A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. NMR
2.2. Hydrolysis of S223-AM
2.3. U2OS Cell Model System
2.4. Insulin-Secreting MIN6 β-cells
2.5. Pancreatic Islets
2.6. Total Internal Reflection Fluorescence Imaging of Epac Translocation and Plasma Membrane Activities of Rap and PKA
3. Results
3.1. Synthesis of S223-AM
3.2. Stability and Hydrolysis Mechanism of S223-AM
3.3. Characterisation of S223-AM in Living Cells
3.4. S223-AM Selectively Activates Epac2 in β-cells
3.5. S223-AM Promotes Rap Activation at the β-Cell Plasma Membrane
3.6. S223-AM Does Not Activate PKA in β-Cells
3.7. cAMP-Dependent Rap Activity in β-cells is Mediated by Epac2
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beavo, A.J.; Brunton, L.L. Cyclic nucleotide research–still expanding after half a century. Nat. Rev. Mol. Cell Biol. 2002, 3, 710–718. [Google Scholar] [CrossRef]
- Rehmann, H.; Wittinghofer, A.; Bos, J.L. Capturing cyclic nucleotides in action: Snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol. 2007, 8, 63–73. [Google Scholar] [CrossRef]
- Kawasaki, H.; Springett, G.M.; Mochizuki, N.; Toki, S.; Nakaya, M.; Matsuda, M.; Housman, D.E.; Graybiel, A.M. A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282, 2275–2279. [Google Scholar] [CrossRef] [Green Version]
- De Rooij, J.; Zwartkruis, F.J.; Verheijen, M.H.; Cool, R.H.; Nijman, S.M.; Wittinghofer, A.; Bos, J.L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396, 474–477. [Google Scholar] [CrossRef]
- Gloerich, M.; Bos, J.L. Epac: Defining a new mechanism for cAMP action. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 355–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tengholm, A. Cyclic AMP dynamics in the pancreatic β-cell. Ups J. Med. Sci. 2012, 117, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Renström, E.; Eliasson, L.; Rorsman, P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J. Physiol. 1997, 502, 105–118. [Google Scholar]
- Henquin, C.J.; Nenquin, M. Activators of PKA and Epac distinctly influence insulin secretion and cytosolic Ca2+ in female mouse islets stimulated by glucose and tolbutamide. Endocrinology 2014, 155, 3274–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chepurny, G.O.; Kelley, G.G.; Dzhura, I.; Leech, C.A.; Roe, M.W.; Dzhura, E.; Li, X.; Schwede, F.; Genieser, H.G.; Holz, G.G. PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2’-O-Me-cAMP-AM in human islets of Langerhans. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E622–E633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tengholm, A.; Gylfe, E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes. Metab. 2017, 19, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Idevall-Hagren, O.; Barg, S.; Gylfe, E.; Tengholm, A. cAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells. J. Biol. Chem. 2010, 285, 23007–23018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kai, K.A.; Lam, A.K.; Chen, Y.; Tai, A.C.; Zhang, X.; Lai, A.K.; Yeung, P.K.; Tam, S.; Wang, J.; Lam, K.S.; et al. Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J. 2013, 27, 4122–4135. [Google Scholar] [CrossRef] [PubMed]
- Leech, A.C.; Holz, G.G.; Chepurny, O.; Habener, J.F. Expression of cAMP-regulated guanine nucleotide exchange factors in pancreatic β-cells. Biochem. Biophys. Res. Commun. 2000, 278, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.A.; Svendsen, B.; Lam, B.Y.; Yeo, G.S.; Holst, J.J.; Reimann, F.; Gribble, F.M. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 2016, 59, 2156–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, N.; Shibasaki, T.; Kashima, Y.; Miki, T.; Takahashi, K.; Ueno, H.; Sunaga, Y.; Yano, H.; Matsuura, Y.; Iwanaga, T.; et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2000, 2, 805–811. [Google Scholar] [CrossRef]
