The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. ASC Isolation and Culture
2.3. Flow Cytometry Analysis
2.4. ELISAs
2.5. Data Analysis
3. Results
3.1. Patients
3.2. Phenotype of ASCs
3.3. Expression of Adhesion Molecules by ASCs
3.4. Basal and Cytokine-Triggered Secretory Activity of ASCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANA | antinuclear antibody |
APC | allophycocyanin |
AS | ankylosing spondylitis |
ASCs | adipose-derived mesenchymal stem cells |
BASDAI | Bath Ankylosing Spondylitis Disease Activity Index; |
BM-MSCs | bone marrow derived mesenchymal stem/stromal cells MSCs |
C | complement components |
CD | cluster of differentiation |
CRP | C-reactive protein |
DMARDs | disease-modifying anti-rheumatic drugs |
ELISA | enzyme-linked immunosorbent assay |
ESR | erythrocyte sedimentation rate |
EUSTAR | European League Against Rheumatism Scleroderma Trials and Research revised index |
FACS | fluorescence-activated cell sorting |
FITC | fluorescein isothiocyanate |
HD | healthy donors |
HLA-B27 | human leukocyte antigen B27 |
ICAM-1 | intracellular adhesion molecule 1 |
IDO-1 | indoleamine 2,3-dioxogenase 1 |
IFN-α | interferon-α |
IFN-γ | interferon-γ |
IL | interleukin |
IL-1Ra | IL-1 receptor antagonist |
IQR | interquartile range |
LIF | leukemia inhibiting factor |
MFI | median fluorescence intensity |
MHC | major histocompatibility complex |
MSCs | mesenchymal stem/stromal cells |
NCT | National Clinical Trial |
NSAIDs | non-steroid anti-inflammatory drugs |
OPD | o-phenylenediamine dihydrochloride |
PE | phycoerythrin |
PE-Cy7 | tandem fluorochrome of phycoerythrin coupled to the cyanine dye Cy7 |
PGE2 | prostaglandin E2 |
RD | rheumatic diseases |
Scl-70 | anti-topoisomerase I antibody |
sHLA-G | soluble human leukocyte antigen G |
SLE | systemic lupus erythematosus |
SLEDAI | SLE Disease Activity Index |
SN | supernatants |
SSc | systemic sclerosis |
SVF | stromal vascular fraction |
TGF-β1 | transforming growth factor β1 |
TI | TNF-α + IFN-γ |
TNF-α | tumor necrosis factor α |
TSG-6 | tumor necrosis factor-inducible gene 6 protein |
VCAM-1 | vascular cell adhesion molecule-1 |
References
- McGonagle, D.; McDermott, M.F. A proposed classification of the immunological diseases. PLoS Med. 2006, 3, e297. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Lu, M.P.; Wang, J.H. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatrics 2019, 22, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- López-Medina, C.; Moltó, A. Update on the epidemiology, risk factors, and disease outcomes of axial spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Generali, E.; Bose, T. Nature versus nurture in the spectrum of rheumatic diseases: Classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimm. Rev. 2018, 7, 95–941. [Google Scholar] [CrossRef] [PubMed]
- Cagliani, J.; Grande, D. Immunomodulation by mesenchymal stromal cells and their clinical application. J Stem Cell Regen. Biol. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Maumus, M.; Jorgensen, C. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: Role of secretome and exosomes. Biochimie 2013, 95, 2229–2234. [Google Scholar] [CrossRef] [Green Version]
- Klinker, M.W.; Wei, C.-H. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J. Stem Cells 2015, 7, 556–567. [Google Scholar] [CrossRef]
- Cao, W.; Cao, K.; Cao, J.; Wang, Y.; Shi, Y. Mesenchymal stem cells and adaptive immune response. Immunol. Lett. 2015, 168, 147–153. [Google Scholar] [CrossRef]
- Marie, A.T.J.; Maumus, M. Adipose-derived mesenchymal stem cells in autoimmune disorders: State of art and perspectives for systemic sclerosis. Clin. Rev. Allergy Immunol. 2017, 52, 234–259. [Google Scholar] [CrossRef]
- Gao, L.; Slack, M. Cell senescence in lupus. Curr. Rheumatol. Rep. 2019, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Feng, X. Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res. 2018, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipriani, P.; Marrelli, A. Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implication for regenerative medicine. Angiogenesis 2013, 16, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Krajewska-Włodarczyk, M.; Owczarczyk-Saczonek, A. Role of stem cells in pathophysiology and therapy of spondyloarthropathies – new therapeutic possibilities? Int. J. Mol. Sci. 2018, 19, 80. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ren, M. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res. 2011, 13, R29. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Wang, P. Imbalance between bone morphogenic protein 2 and noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Arthritis Rheum 2016, 68, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Le Blanc, K.; Tammik, C. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef]
- Schu, S.; Nosov, M. Immunogenicity of allogeneic mesenchymal stem cells. J. Cell. Mol. Med. 2012, 16, 2094–2103. [Google Scholar] [CrossRef]
- Berglund, A.K.; Fortier, L.A. Immunoprivileged no more: Measuring the immunogenicity of allogenic adult mesenchymal stem cells. Stem Cell Res. 2017, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Hass, R.; Kasper, C. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Sign 2011, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, X. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015, 6, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. Available online: https://clinicaltrials.gov/ (accessed on 14 December 2019).
