CrossRef]
- Hampson, L.J.; Mackin, P.; Agius, L. Stimulation of glycogen synthesis and inactivation of phosphorylase in hepatocytes by serotonergic mechanisms, and counter-regulation by atypical antipsychotic drugs. Diabetologia 2007, 50, 1743–1751. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Shannon, V.; Heart, D.L.; Paredes, R.M.; Navaira, E.; Catano, G.; Maffi, S.K.; Walss-Bass, C. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS ONE 2013, 8, e59012. [Google Scholar] [CrossRef]
- Eftekhari, A.; Azarmi, Y.; Parvizpur, A.; Eghbal, M.A. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica 2016, 46, 369–378. [Google Scholar] [CrossRef]
- Eftekhari, A.; Ahmadian, E.; Azarmi, Y.; Parvizpur, A.; Hamishehkar, H.; Eghbal, M.A. In vitro/vivo studies towards mechanisms of risperidone-induced oxidative stress and the protective role of coenzyme Q10 and N-acetylcysteine. Toxicol. Mech. Methods 2016, 26, 520–528. [Google Scholar] [CrossRef]
- Engl, J.; Laimer, M.; Niederwanger, A.; Kranebitter, M.; Starzinger, M.; Pedrini, M.T.; Fleischhacker, W.W.; Patsch, J.R.; Ebenbichler, C.F. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol. Psychiatry 2005, 10, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panariello, F.; Perruolo, G.; Cassese, A.; Giacco, F.; Botta, G.; Barbagallo, A.P.; Muscettola, G.; Beguinot, F.; Formisano, P.; de Bartolomeis, A. Clozapine impairs insulin action by up-regulating Akt phosphorylation and Ped/Pea-15 protein abundance. J. Cell. Physiol. 2012, 227, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Tulipano, G.; Spano, P.; Cocchi, D. Effects of olanzapine on glucose transport, proliferation and survival in C2C12 myoblasts. Mol. Cell. Endocrinol. 2008, 292, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Lee, J.O.; Lee, S.K.; Jung, J.H.; You, G.Y.; Park, S.H.; Park, M.; Kim, S.D.; Kim, H.S. Clozapine activates AMP-activated protein kinase (AMPK) in C2C12 myotube cells and stimulates glucose uptake. Life Sci. 2010, 87, 42–48. [Google Scholar] [CrossRef]
- Tulipano, G.; Rizzetti, C.; Bianchi, I.; Fanzani, A.; Spano, P.; Cocchi, D. Clozapine-induced alteration of glucose homeostasis in the rat: The contribution of hypothalamic-pituitary-adrenal axis activation. Neuroendocrinology 2007, 85, 61–70. [Google Scholar] [CrossRef]
- Ardizzone, T.D.; Bradley, R.J.; Freeman, A.M., 3rd; Dwyer, D.S. Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain Res. 2001, 923, 82–90. [Google Scholar] [CrossRef]
- Nagashima, T.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: A data mining prediction followed by experimental exploration of the molecular mechanism. Sci. Rep. 2016, 6, 26375. [Google Scholar] [CrossRef]
- Smith, G.C.; Chaussade, C.; Vickers, M.; Jensen, J.; Shepherd, P.R. Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia 2008, 51, 2309–2317. [Google Scholar] [CrossRef]
- Al-Zoairy, R.; Ress, C.; Tschoner, A.; Kaser, S.; Ebenbichler, C. The effects of psychotropic drugs on the regulation of glucose metabolism. Curr. Diabetes Rev. 2013, 9, 362–370. [Google Scholar] [CrossRef]
- Babkin, P.; George Thompson, A.M.; Iancu, C.V.; Walters, D.E.; Choe, J.Y. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter. FEBS Open Bio. 2015, 5, 335–340. [Google Scholar] [CrossRef]
- Ustione, A.; Piston, D.W. Dopamine synthesis and D3 receptor activation in pancreatic beta-cells regulates insulin secretion and intracellular [Ca(2+)] oscillations. Mol. Endocrinol. 2012, 26, 1928–1940. [Google Scholar] [CrossRef] [PubMed]
