Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MtDNA Analysis
2.3. Penetrance Analysis
2.4. Analysis of Pathogenicity for Non-Synonymous Mutations
3. Results
4. Discussion
4.1. Leber’s Hereditary Optic Neuropathy Primary Mutations
4.2. Penetrance
4.3. Potentially Pathogenic Mutation m.4659G>A
4.4. Additional Non-Synonymous Mutations Revealed in LHON Cases
4.5. Haplogroup Analysis
5. Limitations of the Study
Author Contributions
Funding
Conflicts of Interest
References
- Baracca, A.; Solaini, G.; Sgarbi, G.; Lenaz, G.; Baruzzi, A.; Schapira, A.H.; Martinuzzi, A.; Carelli, V. Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch. Neurol. 2005, 62, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Sharpley, M.S.; Fan, W.; Waymire, K.G.; Sadun, A.A.; Carelli, V.; Ross-Cisneros, F.N.; Baciu, P.; Sung, E.; McManus, M.J.; et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl. Acad. Sci. USA 2012, 109, 20065–20070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.S.; Jurkute, N.; Yu-Wai-Man, P. Leber Hereditary Optic Neuropathy-Light at the End of the Tunnel? Asia Pac. J. Opthalmol. (Phila) 2018, 7, 242–245. [Google Scholar] [CrossRef]
- Meyerson, C.; Van Stavern, G.; McClelland, C. Leber hereditary optic neuropathy: Current perspectives. Clin. Ophthalmol. 2015, 9, 1165–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majander, A.; Bowman, R.; Poulton, J.; Antcliff, R.J.; Reddy, M.A.; Michaelides, M.; Webster, A.R.; Chinnery, P.F.; Votruba, M.; Moore, A.T.; et al. Childhood-onset Leber hereditary optic neuropathy. Br. J. Ophthalmol. 2017, 101, 1505–1509. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Zarrouk-Mahjoub, S. Leber’s hereditary optic neuropathy is multiorgan not mono-organ. Clin. Ophthalmol. 2016, 10, 2187–2190. [Google Scholar] [CrossRef] [Green Version]
- Haas, R.H. Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Barcelos, I.P.d.; Troxell, R.M.; Graves, J.S. Mitochondrial dysfunction and multiple sclerosis. Biology 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.A.; Oostra, R.J.; Rosenberg, T.; Nikoskelainen, E.; Bronte-Stewart, J.; Poulton, J.; Harding, A.E.; Govan, G.; Bolhuis, P.A.; Norby, S. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am. J. Hum. Genet. 1996, 59, 481–485. [Google Scholar]
- Mashima, Y.; Yamada, K.; Wakakura, M.; Kigasawa, K.; Kudoh, J.; Shimizu, N.; Oguchi, Y. Spectrum of pathogenic mitochondrial DNA mutations and clinical features in Japanese families with Leber’s hereditary optic neuropathy. Curr. Eye Res. 1998, 17, 403–408. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, P.; Kumar, M.; Saxena, R.; Sharma, P.; Dada, R. Clinical characterization and mitochondrial DNA sequence variations in Leber hereditary optic neuropathy. Mol. Vis. 2012, 18, 2687–2699. [Google Scholar] [PubMed]
- Romero, P.; Fernandez, V.; Slabaugh, M.; Seleme, N.; Reyes, N.; Gallardo, P.; Herrera, L.; Pena, L.; Pezo, P.; Moraga, M. Pan-American mDNA haplogroups in Chilean patients with Leber’s hereditary optic neuropathy. Mol. Vis. 2014, 20, 334–340. [Google Scholar] [PubMed]