- Scuderi, N.; Ceccarelli, S.; Onest, M.G.; Fioramonti, P.; Guidi, C.; Romano, F.; Frati, L.; Angeloni, A.; Marchese, C. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transpl. 2013, 22, 779–795. [Google Scholar] [CrossRef] [PubMed]
- Onest, M.G.; Fioramonti, P.; Carella, S.; Fino, P.; Marchese, C.; Scuderi, N. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells. Stem Cells Int. 2016, 2016, 2416192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozier, P.; Maria, A.; Goulabchand, R.; Jorgensen, C.; Guilpain, P.; Noël, D. Mesenchymal stem cells in systemic sclerosis: Allogenic or autologous approaches for therapeutic use? Front. Immunol. 2018, 9, 2938. [Google Scholar] [CrossRef] [Green Version]
- Manetti, M.; Romano, E.; Rosa, I.; Fioretto, B.S.; Praino, E.; Guiducci, S.; Iannone, F.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Systemic sclerosis serum steers the differentiation of adipose-derived stem cells toward profibrotic myofibroblasts: Pathophysiologic implications. J. Clin. Med. 2019, 8, 1256. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Del Papa, N.; Introna, M.; Reese, C.F.; Zemskova, M.; Bonner, M.; Carmen-Lopez, G.; Helke, K.; Hoffman, S.; Tourkina, E. Adipose-derived mesenchymal stromal/stem cells in systemic sclerosis: Alterations in function and beneficial effect on lung fibrosis are regulated by caveolin-1. J. Scleroderma Relat. Disord. 2019, 4, 127–136. [Google Scholar] [CrossRef]
- Perti, M.; Orbai, A.M. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar]
- Van den Hoogen, F.; Khanna, D. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [Green Version]
- Rudwaleit, M.; van der Heijde, D. The development of ASSessment of SpondyloArthritis international Society classification criteria for axial spoandyloarthritis (part II): Validation and final selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Skalska, U.; Kontny, E. Intra-articular adipose-derived mesenchymal stem cells from rheumatoid arthritis patients maintain the function of chondrogenic differentiation. Rheumatology 2012, 51, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- Van Buul, G.M.; Villafuertes, E. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explants culture. Osteoartrhritis Cartil. 2012, 20, 1186–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourin, P.; Bunnell, B.A. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics (IFATS) and Science and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [PubMed] [Green Version]
- Baer, P.C.; Kuçi, S.; Krause, M.; Kuçi, Z.; Zielen, S.; Geiger, H.; Bader, P.; Schubert, R. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev. 2013, 22, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.K.; Mishra, V.K. Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int. J. Mol. Sci. 2018, 19, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Lau, G.S. Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 2010, 19, 850–859. [Google Scholar] [CrossRef]
- Capelli, C.; Zaccara, E. Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systemic sclerosis. Cell Transpl. 2017, 26, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Gao, Z. TNF-α induced the enhanced apoptosis of mesenchymal stem cells in ankylosing spondylitis by overexpressing TRAIL-R2. Stem Cells Int. 2017, 4521324. [Google Scholar] [CrossRef] [Green Version]
- Rege, T.A.; Hagood, J.S. Thy-1, a versatile modulator of signalling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim. Biophys. Acta 2006, 1763, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Saalbach, A.; Anderegg, U. Thy-1: More than a marker for mesenchymal stromal cells. FASEB J. 2019, 33, 6689–6696. [Google Scholar] [CrossRef]
- Campioni, D.; Rizzo, R. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytom. B Clin. Cytom. 2009, 76, 225–230. [Google Scholar] [CrossRef]
- Ren, G.; Roberts, A.I. Adhesion molecules. Key players in mesenchymal stem cell-mediated immunosuppression. Cell Adhes. Migr. 2011, 50, 20–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubtsov, Y.; Goryunov, K. Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: A new insight into the role of ICAM-1. Stem Cells Int. 2017, 6516854. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.P.; Guillemin, G.J. The kynurenine pathway in stem cell biology. Int. J. Tryptophan Res. 2013, 6, 57–66. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, F.L.; Gatto, M. Galectin-3 in autoimmunity and autoimmune diseases. Exp. Biol. Med. 2015, 240, 1019–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.Y.; Xu, Y.; Li, Y. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy 2013, 15, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Sioud, M. New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scand. J. Immunol. 2011, 73, 79–84. [Google Scholar] [CrossRef]