- Ganic, E.; Johansson, J.K.; Bennet, H.; Fex, M.; Artner, I. Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes. Biochem. Biophys. Res. Commun. 2015, 468, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Farino, Z.J.; Morgenstern, T.J.; Maffei, A.; Quick, M.; De Solis, A.J.; Wiriyasermkul, P.; Freyberg, R.J.; Aslanoglou, D.; Sorisio, D.; Inbar, B.P.; et al. New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol. Psychiatry 2019. [Google Scholar] [CrossRef] [PubMed]
- Rubi, B.; Ljubicic, S.; Pournourmohammadi, S.; Carobbio, S.; Armanet, M.; Bartley, C.; Maechler, P. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J. Biol. Chem. 2005, 280, 36824–36832. [Google Scholar] [CrossRef]
- Simpson, N.; Maffei, A.; Freeby, M.; Burroughs, S.; Freyberg, Z.; Javitch, J.; Leibel, R.L.; Harris, P.E. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol. Endocrinol. 2012, 26, 1757–1772. [Google Scholar] [CrossRef]
- Cataldo Bascunan, L.R.; Lyons, C.; Bennet, H.; Artner, I.; Fex, M. Serotonergic regulation of insulin secretion. Acta Physiol. (Oxf.) 2019, 225, e13101. [Google Scholar] [CrossRef]
- Bennet, H.; Mollet, I.G.; Balhuizen, A.; Medina, A.; Nagorny, C.; Bagge, A.; Fadista, J.; Ottosson-Laakso, E.; Vikman, P.; Dekker-Nitert, M.; et al. Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia 2016, 59, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Weston-Green, K.; Huang, X.F.; Lian, J.; Deng, C. Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels. Eur. Neuropsychopharmacol. 2012, 22, 364–373. [Google Scholar] [CrossRef]
- Nakajima, K.; Jain, S.; Ruiz de Azua, I.; McMillin, S.M.; Rossi, M.; Wess, J. Minireview: Novel aspects of M3 muscarinic receptor signaling in pancreatic beta-cells. Mol. Endocrinol. 2013, 27, 1208–1216. [Google Scholar] [CrossRef]
- Melkersson, K.; Khan, A.; Hilding, A.; Hulting, A.L. Different effects of antipsychotic drugs on insulin release in vitro. Eur. Neuropsychopharmacol. 2001, 11, 327–332. [Google Scholar] [CrossRef]
- Melkersson, K. Clozapine and olanzapine, but not conventional antipsychotics, increase insulin release in vitro. Eur. Neuropsychopharmacol. 2004, 14, 115–119. [Google Scholar] [CrossRef]
- Smith, G.C.; Zhang, Z.Y.; Mulvey, T.; Petersen, N.; Lach, S.; Xiu, P.; Phillips, A.; Han, W.; Wang, M.W.; Shepherd, P.R. Clozapine directly increases insulin and glucagon secretion from islets: Implications for impairment of glucose tolerance. Schizophr. Res. 2014, 157, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Menga, A.; Infantino, V.; Iacobazzi, F.; Convertini, P.; Palmieri, F.; Iacobazzi, V. Insight into mechanism of in vitro insulin secretion increase induced by antipsychotic clozapine: Role of FOXA1 and mitochondrial citrate carrier. Eur. Neuropsychopharmacol. 2013, 23, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Melkersson, K.I.; Dahl, M.L. Relationship between levels of insulin or triglycerides and serum concentrations of the atypical antipsychotics clozapine and olanzapine in patients on treatment with therapeutic doses. Psychopharmacology 2003, 170, 157–166. [Google Scholar] [CrossRef]
- Johnson, D.E.; Yamazaki, H.; Ward, K.M.; Schmidt, A.W.; Lebel, W.S.; Treadway, J.L.; Gibbs, E.M.; Zawalich, W.S.; Rollema, H. Inhibitory effects of antipsychotics on carbachol-enhanced insulin secretion from perifused rat islets: Role of muscarinic antagonism in antipsychotic-induced diabetes and hyperglycemia. Diabetes 2005, 54, 1552–1558. [Google Scholar] [CrossRef]
- Sasaki, N.; Iwase, M.; Uchizono, Y.; Nakamura, U.; Imoto, H.; Abe, S.; Iida, M. The atypical antipsychotic clozapine impairs insulin secretion by inhibiting glucose metabolism and distal steps in rat pancreatic islets. Diabetologia 2006, 49, 2930–2938. [Google Scholar] [CrossRef] [Green Version]