- Kang, G.; Chepurny, O.G.; Holz, G.G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J. Physiol. 2001, 536, 375–385. [Google Scholar] [CrossRef]
- Kang, G.; Joseph, J.W.; Chepurny, O.G.; Monaco, M.; Wheeler, M.B.; Bos, J.L.; Schwede, F.; Genieser, H.G.; Holz, G.G. Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+- induced Ca2+ release and exocytosis in pancreatic β-cells. J. Biol. Chem. 2003, 278, 8279–8285. [Google Scholar] [CrossRef] [Green Version]
- Dzhura, I.; Chepurny, O.G.; Kelley, G.G.; Leech, C.A.; Roe, M.W.; Dzhura, E.; Afshari, P.; Malik, S.; Rindler, M.J.; Xu, X.; et al. Epac2-dependent mobilization of intracellular Ca2+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C- ε knockout mice. J. Physiol. 2010, 588, 4871–4889. [Google Scholar] [CrossRef]
- Shibasaki, T.; Takahashi, H.; Miki, T.; Sunaga, Y.; Matsumura, K.; Yamanaka, M.; Zhang, C.; Tamamoto, A.; Satoh, T.; Miyazaki, J.; et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. USA 2007, 104, 19333–19338. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, L.; Ma, X.; Renström, E.; Barg, S.; Berggren, P.O.; Galvanovskis, J.; Gromada, J.; Jing, X.; Lundquist, I.; Salehi, A.; et al. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J. Gen Physiol. 2003, 121, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Idevall-Hagren, O.; Jakobsson, I.; Xu, Y.; Tengholm, A. Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras in pancreatic beta cells. Sci. Signal. 2013, 6, S1–S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alenkvist, I.; Gandasi, N.R.; Barg, S.; Tengholm, A. Recruitment of Epac2A to insulin granule docking sites regulates priming for exocytosis. Diabetes 2017, 66, 2610–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guček, A.; Gandasi, N.R.; Omar-Hmeadi, M.; Bakke, M.; Døskeland, S.O.; Tengholm, A.; Barg, S. Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis. Elife 2019, 8, e41711. [Google Scholar]
- Rehmann, H.; Das, J.; Knipscheer, P.; Wittinghofer, A.; Bos, J.L. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 2006, 439, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Rehmann, H.; Arias-Palomo, E.; Hadders, M.A.; Schwede, F.; Llorca, O.; Bos, J.L. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 2008, 455, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Rehmann, H.; Schwede, F.; Døskeland, S.O.; Wittinghofer, A.; Bos, J.L. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J. Biol. Chem. 2003, 278, 38548–38556. [Google Scholar] [CrossRef] [Green Version]
- Rehmann, H. Characterization of the activation of the Rap-specific exchange factor Epac by cyclic nucleotides. Methods Enzymol. 2006, 407, 159–173. [Google Scholar]
- Enserink, M.J.; Christensen, A.E.; De Rooij, J.; Van Triest, M.; Schwede, F.; Genieser, H.G.; Døskeland, S.O.; Blank, J.L.; Bos, J.L. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol. 2002, 4, 901–906. [Google Scholar] [CrossRef]
- Christensen, E.A.; Selheim, F.; De Rooij, J.; Dremier, S.; Schwede, F.; Dao, K.K.; Martinez, A.; Maenhaut, C.; Bos, J.L.; Genieser, H.G.; et al. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J. Biol. Chem. 2003, 278, 35394–35402. [Google Scholar] [CrossRef] [Green Version]