- Luz-Crawford, P.; Djouad, F. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells 2016, 34, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Park, N. Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist. PLoS ONE 2018, 13, e0193086. [Google Scholar] [CrossRef] [Green Version]
- Rebmann, V.; König, L. The potential of HLA-G-bearing extracellular vesicles as a future element in HLA-G immune biology. Front. Immunol. 2016, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Day, A.J.; Milner, C.M. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol. 2019, 78, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, M.J.; Shih, H. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus. Med. Rev. 2016, 30, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Manferdini, C.; Paolella, F. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr. Cartil. 2017, 25, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philipp, D.; Shur, L. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res. Ther. 2018, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Liang, J. Mesenchymal stem cells upregulate Treg cells via sHLA-G in SLE patients. Int. Immunopharmacol. 2017, 44, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, S. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol. Immunol. 2017, 14, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, P.; Lombardi, F.; Siragusa, G.; Cifone, M.G.; Cinque, B.; Giuliani, M. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): An overview. Int. J. Mol. Sci. 2018, 19, 1897. [Google Scholar] [CrossRef] [Green Version]
Parameters | Systemic Lupus Erythematosus (SLE) (n = 16) | Systemic Sclerosis (SSc) (n = 17) | Ankylosing Spondylitis (AS) (n = 16) |
---|---|---|---|
Demographics | |||
Age, years | 41 (20–54) # | 52 (20–77) | 43 (25–70) |
Sex, female (F)/male (M), n | 15 F/1 M | 12 F/7 M | 8 F/8 M |
BMI | 24.3 (16.4–39.1) | 25.8 (16.5–38.7) | 26.9 (21.4–35.8) |
Disease duration, years | 8 (0–47) | 3 (1–23) a/5 (1–40) b | 6 (1.5–17) |
Clinical data | |||
Disease activity *, score | 7 (0–32) | 1 (0–8) | 6.3 (1.0–8.2) |
Laboratory values | |||
CRP, mg/L | 5 (1–23) | 5 (3–18) | 8 (5–59) ## |
ESR, mm/h | 16.5 (3–73) | 16 (4–59) | 15 (1–59) |
Proteinuria, mg/24 h | 185 (0–7550) | 0 (0–0.2) | n/a |
C3, mg/dL | 73.5 (23.2–133) | 98.1 (65.8–141) | n/a |
C4, mg/dL | 15.45 (5.38–20.6) | 17.35 (13–27.1) | n/a |
ANA, titre (1:x) | 960 (160–10,240) | 2560 (320–20,480) | n/a |
anti-dsDNA antibody, % | 75 | n/a | n/a |
anti-dsDNA antibody, IU/mL | 68.85 (0–666.9) | n/a | n/a |
Scl-70 antibody, % | n/a | 88.9 | n/a |
Autoantibody specificities, no. | 3 (1–7) | 3 (2–4) | n/a |
Medications, % | |||
NSAIDs | 81.25 | ||
Immunosuppressive drugs | 92.8 | 55 | 0 |
Non-biologic DMARDs | 28.6 | 27.3 | 37.5 |
Glucocorticosteroids | 75 | 23.5 | 21.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuca-Warnawin, E.; Skalska, U.; Janicka, I.; Musiałowicz, U.; Bonek, K.; Głuszko, P.; Szczęsny, P.; Olesińska, M.; Kontny, E. The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells 2019, 8, 1659. https://doi.org/10.3390/cells8121659
Kuca-Warnawin E, Skalska U, Janicka I, Musiałowicz U, Bonek K, Głuszko P, Szczęsny P, Olesińska M, Kontny E. The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells. 2019; 8(12):1659. https://doi.org/10.3390/cells8121659
Chicago/Turabian StyleKuca-Warnawin, Ewa, Urszula Skalska, Iwona Janicka, Urszula Musiałowicz, Krzysztof Bonek, Piotr Głuszko, Piotr Szczęsny, Marzena Olesińska, and Ewa Kontny. 2019. "The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases" Cells 8, no. 12: 1659. https://doi.org/10.3390/cells8121659
APA StyleKuca-Warnawin, E., Skalska, U., Janicka, I., Musiałowicz, U., Bonek, K., Głuszko, P., Szczęsny, P., Olesińska, M., & Kontny, E. (2019). The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells, 8(12), 1659. https://doi.org/10.3390/cells8121659