- Best, L.; Yates, A.P.; Reynolds, G.P. Actions of antipsychotic drugs on pancreatic beta-cell function: Contrasting effects of clozapine and haloperidol. J. Psychopharmacol. 2005, 19, 597–601. [Google Scholar] [CrossRef]
- Ozasa, R.; Okada, T.; Nadanaka, S.; Nagamine, T.; Zyryanova, A.; Harding, H.; Ron, D.; Mori, K. The antipsychotic olanzapine induces apoptosis in insulin-secreting pancreatic beta cells by blocking PERK-mediated translational attenuation. Cell Struct. Funct. 2013, 38, 183–195. [Google Scholar] [CrossRef]
- Park, S.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Kim, S.H. Chlorpromazine attenuates pancreatic beta-cell function and mass through IRS2 degradation, while exercise partially reverses the attenuation. J. Psychopharmacol. 2008, 22, 522–531. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Henry, C.R.; Bello, N.T.; Hajnal, A.; Lynch, S.L.; Halle, B.; Lynch, C.J. Hormonal and metabolic effects of olanzapine and clozapine related to body weight in rodents. Obesity (Silver Spring) 2006, 14, 36–51. [Google Scholar] [CrossRef]
- Davey, K.J.; O’Mahony, S.M.; Schellekens, H.; O’Sullivan, O.; Bienenstock, J.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gender-dependent consequences of chronic olanzapine in the rat: Effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 2012, 221, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Klingerman, C.M.; Stipanovic, M.E.; Bader, M.; Lynch, C.J. Second-generation antipsychotics cause a rapid switch to fat oxidation that is required for survival in C57BL/6J mice. Schizophr. Bull. 2014, 40, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Castellani, L.N.; Peppler, W.T.; Sutton, C.D.; Whitfield, J.; Charron, M.J.; Wright, D.C. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology 2017, 82, 38–45. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Vary, T.C.; Ilkayeva, O.; Wenner, B.R.; Maresca, K.P.; Joyal, J.L.; Breazeale, S.; Elich, T.D.; Lang, C.H.; Lynch, C.J. Atypical antipsychotics rapidly and inappropriately switch peripheral fuel utilization to lipids, impairing metabolic flexibility in rodents. Schizophr. Bull. 2012, 38, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Houseknecht, K.L.; Robertson, A.S.; Zavadoski, W.; Gibbs, E.M.; Johnson, D.E.; Rollema, H. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: Implications for adverse metabolic effects. Neuropsychopharmacology 2007, 32, 289–297. [Google Scholar] [CrossRef]
- Chintoh, A.F.; Mann, S.W.; Lam, L.; Lam, C.; Cohn, T.A.; Fletcher, P.J.; Nobrega, J.N.; Giacca, A.; Remington, G. Insulin resistance and decreased glucose-stimulated insulin secretion after acute olanzapine administration. J. Clin. Psychopharmacol. 2008, 28, 494–499. [Google Scholar] [CrossRef]
- Chintoh, A.F.; Mann, S.W.; Lam, L.; Giacca, A.; Fletcher, P.; Nobrega, J.; Remington, G. Insulin resistance and secretion in vivo: Effects of different antipsychotics in an animal model. Schizophr. Res. 2009, 108, 127–133. [Google Scholar] [CrossRef]
- Martins, P.J.; Haas, M.; Obici, S. Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance. Diabetes 2010, 59, 2418–2425. [Google Scholar] [CrossRef]
- Girault, E.M.; Alkemade, A.; Foppen, E.; Ackermans, M.T.; Fliers, E.; Kalsbeek, A. Acute peripheral but not central administration of olanzapine induces hyperglycemia associated with hepatic and extra-hepatic insulin resistance. PLoS ONE 2012, 7, e43244. [Google Scholar] [CrossRef]