- Schwede, F.; Bertinetti, D.; Langerijs, C.N.; Hadders, M.A.; Wienk, H.; Ellenbroek, J.H.; De Koning, E.J.; Bos, J.L.; Herberg, F.W.; Genieser, H.G.; et al. Structure-guided design of selective Epac1 and Epac2 agonists. PLoS Biol. 2015, 13, e1002038. [Google Scholar] [CrossRef] [Green Version]
- Schultz, C.; Vajanaphanich, M.; Harootunian, A.T.; Sammak, P.J.; Barrett, K.E.; Tsien, R.Y. Acetoxymethyl esters of phosphates, enhancement of the permeability and potency of cAMP. J. Biol. Chem. 1993, 268, 6316–6322. [Google Scholar] [PubMed]
- Vliem, J.M.; Ponsioen, B.; Schwede, F.; Pannekoek, W.J.; Riedl, J.; Kooistra, M.R.; Jalink, K.; Genieser, H.G.; Bos, J.L.; Rehmann, H. 8-pCPT-2’-O-Me-cAMP-AM: An. improved Epac-selective cAMP analogue. Chem. Biochem. 2008, 9, 2052–2054. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, J.; Araki, K.; Yamato, E.; Ikegami, H.; Asano, T.; Shibasaki, Y.; Oka, Y.; Yamamura, K. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: Special reference to expression of glucose transporter isoforms. Endocrinology 1990, 127, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, K.R.; Rygh, C.B.; Karlsen, T.V.; Krakstad, C.; Kleppe, R.; Høivik, E.A.; Bakke, M.; Tenstad, O.; Selheim, F.; Liden, A.; et al. Increased microvascular permeability in mice lacking Epac1 (Rapgef3). Acta Physiol. (Oxf.) 2017, 219, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Dyachok, O.; Idevall-Hagren, O.; Sågetorp, J.; Tian, G.; Wuttke, A.; Arrieumerlou, C.; Akusjärvi, G.; Gylfe, E.; Tengholm, A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab. 2008, 8, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppe, H.; Rybalkin, S.D.; Rehmann, H.; Hinds, T.R.; Tang, X.B.; Christensen, A.E.; Schwede, F.; Genieser, H.G.; Bos, J.L.; Døskeland, S.O.; et al. Cyclic nucleotide analogs as probes of signaling pathways. Nat. Methods 2008, 5, 277–278. [Google Scholar] [CrossRef]
Atom | 31P | 13C | 1H | ||
---|---|---|---|---|---|
/ppm | /ppm | /ppm | Multi-plicity | J/Hz | |
P | 19.92 | ||||
2 | 155.2 | 8.202 | s | ||
4 | 153.5 | ||||
5 | 122.5? | ||||
6 | 157.6 | ||||
8 | 150.1 | ||||
6N’ | 7.330 | ||||
6N’’ | 6.788 | ||||
1’ | 92.75 | 6.001 | s | ||
2’ | 83.31 | 4.73 | d | 5.3 | |
3’ | 81.06 | 5.752 | m | 5.1/5.3 | |
4’ | 73.30 | 4.335 | td | 4.9/10.3 | |
5’ | 73.88 | 4.828 | dq | 4.9/23.3 | |
5” | 4.412 | t | 10.1 | ||
L1 | 39.50 | 4.679 | d | 3.2 | |
L2 | 140.1 | ||||
L3 | 132.3 | 7.561 | d | 8.0 | |
L4 | 131.52 | 7.422 | t | 7.3 | |
L5 | 130.66 | 7.377 | t(d) | 7.3 (2.0) | |
Z1 | 61.37 | 3.521 | s | ||
A1 | 23.9 | 2.177 | s | ||
A2 | 172.8 | ||||
A3′ | 65.0 | 5.653 | dd | 11.2/21.2 | |
A3′’ | 5.571 | dd | 11.2/18.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Schwede, F.; Wienk, H.; Tengholm, A.; Rehmann, H. A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells. Cells 2019, 8, 1589. https://doi.org/10.3390/cells8121589
Xu Y, Schwede F, Wienk H, Tengholm A, Rehmann H. A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells. Cells. 2019; 8(12):1589. https://doi.org/10.3390/cells8121589
Chicago/Turabian StyleXu, Yunjian, Frank Schwede, Hans Wienk, Anders Tengholm, and Holger Rehmann. 2019. "A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells" Cells 8, no. 12: 1589. https://doi.org/10.3390/cells8121589
APA StyleXu, Y., Schwede, F., Wienk, H., Tengholm, A., & Rehmann, H. (2019). A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells. Cells, 8(12), 1589. https://doi.org/10.3390/cells8121589