Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases
Abstract
:1. Introduction
2. mtDNA in Famous Historical Cases and Burnt Human Remains
2.1. The Dottie Cox Mystery
2.2. The Truth about Louis XVII’s Death
2.3. The Mystery of the Last Royal Family in Russia
3. Ancient Music Sound Restoration through Mitochondrial DNA
4. Ancient mtDNA and Past Human Diets
5. Ancient Mitochondrial DNA: A Powerful Tool to Reveal Mysteries in Mummies
6. mtDNA as a Key Element to Uncover Geographical Domestication Origins and Lineages Relationships
6.1. Sheep
6.2. Pig
6.3. Chicken
6.4. Goat
6.5. Cattle
6.6. Dog
6.7. Cat
7. Ancient Trade Routes and Mitogenome Analysis
7.1. Ancient Indo-Roman Maritime Trade Route
7.2. Ancient Phoenician Trade Routes and Genetic Affinity of Ancient Phoenician with a European Haplogroup
8. Conclusions
8.1. MtDNA and Its Limitation in Deciphering Criminal Cases
8.2. Molecular Damage in Postmortem mtDNA
8.3. Diversity of mtDNA
Funding
Conflicts of Interest
References
- Sato, M.; Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2013, 1833, 1979–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margulis, L. Recombination of non-chromosomal genes in Chlamydomonas: Assortment of mitochondria and chloroplasts? J. Theor. Biol. 1970, 26, 337–342. [Google Scholar] [CrossRef]
- Wiesner, R.J.; Ruegg, J.C.; Morano, I. Counting target molecules by exponential polymerase chain reaction: Copy number of mitochondrial DNA in rat tissues. Biochem. Biophys. Res. Commun. 1992, 183, 553–559. [Google Scholar] [CrossRef]
- Copeland, W.C. Defects of Mitochondrial DNA Replication. J. Child. Neurol. 2014, 29, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, F.J.; Rosenfeldt, F.L.; Zhang, C.; Linnane, A.W.; Nagley, P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: Lack of change of copy number with age. Nucleic Acids Res. 2003, 31, e61. [Google Scholar] [CrossRef]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Pearce, S.F.; Rebelo-Guiomar, P.; D’Souza, A.R.; Powell, C.A.; Van Haute, L.; Minczuk, M. Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances. Trends Biochem. Sci. 2017, 42, 625–639. [Google Scholar] [CrossRef]
- Sato, M.; Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011, 334, 1141–1144. [Google Scholar] [CrossRef]
- Higuchi, R.; Bowman, B.; Freiberger, M.; Ryder, O.A.; Wilson, A.C. DNA sequences from the quagga, an extinct member of the horse family. Nature 1984, 312, 282–284. [Google Scholar] [CrossRef]
- Willerslev, E.; Cooper, A. Review Paper. Ancient DNA. Proc. R. Soc. B: Biol. Sci. 2005, 272, 3–16. [Google Scholar] [CrossRef]
- Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar]
- Dolan, J.; Matkin, R.E. “RAAT”. The rehabilitation acronym and abbreviation test. J. Rehabil. 1983, 49, 75–77. [Google Scholar]
- King, S.A. Comments on Sullivan et al., PAIN, 50 (1992) 5-13. Pain 1993, 52, 249. [Google Scholar] [CrossRef]
- Ivanov, P.L.; Wadhams, M.J.; Roby, R.K.; Holland, M.M.; Weedn, V.W.; Parsons, T.J. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat. Genet. 1996, 12, 417–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, M. Forensic use of Y-chromosome DNA: A general overview. Hum. Genet. 2017, 136, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, W.; Linacre, A.; Vanezis, P. The use of mitochondrial DNA and short tandem repeat typing in the identification of air crash victims. Electrophoresis 1999, 20, 1707–1711. [Google Scholar] [CrossRef]
- Murray, C.; El Molto, E.; Gruspier, K. Mitochondrial DNA Analysis of Danforth Doe. Anthropol. Ethnol. Open Access J. 2018, 7. Available online: https://medwinpublishers.com/AEOAJ/AEOAJ16000101.pdf (accessed on 20 April 2019).