- Weston-Green, K.; Babic, I.; de Santis, M.; Pan, B.; Montgomery, M.K.; Mitchell, T.; Huang, X.F.; Nealon, J. Disrupted sphingolipid metabolism following acute clozapine and olanzapine administration. J. Biomed. Sci. 2018, 25, 40. [Google Scholar] [CrossRef]
- Chintoh, A.F.; Mann, S.W.; Lam, T.K.; Giacca, A.; Remington, G. Insulin resistance following continuous, chronic olanzapine treatment: An animal model. Schizophr. Res. 2008, 104, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, M.; Ikeda, H.; Ohashi, T.; Ohsawa, M.; Ishikawa, Y.; Kai, M.; Kamei, A.; Kamei, J. Olanzapine increases hepatic glucose production through the activation of hypothalamic adenosine 5′-monophosphate-activated protein kinase. Diabetes Obes. Metab. 2013, 15, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- El-Seweidy, M.M.; Sadik, N.A.; Malek, M.M.; Amin, R.S. Chronic effects of clozapine administration on insulin resistance in rats: Evidence for adverse metabolic effects. Pathol. Res. Pract. 2014, 210, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hong, S.M.; Lee, J.E.; Sung, S.R. Chlorpromazine exacerbates hepatic insulin sensitivity via attenuating insulin and leptin signaling pathway, while exercise partially reverses the adverse effects. Life Sci. 2007, 80, 2428–2435. [Google Scholar] [CrossRef]
- Schmidt, R.H.; Jokinen, J.D.; Massey, V.L.; Falkner, K.C.; Shi, X.; Yin, X.; Zhang, X.; Beier, J.I.; Arteel, G.E. Olanzapine activates hepatic mammalian target of rapamycin: New mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs. J. Pharmacol. Exp. Ther. 2013, 347, 126–135. [Google Scholar] [CrossRef]
- Kapse, S.; Ando, H.; Fujiwara, Y.; Suzuki, C.; Ushijima, K.; Kitamura, H.; Hosohata, K.; Kotani, K.; Shimba, S.; Fujimura, A. Effect of a dosing-time on quetiapine-induced acute hyperglycemia in mice. J. Pharmacol. Sci. 2017, 133, 139–145. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Lian, J.; Hu, C.H.; Huang, X.F.; Deng, C. Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci. Rep. 2017, 7, 2762. [Google Scholar] [CrossRef]
- Li, J.H.; Gautam, D.; Han, S.J.; Guettier, J.M.; Cui, Y.; Lu, H.; Deng, C.; O’Hare, J.; Jou, W.; Gavrilova, O.; et al. Hepatic muscarinic acetylcholine receptors are not critically involved in maintaining glucose homeostasis in mice. Diabetes 2009, 58, 2776–2787. [Google Scholar] [CrossRef]
- Townsend, L.K.; Peppler, W.T.; Bush, N.D.; Wright, D.C. Obesity exacerbates the acute metabolic side effects of olanzapine. Psychoneuroendocrinology 2018, 88, 121–128. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Huang, X.; Wang, C.; Li, Y. The IRS/PI3K/Akt signaling pathway mediates olanzapine-induced hepatic insulin resistance in male rats. Life Sci. 2019, 217, 229–236. [Google Scholar] [CrossRef]
- Mondelli, V.; Anacker, C.; Vernon, A.C.; Cattaneo, A.; Natesan, S.; Modo, M.; Dazzan, P.; Kapur, S.; Pariante, C.M. Haloperidol and olanzapine mediate metabolic abnormalities through different molecular pathways. Transl. Psychiatry 2013, 3, e208. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ou, J.; Li, L.; Yang, Y.; Zhao, J.; Wu, R. The Wnt Signaling Pathway Effector TCF7L2 Mediates Olanzapine-Induced Weight Gain and Insulin Resistance. Front. Pharmacol. 2018, 9, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyda, H.N.; Procyshyn, R.M.; Tse, L.; Hawkes, E.; Jin, C.H.; Pang, C.C.; Honer, W.G.; Barr, A.M. Differential effects of 3 classes of antidiabetic drugs on olanzapine-induced glucose dysregulation and insulin resistance in female rats. J. Psychiatry Neurosci. 2012, 37, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remington, G.J.; Teo, C.; Wilson, V.; Chintoh, A.; Guenette, M.; Ahsan, Z.; Giacca, A.; Hahn, M.K. