Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle
Abstract
:1. Introduction
2. Material and Methods
2.1. Egg Collection and Activation
2.2. Cell Free Extracts
2.3. 1 Activity Measurements
2.4. 6 Immunodepletion
3. Results
3.1. Biochemical Model and the New Hypothesis
3.2. Mathematical Model
3.3. Numerical Simulations
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A. Mathematical Analysis of the Model
- (1)
- (2)
- . Then from the third equation of Equation (A4) we get . Putting these results into the fourth equation of Equation (A4), with , we obtainEquation (A5) is a quadratic equation and has two solutionsSolution is negative becauseSolution is positive becauseWe may note that . Taking into consideration Equation (A1) we obtain the equilibrium point
- (a)
- If , then as .
- (b)
- If or , then as .
References
- El Dika, M.; Laskowska-Kaszub, K.; Koryto, M.; Dudka, D.; Prigent, C.; Tassan, J.P.; Kloc, M.; Polanski, Z.; Borsuk, E.; Kubiak, J.Z. CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition. Dev. Biol. 2014, 396, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essential Cell Biology, 4th ed.; Garland Science/Taylor & Francis Group: New York, NY, USA, 2014. [Google Scholar]
- Morgan, D.O. The Cell Cycle: Principles of Control; New Science Press: London, UK, 2007. [Google Scholar]
- Vigneron, S.; Sundermann, L.; Labbé, J.C.; Pintard, L.; Radulescu, O.; Castro, A.; Lorca, T. Cyclin A-Cdk1-dependent phosphorylation of Bora is the triggering factor promoting mitotic entry. Dev. Cell 2018, 45, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.A.; Adames, N.R.; Reischmann, N.; Barik, D.; Franck, C.T.; Tyson, J.J.; Peccoud, J. Measurement and modeling of transcriptional noise in the cell cycle regulatory network. Cell Cycle 2013, 12, 3203–3218. [Google Scholar] [CrossRef] [PubMed]
- Braunewell, S.; Bornholdt, S. Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J. Theor. Biol. 2007, 245, 638–643. [Google Scholar] [CrossRef]
- Ge, H.; Qian, H.; Qian, M. Synchronized dynamics and nonequilibrium steady states in a stochastic yeast cell-cycle network. Math. Biosci. 2008, 211, 132–152. [Google Scholar] [CrossRef]
- Kar, S.; Baumann, W.T.; Paul, M.R.; Tyson, J.J. Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 6471–6476. [Google Scholar] [CrossRef]
- Mura, I.; Csikász-Nagy, A. Stochastic Petri Net extension of a yeast cell cycle model. J. Theor. Biol. 2008, 254, 850–860. [Google Scholar] [CrossRef]
- Okabe, Y.; Sasai, M. Stable stochastic dynamics in yeast cell cycle. Biophys. J. 2007, 93, 3451–3459. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, M.; Ouyang, Q.; Deng, M.; Li, F.; Tang, C. Stochastic model of the yeast cell-cycle network. Physica D 2006, 219, 35–39. [Google Scholar] [CrossRef]
- Aguda, B.D.; Tang, Y. The kinetics origins of the restriction point in the mammalian cell cycle. Cell Prolif. 1999, 32, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Borisuk, M.T.; Tyson, J.J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 1998, 195, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.C.; Calzone, L.; Csikász-Nagy, A.; Cross, F.R.; Novak, B.; Tyson, J.J. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 2004, 15, 3841–3862. [Google Scholar] [CrossRef] [PubMed]
- Ciliberto, A.; Novak, B.; Tyson, J.J. Mathematical model of the morphogenesis checkpoint in budding yeast. J. Cell Biol. 2003, 163, 1243–1254. [Google Scholar] [CrossRef]
- Li, B.; Shao, B.; Yu, C.; Ouyang, Q.; Wang, H. A mathematical model for cell size control in fission yeast. J. Theor. Biol. 2010, 264, 771–781. [Google Scholar] [CrossRef]
- Novak, B.; Tyson, J.J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 1993, 106, 1153–1168. [Google Scholar]
- Novak, B.; Tyson, J.J. Modeling the cell division cycle: M-phase trigger, oscillations, and size control. J. Theor. Biol. 1993, 165, 101–134. [Google Scholar] [CrossRef]
- Novak, B.; Tyson, J.J. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 1997, 94, 9147–9152. [Google Scholar] [CrossRef]
- Charvin, G.; Oikonomou, C.; Siggia, E.D.; Cross, F.R. Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol. 2010, 8, e1000284. [Google Scholar] [CrossRef]
- Goldbeter, A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. USA 1991, 88, 9107–9111. [Google Scholar] [CrossRef]
- Goldbeter, A.; Guilmot, J.M. Arresting the mitotic oscillator and the control of cell proliferation: Insights from a cascade model for cdc2 kinase activation. Experientia 1996, 52, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Busenberg, S.; Tang, B. Mathematical models of the early embryonic cell cycle: The role of MPF activation and cyclic degradation. J. Math. Biol. 1994, 32, 573–596. [Google Scholar] [CrossRef] [PubMed]
- Srividhya, J.; Gopinathan, M.S. A simple time delay model for eukaryotic cell cycle. J. Theor. Biol. 2006, 241, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Angeli, D.; Ferrell, J.E., Jr.; Sontag, E.D. Detection of multistability, bifurcation, and hysteresis in the large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 2004, 101, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.B.; Ferrell, J.E., Jr. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 2013, 500, 603–607. [Google Scholar] [CrossRef]