- Jehaes, E.; Pfeiffer, H.; Toprak, K.; Decorte, R.; Brinkmann, B.; Cassiman, J.J. Mitochondrial DNA analysis of the putative heart of Louis XVII, son of Louis XVI and Marie-Antoinette. Eur. J. Hum. Genet. 2001, 9, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Jehaes, E.; Decorte, R.; Peneau, A.; Petrie, J.H.; Boiry, P.A.; Gilissen, A.; Moisan, J.P.; Van den Berghe, H.; Pascal, O.; Cassiman, J.J. Mitochondrial DNA analysis of a putative son of Louis XVI, King of France and Marie-Antoinette. Eur. J. Hum. Genet. 1998, 6, 383–395. [Google Scholar] [CrossRef]
- Gill, P.; Ivanov, P.L.; Kimpton, C.; Piercy, R.; Benson, N.; Tully, G.; Evett, I.; Hagelberg, E.; Sullivan, K. Identification of the remains of the Romanov family by DNA analysis. Nat. Genet. 1994, 6, 130–135. [Google Scholar] [CrossRef]
- Coble, M.D. The identification of the Romanovs: Can we (finally) put the controversies to rest? Investig. Genet. 2011, 2, 20. [Google Scholar] [CrossRef]
- Massie, R.K. The Romanovs: The Final Chapter; Random House: New York, NY, USA, 1995. [Google Scholar]
- Zhivotovsky, L.A. Recognition of the remains of Tsar Nicholas II and his family: A case of premature identification? Annu. Hum. Biol. 1999, 26, 569–577. [Google Scholar] [CrossRef]
- Coble, M.D.; Loreille, O.M.; Wadhams, M.J.; Edson, S.M.; Maynard, K.; Meyer, C.E.; Niederstatter, H.; Berger, C.; Berger, B.; Falsetti, A.B.; et al. Mystery solved: The identification of the two missing Romanov children using DNA analysis. PLoS ONE 2009, 4, e4838. [Google Scholar] [CrossRef]
- Le Conte, S.; Clarke, C. L’accompagnement scientifique de la réalisation du fac-simile du piano Erard 1802. In Proceedings of the 10ème Congrès Français d’Acoustique, Lyon, France, 12–16 April 2010. [Google Scholar]
- Mamou-Mani, A.; Maniguet, T. Investigating the history of the piano action using scientific calculus. La Musique Et Ses Instrum. 2009. [Google Scholar]
- Merheb, M.; Vaiedelich, S.; Maniguet, T.; Hanni, C. Mitochondrial DNA, restoring Beethovens music. Mitochondrial DNA Part A 2016, 27, 355–359. [Google Scholar] [CrossRef]
- Nesheva, D. Aspects of ancient mitochondrial DNA analysis in different populations for understanding human evolution. Balkan J. Med. Genet. 2014, 17, 5–14. [Google Scholar] [CrossRef]
- Horai, S.; Hayasaka, K.; Kondo, R.; Tsugane, K.; Takahata, N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 1995, 92, 532–536. [Google Scholar] [CrossRef]
- Tully, L.A.; Parsons, T.J.; Steighner, R.J.; Holland, M.M.; Marino, M.A.; Prenger, V.L. A sensitive denaturing gradient-Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am. J. Hum. Genet. 2000, 67, 432–443. [Google Scholar] [CrossRef]
- Perry, G.H.; Dominy, N.J.; Claw, K.G.; Lee, A.S.; Fiegler, H.; Redon, R.; Werner, J.; Villanea, F.A.; Mountain, J.L.; Misra, R.; et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 2007, 39, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Sjostrand, A.E.; Sjodin, P.; Jakobsson, M. Private haplotypes can reveal local adaptation. BMC Genet. 2014, 15, 61. [Google Scholar] [CrossRef]
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Jarvela, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef]
- Schlebusch, C.M.; Sjodin, P.; Skoglund, P.; Jakobsson, M. Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. Eur. J. Hum. Genet. 2013, 21, 550–553. [Google Scholar] [CrossRef]
- Desalle, R.; Schierwater, B.; Hadrys, H. MtDNA: The small workhorse of evolutionary studies. Front. Biosci. (Landmark Ed.) 2017, 22, 873–887. [Google Scholar] [CrossRef]