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance. J. Endocrinol. 2015, 227, 71–81. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, Q.; Deng, C.; Wang, H.; Huang, X.F. Olanzapine-activated AMPK signaling in the dorsal vagal complex is attenuated by histamine H1 receptor agonist in female rats. Endocrinology 2014, 155, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Ferno, J.; Varela, L.; Skrede, S.; Vazquez, M.J.; Nogueiras, R.; Dieguez, C.; Vidal-Puig, A.; Steen, V.M.; Lopez, M. Olanzapine-induced hyperphagia and weight gain associate with orexigenic hypothalamic neuropeptide signaling without concomitant AMPK phosphorylation. PLoS ONE 2011, 6, e20571. [Google Scholar] [CrossRef] [PubMed]
- Girault, E.M.; Foppen, E.; Ackermans, M.T.; Fliers, E.; Kalsbeek, A. Central administration of an orexin receptor 1 antagonist prevents the stimulatory effect of Olanzapine on endogenous glucose production. Brain Res. 2013, 1527, 238–245. [Google Scholar] [CrossRef]
- Anwar, I.J.; Miyata, K.; Zsombok, A. Brain stem as a target site for the metabolic side effects of olanzapine. J. Neurophysiol. 2016, 115, 1389–1398. [Google Scholar] [CrossRef]
- Lam, C.K.; Chari, M.; Su, B.B.; Cheung, G.W.; Kokorovic, A.; Yang, C.S.; Wang, P.Y.; Lai, T.Y.; Lam, T.K. Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J. Biol. Chem. 2010, 285, 21913–21921. [Google Scholar] [CrossRef]
- Lazzari, P.; Serra, V.; Marcello, S.; Pira, M.; Mastinu, A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur. Neuropsychopharmacol. 2017, 27, 667–678. [Google Scholar] [CrossRef]
- Hahn, M.K.; Chintoh, A.; Remington, G.; Teo, C.; Mann, S.; Arenovich, T.; Fletcher, P.; Lam, L.; Nobrega, J.; Guenette, M.; et al. Effects of intracerebroventricular (ICV) olanzapine on insulin sensitivity and secretion in vivo: An animal model. Eur. Neuropsychopharmacol. 2014, 24, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Kowalchuk, C.; Teo, C.; Wilson, V.; Chintoh, A.; Lam, L.; Agarwal, S.M.; Giacca, A.; Remington, G.J.; Hahn, M.K. In male rats, the ability of central insulin to suppress glucose production is impaired by olanzapine, whereas glucose uptake is left intact. J. Psychiatry Neurosci. 2017, 42, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyda, H.N.; Ramos-Miguel, A.; Procyshyn, R.M.; Topfer, E.; Lant, N.; Choy, H.H.; Wong, R.; Li, L.; Pang, C.C.; Honer, W.G.; et al. Routine exercise ameliorates the metabolic side-effects of treatment with the atypical antipsychotic drug olanzapine in rats. Int. J. Neuropsychopharmacol. 2014, 17, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M. Hypothalamic AMPK and energy balance. Eur. J. Clin. Investig. 2018, 48, e12996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.J.; Xu, Y.; Hajnal, A.; Salzberg, A.C.; Kawasawa, Y.I. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. PLoS ONE 2015, 10, e0123966. [Google Scholar] [CrossRef]
- Weston-Green, K.; Huang, X.F.; Deng, C. Olanzapine treatment and metabolic dysfunction: A dose response study in female Sprague Dawley rats. Behav. Brain Res. 2011, 217, 337–346. [Google Scholar] [CrossRef]
- Park, S.; Sang Mee, H.; Il Sung, A.; Sung Hoon, K. Olanzapine, not resperidone, exacerbates beta-cell function and mass in ovariectomized diabetic rats and estrogen replacement reverses them. J. Psychopharmacol. 2010, 24, 1105–1114. [Google Scholar] [CrossRef]
- Coccurello, R.; Brina, D.; Caprioli, A.; Conti, R.; Ghirardi, O.; Schepis, F.; Moles, A. 30 days of continuous olanzapine infusion determines energy imbalance, glucose intolerance, insulin resistance, and dyslipidemia in mice. J. Clin. Psychopharmacol. 2009, 29, 576–583. [Google Scholar] [CrossRef]