- Jiang, P.; Liang, M.; Zhang, J.; Gao, Y.; He, Z.; Yu, H.; Zhao, F.; Ji, Y.; Liu, X.; Zhang, M.; et al. Prevalence of Mitochondrial ND4 Mutations in 1281 Han Chinese Subjects With Leber’s Hereditary Optic Neuropathy. Invest Ophthalmol. Vis. Sci. 2015, 56, 4778–4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Govindaraj, P.; Soumittra, N.; Sharma, S.; Srilekha, S.; Ambika, S.; Vanniarajan, A.; Meena, A.K.; Uppin, M.S.; Sundaram, C.; et al. Leber’s hereditary optic neuropathy–specific mutation m.11778G>A exists on diverse mitochondrial haplogroups in India. Invest. Ophthalmol. Vis. Sci. 2017, 58, 3923–3930. [Google Scholar] [CrossRef] [PubMed]
- Laberge, A.M.; Jomphe, M.; Houde, L.; Vezina, H.; Tremblay, M.; Desjardins, B.; Labuda, D.; St-Hilaire, M.; Macmillan, C.; Shoubridge, E.A.; et al. A “Fille du Roy” introduced the T14484C Leber hereditary optic neuropathy mutation in French Canadians. Am. J. Hum. Genet. 2005, 77, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobi, F.K.; Leo-Kottler, B.; Mittelviefhaus, K.; Zrenner, E.; Meyer, J.; Pusch, C.M.; Wissinger, B. Segregation patterns and heteroplasmy prevalence in Leber’s hereditary optic neuropathy. Inves.t Ophthalmol. Vis. Sci. 2001, 42, 1208–1214. [Google Scholar]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef]
- Istikharah, R.; Tun, A.W.; Kaewsutthi, S.; Aryal, P.; Kunhapan, B.; Katanyoo, W.; Chuenkongkaew, W.; Lertrit, P. Identification of the variants in PARL, the nuclear modifier gene, responsible for the expression of LHON patients in Thailand. Exp. Eye Res. 2013, 116, 55–57. [Google Scholar] [CrossRef]
- Puomila, A.; Hamalainen, P.; Kivioja, S.; Savontaus, M.L.; Koivumaki, S.; Huoponen, K.; Nikoskelainen, E. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur. J. Hum. Genet. 2007, 15, 1079–1089. [Google Scholar] [CrossRef]
- Mascialino, B.; Leinonen, M.; Meier, T. Meta-analysis of the prevalence of Leber hereditary optic neuropathy mtDNA mutations in Europe. Eur. J. Ophthalmol. 2012, 22, 461–465. [Google Scholar] [CrossRef]
- Brown, M.D.; Zhadanov, S.; Allen, J.C.; Hosseini, S.; Newman, N.J.; Atamonov, V.V.; Mikhailovskaya, I.E.; Sukernik, R.I.; Wallace, D.C. Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families. Hum. Genet. 2001, 109, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.D.; Starikovskaya, E.; Derbeneva, O.; Hosseini, S.; Allen, J.C.; Mikhailovskaya, I.E.; Sukernik, R.I.; Wallace, D.C. The role of mtDNA background in disease expression: A new primary LHON mutation associated with Western Eurasian haplogroup. J. Hum. Genet. 2002, 110, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Volod’ko, N.V.; L’Vova, M.; Starikovskaia, E.B.; Derbeneva, O.A.; Bychkov, I.; Mikhailovskaia, I.E.; Pogozheva, I.V.; Fedotov, F.F.; Soyan, G.V.; Procaccio, V.; et al. Spectrum of pathogenic mtDNA mutations in Leber hereditary optic neuropathy families from Siberia. Genetika 2006, 42, 89–97. [Google Scholar] [PubMed]
- Nochez, Y.; Arsene, S.; Gueguen, N.; Chevrollier, A.; Ferre, M.; Guillet, V.; Desquiret, V.; Toutain, A.; Bonneau, D.; Procaccio, V.; et al. Acute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect. Mol. Vis. 2009, 15, 598–608. [Google Scholar] [PubMed]
- Behar, D.M.; van Oven, M.; Rosset, S.; Metspalu, M.; Loogväli, E.L.; Silva, N.M.; Kivisild, T.; Torroni, A.; Villems, R. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 2012, 90, 675–684. [Google Scholar] [CrossRef] [Green Version]