- Piganeau, G.; Eyre-Walker, A. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity (Edinb) 2004, 92, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Ladoukakis, E.D.; Eyre-Walker, A. Evolutionary genetics: Direct evidence of recombination in human mitochondrial DNA. Heredity (Edinb) 2004, 93, 321. [Google Scholar] [CrossRef]
- Rose, M.R.; Mueller, L.D. Stearns, Stephen, C., 1992. The Evolution of Life Histories. Oxford University Press, London xii + 249 pp., £16.95. J. Evolut. Biol. 1993, 6, 304–306. [Google Scholar] [CrossRef]
- Nicholls, D.G.; Ferguson, S.J. Preface. In Bioenergetics, 4th ed.; Nicholls, D.G., Ferguson, S.J., Eds.; Academic Press: Boston, MA, USA, 2013; pp. ix–x. [Google Scholar] [CrossRef]
- Brand, M.D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 2000, 35, 811–820. [Google Scholar] [CrossRef]
- Brand, M.D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 2005, 33, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Bhardwaj, A.; Supriya; Sharma, P.; Pal, Y.; Mamta; Kumar, S. Mitochondrial DNA-A Tool for Phylogenetic and Biodiversity Search in Equines. J. Biodivers. Endanger. Species 2015. [Google Scholar] [CrossRef]
- Malmstrom, H.; Gilbert, M.T.; Thomas, M.G.; Brandstrom, M.; Stora, J.; Molnar, P.; Andersen, P.K.; Bendixen, C.; Holmlund, G.; Gotherstrom, A.; et al. Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Curr. Biol.: CB 2009, 19, 1758–1762. [Google Scholar] [CrossRef]
- Haak, W.; Balanovsky, O.; Sanchez, J.J.; Koshel, S.; Zaporozhchenko, V.; Adler, C.J.; Der Sarkissian, C.S.; Brandt, G.; Schwarz, C.; Nicklisch, N.; et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 2010, 8, e1000536. [Google Scholar] [CrossRef]
- Bramanti, B.; Thomas, M.G.; Haak, W.; Unterlaender, M.; Jores, P.; Tambets, K.; Antanaitis-Jacobs, I.; Haidle, M.N.; Jankauskas, R.; Kind, C.J.; et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 2009, 326, 137–140. [Google Scholar] [CrossRef]
- Hervella, M.; Izagirre, N.; Alonso, S.; Fregel, R.; Alonso, A.; Cabrera, V.M.; de la Rua, C. Ancient DNA from hunter-gatherer and farmer groups from Northern Spain supports a random dispersion model for the Neolithic expansion into Europe. PLoS ONE 2012, 7, e34417. [Google Scholar] [CrossRef]
- Sampietro, M.L.; Lao, O.; Caramelli, D.; Lari, M.; Pou, R.; Marti, M.; Bertranpetit, J.; Lalueza-Fox, C. Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proc. Biol. Sci. 2007, 274, 2161–2167. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Quinto, F.; Schroeder, H.; Ramirez, O.; Avila-Arcos, M.C.; Pybus, M.; Olalde, I.; Velazquez, A.M.; Marcos, M.E.; Encinas, J.M.; Bertranpetit, J.; et al. Genomic affinities of two 7000-year-old Iberian hunter-gatherers. Curr. Biol.: CB 2012, 22, 1494–1499. [Google Scholar] [CrossRef]
- Morris, A.G.; Heinze, A.; Chan, E.K.; Smith, A.B.; Hayes, V.M. First ancient mitochondrial human genome from a prepastoralist southern African. Genome Biol. Evol. 2014, 6, 2647–2653. [Google Scholar] [CrossRef]
- Hamilton-Brehm, S.D.; Hristova, L.T.; Edwards, S.R.; Wedding, J.R.; Snow, M.; Kruger, B.R.; Moser, D.P. Ancient human mitochondrial DNA and radiocarbon analysis of archived quids from the Mule Spring Rockshelter, Nevada, USA. PLoS ONE 2018, 13, e0194223. [Google Scholar] [CrossRef]
- Tamm, E.; Kivisild, T.; Reidla, M.; Metspalu, M.; Smith, D.G.; Mulligan, C.J.; Bravi, C.M.; Rickards, O.; Martinez-Labarga, C.; Khusnutdinova, E.K.; et al. Beringian standstill and spread of Native American founders. PLoS ONE 2007, 2, e829. [Google Scholar] [CrossRef]
- Kumar, S.; Bellis, C.; Zlojutro, M.; Melton, P.E.; Blangero, J.; Curran, J.E. Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins. BMC Evol. Biol. 2011, 11, 293. [Google Scholar] [CrossRef]