- Pomerening, J.R.; Kim, S.Y.; Ferrell, J.E., Jr. System-level dissection of the cell cycle oscillator: Bypassing positive feedback produces damped oscillations. Cell 2005, 122, 565–578. [Google Scholar] [CrossRef]
- Pomerening, J.R.; Sontag, E.D.; Ferrell, J.E., Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 2003, 5, 346–351. [Google Scholar] [CrossRef]
- Trunnell, N.B.; Poon, A.C.; Kim, S.Y.; Ferrell, J.E., Jr. Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol. Cell 2011, 41, 263–274. [Google Scholar] [CrossRef]
- Ferrell, J.E., Jr.; Pomerening, J.R.; Kim, S.Y.; Trunnell, N.B.; Xiong, W.; Huang, C.Y.; Machleder, E.M. Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS Lett. 2009, 583, 3999–4005. [Google Scholar] [CrossRef]
- Ferrell, J.E., Jr.; Tsai, T.Y.; Yang, Q. Modeling the cell cycle: Why do certain circuits oscillate? Cell 2011, 144, 874–885. [Google Scholar] [CrossRef]
- Walter, S.A.; Guadagno, T.M.; Ferrell, J.E., Jr. Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Mol. Biol. Cell 1997, 8, 2157–2169. [Google Scholar] [CrossRef] [PubMed]
- Bitangcol, J.C.; Chau, A.S.; Stadnick, E.; Lohka, M.J.; Dicken, B.; Shibuya, E.K. Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts. Mol. Biol. Cell 1998, 9, 451–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnel, F.; Vignaux, F.; Richard-Parpaillon, L.; Huguet, A.; Kubiak, J.Z. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev. Biol. 2005, 285, 358–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnel, F.; Bazile, F.; Pascal, A.; Kubiak, J.Z. Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 2006, 5, 1687–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazile, F.; Pascal, A.; Karaiskou, A.; Chesnel, F.; Kubiak, J.Z. Absence of reciprocal feedback between MPF and ERK2 MAP kinase in mitotic Xenopus laevis embryo cell-free extract. Cell Cycle 2007, 6, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Mongiovi, D.; Chang, P.; Houliston, E. A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus. J. Cell Sci. 1998, 111, 385–393. [Google Scholar]
- Al-Zain, A.; Schroeder, L.; Sheglov, A.; Ikui, A.E. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Mol. Biol. Cell 2015, 26, 2609–2619. [Google Scholar] [CrossRef]
- Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transition: A plausible model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef]
- Lotkin, M. On the accuracy of Runge Kutta’s method. Math. Tables Other Aids Comput. 1951, 5, 128–133. [Google Scholar] [CrossRef]
- Atkinson, K.; Han, W.; Stewart, D. Numerical Solution of Ordinary Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kalfalah, F.M.; Berg, E.; Christensen, M.O.; Linka, R.M.; Dirks, W.G.; Boege, F.; Mielke, C. Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. Cell Cycle 2015, 14, 1704–1715. [Google Scholar] [CrossRef] [Green Version]
- Borlado, L.R.; Méndez, J. CDC6: From DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 2008, 29, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anger, M.; Stein, P.; Schultz, R.M. CDC6 requirement for spindle formation during maturation of mouse oocytes. Biol. Reprod. 2005, 72, 188–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narasimhachar, Y.; Webster, D.R.; Gard, D.L.; Coué, M. Cdc6 is required for meiotic spindle assembly in Xenopus oocytes. Cell Cycle 2012, 11, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daldello, E.M.; Le, T.; Poulhe, R.; Jessus, C.; Haccard, O.; Dupré, A. Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus. J. Cell Sci. 2015, 128, 2482–2496. [Google Scholar] [CrossRef] [Green Version]
- Daldello, E.M.; Le, T.; Poulhe, R.; Jessus, C.; Haccard, O.; Dupré, A. Correction: Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus. J. Cell Sci. 2018, 131, 2482–2496. [Google Scholar] [CrossRef] [Green Version]
- Roeles, J.; Tsiavaliaris, G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mogessie, B.; Scheffler, K.; Schuh, M. Assembly and positioning of the oocyte meiotic spindle. Annu. Rev. Cell Dev. Biol. 2018, 34, 381–403. [Google Scholar] [CrossRef] [Green Version]
Species | Description |
---|---|
cyclin-dependent kinase 1 | |
cyclin B | |
active complex of and | |
inactive complex of and | |
active phosphatase CDC25 | |
inactive phosphatase CDC25 | |
cell division cycle 6 ATPase | |
complex of and |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
1 | 4 | 0.001 | |||
30 | k | 20 | 0.001 | ||
1 | 8 | 0 | |||
7 | 0.25 | 0 | |||
1 | 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Szymańska, Z.; Kubiak, J.Z.; Lachowicz, M. Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle. Cells 2019, 8, 1537. https://doi.org/10.3390/cells8121537
Dębowski M, Szymańska Z, Kubiak JZ, Lachowicz M. Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle. Cells. 2019; 8(12):1537. https://doi.org/10.3390/cells8121537
Chicago/Turabian StyleDębowski, Mateusz, Zuzanna Szymańska, Jacek Z. Kubiak, and Mirosław Lachowicz. 2019. "Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle" Cells 8, no. 12: 1537. https://doi.org/10.3390/cells8121537
APA StyleDębowski, M., Szymańska, Z., Kubiak, J. Z., & Lachowicz, M. (2019). Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle. Cells, 8(12), 1537. https://doi.org/10.3390/cells8121537