- van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef]
- Brandon, M.C.; Lott, M.T.; Nguyen, K.C.; Spolim, S.; Navathe, S.B.; Baldi, P.; Wallace, D.C. MITOMAP: A human mitochondrial genome database--2004 update. Nucleic Acids Res. 2005, 33, D611–D613. [Google Scholar] [CrossRef] [Green Version]
- Ingman, M.; Gyllensten, U. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res. 2006, 34, D749–D751. [Google Scholar] [CrossRef]
- Attimonelli, M.; Accetturo, M.; Santamaria, M.; Lascaro, D.; Scioscia, G.; Pappada, G.; Russo, L.; Zanchetta, L.; Tommaseo-Ponzetta, M. HmtDB, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinformatics 2005. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Krishnan, V.G.; Mort, M.E.; Xin, F.; Kamati, K.K.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009, 25, 2744–2750. [Google Scholar] [CrossRef] [Green Version]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. MutPred2: Inferring the molecular and phenotypic impact of amino acid variants. bioRxiv 134981. [CrossRef] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Khusnutdinova, E.; Gilyazova, I.; Ruiz-Pesini, E.; Derbeneva, O.; Khusainova, R.; Khidiyatova, I.; Magzhanov, R.; Wallace, D.C. A mitochondrial etiology of neurodegenerative diseases: Evidence from Parkinson’s disease. Ann. NY Acad. Sci. 2008, 1147, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mackey, D.; Howell, N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am. J. Hum. Genet. 1992, 51, 1218–1228. [Google Scholar] [PubMed]
- Abu-Amero, K.K.; Bosley, T.M. Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Invest. Ophthalmol. Vis. Sci. 2006, 47, 4211–4220. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez Cortes, N.; Pertuiset, C.; Dumon, E.; Borlin, M.; Hebert-Chatelain, E.; Pierron, D.; Feldmann, D.; Jonard, L.; Marlin, S.; Letellier, T.; et al. Novel mitochondrial DNA mutations responsible for maternally inherited nonsyndromic hearing loss. Hum. Mutat. 2012, 33, 681–689. [Google Scholar] [CrossRef]
- Howell, N.; Oostra, R.J.; Bolhuis, P.A.; Spruijt, L.; Clarke, L.A.; Mackey, D.A.; Preston, G.; Herrnstadt, C. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy. Am. J. Hum. Genet. 2003, 72, 1460–1469. [Google Scholar] [CrossRef] [Green Version]
- Aitullina, A.; Baumane, K.; Zalite, S.; Ranka, R.; Zole, E.; Pole, I.; Sepetiene, S.; Laganovska, G.; Baumanis, V.; Pliss, L. Point mutations associated with Leber hereditary optic neuropathy in a Latvian population. Mol. Vis. 2013, 19, 2343–2351. [Google Scholar]
- Rosenberg, T.; Norby, S.; Schwartz, M.; Saillard, J.; Magalhaes, P.J.; Leroy, D.; Kann, E.C.; Duno, M. Prevalence and Genetics of Leber Hereditary Optic Neuropathy in the Danish Population. Invest. Ophthalmol. Vis. Sci. 2016, 57, 1370–1375. [Google Scholar] [CrossRef]