- Derenko, M.; Malyarchuk, B.; Grzybowski, T.; Denisova, G.; Rogalla, U.; Perkova, M.; Dambueva, I.; Zakharov, I. Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in northern Asia. PLoS ONE 2010, 5, e15214. [Google Scholar] [CrossRef]
- Perry, G.H. Parasites and human evolution. Evolut. Anthropol. 2014, 23, 218–228. [Google Scholar] [CrossRef]
- Hu, M.; Gasser, R.B. Mitochondrial genomes of parasitic nematodes--progress and perspectives. Trends Parasitol. 2006, 22, 78–84. [Google Scholar] [CrossRef]
- Soe, M.J.; Nejsum, P.; Seersholm, F.V.; Fredensborg, B.L.; Habraken, R.; Haase, K.; Hald, M.M.; Simonsen, R.; Hojlund, F.; Blanke, L.; et al. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC-1700 AD) reveals past parasites and diet. PLoS ONE 2018, 13, e0195481. [Google Scholar] [CrossRef] [PubMed]
- Paabo, S. Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl. Acad. Sci. USA 1989, 86, 1939–1943. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.T.; Barnes, I.; Collins, M.J.; Smith, C.; Eklund, J.; Goudsmit, J.; Poinar, H.; Cooper, A. Long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich (2003). Am. J. Phys. Anthropol. 2005, 128, 110–114, discussion 115–118. [Google Scholar] [CrossRef]
- Marota, I.; Basile, C.; Ubaldi, M.; Rollo, F. DNA decay rate in papyri and human remains from Egyptian archaeological sites. Am. J. Phys. Anthropol. 2002, 117, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Hawass, Z.; Gad, Y.Z.; Ismail, S.; Khairat, R.; Fathalla, D.; Hasan, N.; Ahmed, A.; Elleithy, H.; Ball, M.; Gaballah, F.; et al. Ancestry and pathology in King Tutankhamun’s family. JAMA 2010, 303, 638–647. [Google Scholar] [CrossRef]
- Lorenzen, E.D.; Willerslev, E. King Tutankhamun’s family and demise. JAMA 2010, 303, 2471, author reply 2473–2475. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.; George, M., Jr.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]
- Khairat, R.; Ball, M.; Chang, C.C.; Bianucci, R.; Nerlich, A.G.; Trautmann, M.; Ismail, S.; Shanab, G.M.; Karim, A.M.; Gad, Y.Z.; et al. First insights into the metagenome of Egyptian mummies using next-generation sequencing. J. Appl. Genet. 2013, 54, 309–325. [Google Scholar] [CrossRef]
- Schuenemann, V.J.; Peltzer, A.; Welte, B.; van Pelt, W.P.; Molak, M.; Wang, C.C.; Furtwangler, A.; Urban, C.; Reiter, E.; Nieselt, K.; et al. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 2017, 8, 15694. [Google Scholar] [CrossRef] [Green Version]
- Wasef, S.; Huynen, L.; Donald Millar, C.; Subramanian, S.; Ikram, S.; Holland, B.; Willerslev, E.; Martin Lambert, D. Fishing for Mitochondrial DNA in The Egyptian Sacred Ibis Mummies. bioRxiv 2018, 473454. [Google Scholar] [CrossRef]
- Hekkala, E.; Shirley, M.H.; Amato, G.; Austin, J.D.; Charter, S.; Thorbjarnarson, J.; Vliet, K.A.; Houck, M.L.; Desalle, R.; Blum, M.J. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 2011, 20, 4199–4215. [Google Scholar] [CrossRef]
- Kurushima, J.D.; Ikram, S.; Knudsen, J.; Bleiberg, E.; Grahn, R.A.; Lyons, L.A. Cats of the Pharaohs: Genetic Comparison of Egyptian Cat Mummies to their Feline Contemporaries. J. Aarchaeol. Sci. 2012, 39, 3217–3223. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Carballa, A.; Catelli, L.; Pardo-Seco, J.; Martinon-Torres, F.; Roewer, L.; Vullo, C.; Salas, A. The complete mitogenome of a 500-year-old Inca child mummy. Sci. Rep. 2015, 5, 16462. [Google Scholar] [CrossRef] [Green Version]