- Duttaroy, A.; Zimliki, C.L.; Gautam, D.; Cui, Y.; Mears, D.; Wess, J. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 2004, 53, 1714–1720. [Google Scholar] [CrossRef]
- Guenette, M.D.; Giacca, A.; Hahn, M.; Teo, C.; Lam, L.; Chintoh, A.; Arenovich, T.; Remington, G. Atypical antipsychotics and effects of adrenergic and serotonergic receptor binding on insulin secretion in-vivo: An animal model. Schizophr. Res. 2013, 146, 162–169. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Zhou, W.; Gao, L.; Yuan, L.; Han, X. Serotonin receptor 2C and insulin secretion. PLoS ONE 2013, 8, e54250. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Oh, C.M.; Ohara-Imaizumi, M.; Park, S.; Namkung, J.; Yadav, V.K.; Tamarina, N.A.; Roe, M.W.; Philipson, L.H.; Karsenty, G.; et al. Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 2015, 156, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Ohara-Imaizumi, M.; Kim, H.; Yoshida, M.; Fujiwara, T.; Aoyagi, K.; Toyofuku, Y.; Nakamichi, Y.; Nishiwaki, C.; Okamura, T.; Uchida, T.; et al. Serotonin regulates glucose-stimulated insulin secretion from pancreatic beta cells during pregnancy. Proc. Natl. Acad. Sci. USA 2013, 110, 19420–19425. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.; Chintoh, A.; Giacca, A.; Xu, L.; Lam, L.; Mann, S.; Fletcher, P.; Guenette, M.; Cohn, T.; Wolever, T.; et al. Atypical antipsychotics and effects of muscarinic, serotonergic, dopaminergic and histaminergic receptor binding on insulin secretion in vivo: An animal model. Schizophr. Res. 2011, 131, 90–95. [Google Scholar] [CrossRef]
- Shivaprasad, C.; Kalra, S. Bromocriptine in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2011, 15, S17–S24. [Google Scholar] [CrossRef]
- Smith, G.C.; Vickers, M.H.; Cognard, E.; Shepherd, P.R. Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: Implications for glucose metabolism and food choice behaviour. Schizophr. Res. 2009, 115, 30–40. [Google Scholar] [CrossRef]
- Hsu, B.R.; Fu, S.H. GLP-1 receptor agonist exenatide restores atypical antipsychotic clozapine treatment-associated glucose dysregulation and damage of pancreatic islet beta cells in mice. Toxicol. Rep. 2016, 3, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.; Kimura, Y.; Ishiwata, Y.; Takahashi, H.; Yasuhara, M. Clozapine-Induced Acute Hyperglycemia Is Accompanied with Elevated Serum Concentrations of Adrenaline and Glucagon in Rats. Biol. Pharm. Bull. 2018, 41, 1286–1290. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.C.; McEwen, H.; Steinberg, J.D.; Shepherd, P.R. The activation of the Akt/PKB signalling pathway in the brains of clozapine-exposed rats is linked to hyperinsulinemia and not a direct drug effect. Psychopharmacology 2014, 231, 4553–4560. [Google Scholar] [CrossRef]
- Swathy, B.; Banerjee, M. Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy. Epigenomics 2017, 9, 721–736. [Google Scholar] [CrossRef]
- Zhang, J.P.; Lencz, T.; Zhang, R.X.; Nitta, M.; Maayan, L.; John, M.; Robinson, D.G.; Fleischhacker, W.W.; Kahn, R.S.; Ophoff, R.A.; et al. Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis. Schizophr. Bull. 2016, 42, 1418–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams, T.A.; Muller, D.J. Antipsychotic induced weight gain: Genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep. 2014, 16, 473. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Seyoum, B.; Dass, S.E.; Sanders, E.; Mallisho, A.; Yi, Z. Association of Protein Kinase B (AKT) DNA Hypermethylation with Maintenance Atypical Antipsychotic Treatment in Patients with Bipolar Disorder. Pharmacotherapy 2018, 38, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 2004, 36, 131–137. [Google Scholar] [CrossRef]