- Fraser, J.A.; Biousse, V.; Newman, N.J. The neuro-ophthalmology of mitochondrial disease. Surv. Ophthalmol. 2010, 55, 299–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonska, K.; Kurzawa, M.; Ambroziak, A.M.; Korwin-Rujna, M.; Szaflik, J.P.; Grabowska, E.; Szaflik, J.; Bartnik, E. A family with 3460G>A and 11778G>A mutations and haplogroup analysis of Polish Leber hereditary optic neuropathy patients. Mitochondrion 2008, 5-6, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Catarino, C.B.; Ahting, U.; Gusic, M.; Iuso, A.; Repp, B.; Peters, K.; Biskup, S.; von Livonius, B.; Prokisch, H.; Klopstock, T. Characterization of a Leber’s hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G>A and m.14484T>C of the mitochondrial DNA. Mitochondrion 2016, 36, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, R.; Melhem, M.; Alghanim, G.; Behbehani, K.; Alsmadi, O. ND4L gene concurrent 10609T>C and 10663T>C mutations are associated with Leber’s hereditary optic neuropathy in a large pedigree from Kuwait. Br. J. Ophthalmol. 2014, 98, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Achilli, A.; Iommarini, L.; Olivieri, A.; Pala, M.; Hooshiar Kashani, B.; Reynier, P.; La Morgia, C.; Valentino, L.M.; Liguori, R.; Pizza, F.; et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber’s hereditary optic neuropathy. PLoS One 2012, 7, e42242. [Google Scholar] [CrossRef]
- Al-Kharashi, M.; Al-Kharashi, A.; Al-Obailan, M.; Kondkar, A.A.; Abu-Amero, K.K. Co-existence of m.10663T>C Mutation with Haplogroup L3f1b Background in a Patient with LHON. Can. J. Neurol. Sci. 2016, 43, 332–333. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhu, Y.; Tong, Y.; Chen, L.; Liu, L.; Zhang, Z.; Wang, X.; Huang, D.; Qiu, W.; Zhuang, S.; et al. Confirmation of the mitochondrial ND1 gene mutation G3635A as a primary LHON mutation. Biochem. Biophys. Res. Commun. 2006, 386, 50–54. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, A.M.; Jia, X.; Zhang, Q.; Yao, Y.G. Complete mitochondrial DNA genome sequence variation of Chinese families with mutation m.3635G>A and Leber hereditary optic neuropathy. Mol. Vis. 2012, 18, 3087–3094. [Google Scholar]
- Hudson, G.; Carelli, V.; Spruijt, L.; Gerards, M.; Mowbray, C.; Achilli, A.; Pyle, A.; Elson, J.; Howell, N.; La Morgia, C.; et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 2007, 81, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Ghelli, A.; Porcelli, A.M.; Zanna, C.; Vidoni, S.; Mattioli, S.; Barbieri, A.; Iommarini, L.; Pala, M.; Achilli, A.; Torroni, A.; et al. The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber’s hereditary optic neuropathy cells to 2,5-hexanedione toxicity. PLoS ONE 2009, 4, e7922. [Google Scholar] [CrossRef]
- Wallace, D.C. The mitochondrial genome in human adaptive radiation and disease: On road to therapeutics and performance enhancement. Gene 2005, 354, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial DNA Variation in Human Radiation and Disease. Cell 2015, 163, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, Z.; Song, Y.; Li, D.; He, X.; Li, S.; Wu, B.; Wang, W.; Gu, S.; Zhu, X.; Wang, X.; et al. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy. J. Med. Genet. 2014, 51, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Verechshagina, N.; Nikitchina, N.; Yamada, Y.; Harashima, H.; Tanaka, M.; Orishchenko, K.; Mazunin, I. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2019, 30, 214–221. [Google Scholar] [CrossRef]
No. | Family Name | Ethnicity in Maternal Line | Number of Examined Individuals (Affected/Healthy) | Family History of Visual Loss | Primary LHON Mutation (MITOMAP) | mtDNA Haplogroup |
---|---|---|---|---|---|---|
1 | L18 * | Altaian | 4 (2/2) | No | m.3460G>A | D4p |
2 | L24 * | Tuvinian | 19 (7/12) | Yes | m.3460G>A | C5d1 |
3 | L25 * * * | Russian | 5 (3/2) | Yes | m.3460G>A | D5a2a2 |
4 | L41 | German | 2 (1/1) | No | m.3460G>A | H40a |
5 | L57 | -/- | 1 (1/0) | Yes | m.3460G>A | V1a1 |
6 | L58 | -/- | 2 (1/1) | Yes | m.3460G>A | J1c3 |
7 | L61 | -/- | 4 (2/2) | Yes | m.3460G>A | H1b1 |
8 | L30 * * * | -/- | 19 (11/8) | Yes | m.3635G>A | J2b1c1 |
9 | L2 * * | -/- | 6 (2/4) | Yes | m.10663T>C | J1c4 |
10 | L1 * | Russian | 9 (1/8) | Yes | m.11778G>A | T2b |
11 | L3 * | -/- | 4 (1/3) | Yes | m.11778G>A | T2d1b1 |
12 | L5 * | -/- | 1 (1/0) | Yes | m.11778G>A | J1c2i |
13 | L12 * | -/- | 2 (1/1) | No | m.11778G>A | J2b1a1 |
14 | L14 * | -/- | 5 (2/3) | No | m.11778G>A | T2b28 |
15 | L23 * | Azerbaijani | 1 (1/0) | Unknown | m.11778G>A | J2b1 |
16 | L26 * | -/- | 13 (8/5) | Yes | m.11778G>A | J1c7a |
17 | L27 * * * | -/- | 11 (2/9) | Yes | m.11778G>A | H2a5b |
18 | L28 * * * | -/- | 9 (2/7) | Yes | m.11778G>A | T2b8 |
19 | L38 | Ukrainian | 2 (2/0) | Yes | m.11778G>A | J1c2c2a |
20 | L39 | Unknown | 2 (1/1) | No | m.11778G>A | V |
21 | L42 | Belarusian | 2 (1/1) | Yes | m.11778G>A | H1c |
22 | L43 | Russian | 3 (1/2) | No | m.11778G>A | H |
23 | L49 | Unknown | 1 (1/0) | No | m.11778G>A | K1c |
24 | L52 | Russian | 3 (1/2) | No | m.11778G>A | J1c2 |
25 | L53 | Unknown | 3 (1/2) | Unknown | m.11778G>A | H1b2 |
26 | L60 | Russian | 2 (1/1) | No | m.11778G>A | H1b2 |
27 | L10 * | -/- | 8 (3/5) | Yes | m.14484T>C | M9a1a1c1a |
28 | L17 * | -/- | 8 (4/4) | Yes | m.14484T>C | J1c2c1 |
29 | L32 | Unknown | 1 (1/0) | Unknown | m.14484T>C | V |
30 | L40 | Albanian | 1 (1/0) | Yes | m.14484T>C | H |
31 | L47 | -/- | 1 (1/0) | No | m.14484T>C | J1c5a1 |
32 | L50 | Unknown | 1 (1/0) | Unknown | m.14484T>C | U5a2b1c |
33 | L6 | -/- | 2 (2/0) | No | - | U4a1d |
34 | L8 | Unknown | 1 (1/0) | No | - | U2e1 |
35 | L9 | Russian | 2 (2/0) | Yes | - | U5a1b1c1 |
36 | L20 | -/- | 3 (2/1) | Yes | - | U4b1b1 |
37 | L31 * * * | -/- | 3 (2\1) | Yes | - | U3b1b |
38 | L45 | -/- | 2 (1/1) | No | - | U5a2e |
39 | L46 | -/- | 2 (1/1) | No | - | H13a1d |
40 | L51 | Unknown | 1 (1/0) | Unknown | - | U2c1b |
41 | L54 | Russian | 2 (1/1) | No | - | U4a2a |
42 | L56 | -/- | 2 (1/1) | No | - | J1c1b1 |
43 | L59 | Ukrainian | 2 (1/1) | No | - | V7a |
44 | L62 | -/- | 1 (1/0) | Yes | - | H |
m.11778G>A (n = 15) | m.14484T>C (n = 4) | m.3460G>A (n= 7) | Average | |
---|---|---|---|---|
Males | 34% | 46% | 15% | 32% |
Females | 12% | 12% | 10% | 12% |
Mutation | Protein-Coding Region of mtDNA | Amino Acid Substitution | PolyPhen – 2 Score | MutPred 1.2/2 Score (Cutoff 0.75/0.50) | PROVEAN/SIFT Pathogenicity Prediction | Frequency in General Population (as per mtDB) | Frequency in General Population (as per HmtDB) | Family |
---|---|---|---|---|---|---|---|---|
m.14002A>G | ND5 | T556A | 0.002 (benign) | 0.387/0.059 | Neutral/Tolerated | 0.0037 | 0.00289 | L45 |
m.4766A>G | ND2 | M99I | 0.001 (benign) | 0.571/0.225 | Neutral/Tolerated | 0 | 0.00009 | L46 |