- Moons, T.; De Hert, M.; Kenis, G.; Viechtbauer, W.; van Os, J.; Gohlke, H.; Claes, S.; van Winkel, R. No association between genetic or epigenetic variation in insulin growth factors and antipsychotic-induced metabolic disturbances in a cross-sectional sample. Pharmacogenomics 2014, 15, 951–962. [Google Scholar] [CrossRef]
- Brandl, E.J.; Tiwari, A.K.; Lett, T.A.; Shaikh, S.A.; Lieberman, J.A.; Meltzer, H.Y.; Kennedy, J.L.; Muller, D.J. Exploratory study on association of genetic variation in TBC1D1 with antipsychotic-induced weight gain. Hum. Psychopharmacol. 2013, 28, 183–187. [Google Scholar] [CrossRef]
- Szekeres, F.; Chadt, A.; Tom, R.Z.; Deshmukh, A.S.; Chibalin, A.V.; Bjornholm, M.; Al-Hasani, H.; Zierath, J.R. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E524–E533. [Google Scholar] [CrossRef]
- Ono, S.; Suzuki, Y.; Fukui, N.; Sugai, T.; Watanabe, J.; Tsuneyama, N.; Someya, T. Association between the GIPR gene and the insulin level after glucose loading in schizophrenia patients treated with olanzapine. Pharm. J. 2012, 12, 507–512. [Google Scholar] [CrossRef]
- Larsen, J.R.; Vedtofte, L.; Jakobsen, M.S.L.; Jespersen, H.R.; Jakobsen, M.I.; Svensson, C.K.; Koyuncu, K.; Schjerning, O.; Oturai, P.S.; Kjaer, A.; et al. Effect of Liraglutide Treatment on Prediabetes and Overweight or Obesity in Clozapine- or Olanzapine-Treated Patients With Schizophrenia Spectrum Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2017, 74, 719–728. [Google Scholar] [CrossRef]
- Siskind, D.; Hahn, M.; Correll, C.U.; Fink-Jensen, A.; Russell, A.W.; Bak, N.; Broberg, B.V.; Larsen, J.; Ishoy, P.L.; Vilsboll, T.; et al. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: A systematic review and individual participant data meta-analysis. Diabetes Obes. Metab. 2019, 21, 293–302. [Google Scholar] [CrossRef]
- Brandl, E.J.; Tiwari, A.K.; Chowdhury, N.I.; Zai, C.C.; Lieberman, J.A.; Meltzer, H.Y.; Kennedy, J.L.; Muller, D.J. Genetic variation in the GCG and in the GLP1R genes and antipsychotic-induced weight gain. Pharmacogenomics 2014, 15, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, T.L.; Brennan, M.D. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr. Res. 2014, 160, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, T.L.; Liu, Q.; Massey, B.W.; Brennan, M.D. Genotypic variation in the SV2C gene impacts response to atypical antipsychotics the CATIE study. Schizophr. Res. 2013, 149, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Gunes, A.; Melkersson, K.I.; Scordo, M.G.; Dahl, M.L. Association between HTR2C and HTR2A polymorphisms and metabolic abnormalities in patients treated with olanzapine or clozapine. J. Clin. Psychopharmacol. 2009, 29, 65–68. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Goodrich, J.M.; Dolinoy, D.C.; Ellingrod, V.L. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord. 2016, 18, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, A.K.; Correll, C.U.; Chowdhury, N.I.; Muller, D.J.; Gregersen, P.K.; Lee, A.T.; Tiwari, A.K.; Kane, J.M.; Fleischhacker, W.W.; Kahn, R.S.; et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch. Gen. Psychiatry 2012, 69, 904–912. [Google Scholar] [CrossRef]
- Mulder, H.; Franke, B.; van der-Beek van der, A.A.; Arends, J.; Wilmink, F.W.; Scheffer, H.; Egberts, A.C. The association between HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia. J. Clin. Psychopharmacol. 2007, 27, 338–343. [Google Scholar] [CrossRef]