m.4659G>A | ND2 | A64T | 0.029 (benign) | 0.790/0.256 | Deleterious/Damaging | 0.0011 | 0.00161 | L51 |
m.13105A>G | ND5 | I257V | 0.001 (benign) | 0.198/0.032 | Neutral/Tolerated | 0.0612 | 0 | |
m.3460G>A | ND1 | A52T | 1.000 (probably damaging) | 0.789/0.418 | Neutral/Damaging | 0.0097 | 0.00058 | - |
m.3635G>A | ND1 | S110N | 0.999 (probably damaging) | 0.873/0.493 | Deleterious/Damaging | 0 | 0.00027 | - |
m.10663T>C | ND4L | V65A | 0.946 (probably damaging) | 0.604/0.694 | Deleterious/Damaging | 0 | 0.00003 | - |
m.11778G>A | ND4 | R340H | 0.999 (probably damaging) | 0.919/0.494 | Deleterious/Damaging | 0.0097 | 0.0034 | - |
m.14484T>C | ND6 | M64V | 0.993 (probably damaging) | 0.618/0.787 | Neutral/Damaging | 0.0026 | 0.00146 | - |
Mutation | Protein-Coding Region of mtDNA | Amino Acid Substitution | PolyPhen–2 Score | MutPred 1.2/2 Score (Cutoff 0,75/0,50) | PROVEAN /SIFT Prediction | Frequency in General Population (mtDB) | Frequency in General Population (HmtDB) | Family |
---|---|---|---|---|---|---|---|---|
m.6261G>A | CO1 | A120T | 0.998 (probably damaging) | 0.491/0.324 | Neutral/Tolerated | 0.0048 | 0.00553 | L01 |
m.8875T>C | ATP6 | F117L | 0 (benign) | 0.251/0.429 | Neutral/Tolerated | 0.0007 | 0.001276 | L03 |
m.9921G>A | CO3 | A239T | 0.009 (benign) | 0.543/0.624 | Deleterious/Damaging | 0.0011 | 0.00082 | L12 |
m.15468C>T | CYB | T241M | 0.890 (possible damaging) | 0.245/0.079 | Neutral/Tolerated | 0.0004 | 0.00043 | L28 |
m.8551T>C | ATP6 | F9L | 0.976 (probably damaging) | 0.676/0.418 | Deleterious/Damaging | 0.0007 | 0 | L30 |
m.14582A>G | ND6 | V31A | 0.003 (benign) | 0.245/0.181 | Neutral/Tolerated | 0.0086 | 0.00571 | L40 |
m.8400T>C | ATP8 | M12T | 0 (benign) | 0.504/0.118 | Neutral/Tolerated | 0.0011 | 0.00052 | L43 |
m.9444C>T | CO3 | R80W | 0.999 (probably damaging) | 0.875/0.586 | Deleterious/Damaging | 0 | 0 | |
m.4639T>C | ND2 | I57T | 0.001 (benign) | 0.297/0.047 | Neutral/Tolerated | 0.0082 | 0.00395 | L50 |
m.8412T>C | ATP8 | M16T | 0.711 (possible damaging) | 0.677/0.542 | Deleterious/Tolerated | 0 | 0.00039 | |
m.15077G>A | CYB | E111K | 0.992 (probably damaging) | 0.684/0.331 | Deleterious/Damaging (low confidence) | 0.0007 | 0.00213 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starikovskaya, E.; Shalaurova, S.; Dryomov, S.; Nazhmidenova, A.; Volodko, N.; Bychkov, I.; Mazunin, I.; Sukernik, R. Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia. Cells 2019, 8, 1574. https://doi.org/10.3390/cells8121574
Starikovskaya E, Shalaurova S, Dryomov S, Nazhmidenova A, Volodko N, Bychkov I, Mazunin I, Sukernik R. Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia. Cells. 2019; 8(12):1574. https://doi.org/10.3390/cells8121574
Chicago/Turabian StyleStarikovskaya, Elena, Sofia Shalaurova, Stanislav Dryomov, Azhar Nazhmidenova, Natalia Volodko, Igor Bychkov, Ilia Mazunin, and Rem Sukernik. 2019. "Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia" Cells 8, no. 12: 1574. https://doi.org/10.3390/cells8121574
APA StyleStarikovskaya, E., Shalaurova, S., Dryomov, S., Nazhmidenova, A., Volodko, N., Bychkov, I., Mazunin, I., & Sukernik, R. (2019). Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia. Cells, 8(12), 1574. https://doi.org/10.3390/cells8121574