- Bai, Y.M.; Chen, T.T.; Liou, Y.J.; Hong, C.J.; Tsai, S.J. Association between HTR2C polymorphisms and metabolic syndrome in patients with schizophrenia treated with atypical antipsychotics. Schizophr. Res. 2011, 125, 179–186. [Google Scholar] [CrossRef]
- Puangpetch, A.; Unaharassamee, W.; Jiratjintana, N.; Koomdee, N.; Sukasem, C. Genetic polymorphisms of HTR2C, LEP and LEPR on metabolic syndromes in patients treated with atypical antipsychotic drugs. J. Pharm. Pharmacol. 2018, 70, 536–542. [Google Scholar] [CrossRef]
- Crespo-Facorro, B.; Prieto, C.; Sainz, J. Altered gene expression in antipsychotic-induced weight gain. NPJ Schizophr. 2019, 5, 7. [Google Scholar] [CrossRef]
- Mitjans, M.; Catalan, R.; Vazquez, M.; Gonzalez-Rodriguez, A.; Penades, R.; Pons, A.; Massana, G.; Munro, J.; Arranz, M.J.; Arias, B. Hypothalamic-pituitary-adrenal system, neurotrophic factors and clozapine response: Association with FKBP5 and NTRK2 genes. Pharmacogenet. Genom. 2015, 25, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, N.J.; Cairns, M.J. MicroRNA dysregulation in schizophrenia. Neurobiol. Dis. 2012, 46, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Leites, C.; He, D.; Schwartz, D.; Moy, W.; Shi, J.; Duan, J. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J. Biol. Chem. 2014, 289, 13434–13444. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Guo, C.; He, L.; Shi, Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 2018, 155, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.D.; Sun, X.Y.; Niu, W.; Kong, L.M.; He, M.J.; Fan, H.M.; Li, W.S.; Zhong, A.F.; Zhang, L.Y.; Lu, J. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia. Psychiatry Res. 2016, 244, 324–332. [Google Scholar] [CrossRef]
Pharmacological Target | Antipsychotics Mentioned in this Review | Effect in Insulin-Sensitive Tissue |
---|---|---|
H1R antagonism | Olanzapine, clozapine | Hepatic insulin signaling impairment [73,114,117,119,120,121,122] |
Olanzapine | Hepatic AMPK signaling impairment [115,124] | |
Olanzapine | Skeletal muscle AMPK signaling impairment [74] | |
Olanzapine, clozapine, quetiapine | Skeletal muscle insulin signaling impairment [77,135] | |
5-HT1 agonism | Olanzapine | ↓ Hepatic glycogen synthesis [67] |
5-HT2A antagonism | Olanzapine | ↓ Hepatic glycogen synthesis [67,105,110] |
Quetiapine | ↓ Skeletal muscle glucose uptake [77] | |
D2R antagonism | Haloperidol, sulpiride, olanzapine, clozapine | ↑ Glucose-Stimulated Insulin Secretion [85,92] |
Clozapine | ↑ Basal insulin secretion [90,91] | |
Chlorpromazine | Hepatic insulin signaling impairment [100] | |
M3R antagonism | Clozapine, olanzapine | ↓ Insulin secretion [95,96] |
Unknown | Clozapine, olanzapine, quetiapine | ↑ Glucagon secretion [92,146,148] |
Clozapine, quetiapine | ↓ GLP-1 levels [146] | |
Olanzapine | ↓ Skeletal muscle glycogen synthesis [71] | |
↓ Skeletal muscle glucose uptake [72] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grajales, D.; Ferreira, V.; Valverde, Á.M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019, 8, 1336. https://doi.org/10.3390/cells8111336
Grajales D, Ferreira V, Valverde ÁM. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells. 2019; 8(11):1336. https://doi.org/10.3390/cells8111336
Chicago/Turabian StyleGrajales, Diana, Vitor Ferreira, and Ángela M. Valverde. 2019. "Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain" Cells 8, no. 11: 1336. https://doi.org/10.3390/cells8111336
APA StyleGrajales, D., Ferreira, V., & Valverde, Á. M. (2019). Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells, 8(11), 1336. https://doi.org/10.3390/cells8111336