- Ermini, L.; Olivieri, C.; Rizzi, E.; Corti, G.; Bonnal, R.; Soares, P.; Luciani, S.; Marota, I.; De Bellis, G.; Richards, M.B.; et al. Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr. Biol.: CB 2008, 18, 1687–1693. [Google Scholar] [CrossRef]
- Bowring, C.S.; Ferrant, A.E.; Glass, H.I.; Lewis, S.M.; Szur, L. Quantitative measurement of splenic and hepatic red-cell destruction. Br. J. Haematol. 1975, 31, 467–477. [Google Scholar] [CrossRef]
- Wilson, A.S.; Taylor, T.; Ceruti, M.C.; Chavez, J.A.; Reinhard, J.; Grimes, V.; Meier-Augenstein, W.; Cartmell, L.; Stern, B.; Richards, M.P.; et al. Stable isotope and DNA evidence for ritual sequences in Inca child sacrifice. Proc. Natl. Acad. Sci. USA 2007, 104, 16456–16461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drosou, K.; Price, C.; Brown, T.A. The kinship of two 12th Dynasty mummies revealed by ancient DNA sequencing. J. Aarchaeol. Sci.: Rep. 2018, 17, 793–797. [Google Scholar] [CrossRef]
- Ryder, M.L. Sheep. In Evolution of Domesticated Animals; Mason, I.L., Ed.; Longman: New York, NY, USA, 1984; pp. 63–84. [Google Scholar]
- Meadows, J.R.S.; Cemal, I.; Karaca, O.; Gootwine, E.; Kijas, J.W. Five ovine mitochondrial lineages identified from sheep breeds of the near East. Genetics 2007, 175, 1371–1379. [Google Scholar] [CrossRef]
- Guo, J.; Du, L.-X.; Ma, Y.-H.; Guan, W.-J.; Li, H.-B.; Zhao, Q.-J.; Li, X.; Rao, S.-Q. A novel maternal lineage revealed in sheep (Ovis aries). Anim. Genet. 2005, 36, 331–336. [Google Scholar] [CrossRef]
- Hiendleder, S.; Mainz, K.; Plante, Y.; Lewalski, H. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: No evidence for contributions from urial and argali sheep. J. Hered. 1998, 89, 113–120. [Google Scholar] [CrossRef]
- Caliebe, A.; Nebel, A.; Makarewicz, C.; Krawczak, M.; Krause-Kyora, B. Insights into early pig domestication provided by ancient DNA analysis. Sci. Rep. 2017, 7, 44550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, A.A.; Athens, J.S.; Bryant, D.; Carson, M.; Emery, K.; deFrance, S.; Higham, C.; Huynen, L.; Intoh, M.; Jones, S.; et al. Investigating the Global Dispersal of Chickens in Prehistory Using Ancient Mitochondrial DNA Signatures. PLoS ONE 2012, 7, e39171. [Google Scholar] [CrossRef]
- Lorenzo-Redondo, R.; Fryer, H.R.; Bedford, T.; Kim, E.-Y.; Archer, J.; Pond, S.L.K.; Chung, Y.-S.; Penugonda, S.; Chipman, J.G.; Fletcher, C.V.; et al. Lorenzo-Redondo et al. reply. Nature 2017, 551, E10. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.; Rezaei, H.R.; Taberlet, P.; Zundel, S.; Rafat, S.A.; Naghash, H.R.; el-Barody, M.A.; Ertugrul, O.; Pompanon, F. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS ONE 2007, 2, e1012. [Google Scholar] [CrossRef]
- Gerbault, P.; Powell, A.; Thomas, M.G. Evaluating demographic models for goat domestication using mtDNA sequences. Anthropozoologica 2012, 47, 64–76. [Google Scholar] [CrossRef]
- Fernández, H.; Hughes, S.; Vigne, J.-D.; Helmer, D.; Hodgins, G.; Miquel, C.; Hänni, C.; Luikart, G.; Taberlet, P. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. Proc. Natl. Acad. Sci. USA 2006, 103, 15375–15379. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, A.; Lieckfeldt, D.; Hesse, U.G.W.; Froelich, K. Tracing the maternal roots of the domestic Red Mountain Cattle. Mitochondrial DNA Part A 2016, 27, 1080–1083. [Google Scholar] [CrossRef]
- Savolainen, P.; Zhang, Y.-p.; Luo, J.; Lundeberg, J.; Leitner, T. Genetic Evidence for an East Asian Origin of Domestic Dogs. Science 2002, 298, 1610–1613. [Google Scholar] [CrossRef]
- Dayan, T. Early Domesticated Dogs of the Near East. J. Aarchaeol. Sci. 1994, 21, 633–640. [Google Scholar] [CrossRef]
- Ardalan, A.; Kluetsch, C.F.C.; Zhang, A.-b.; Erdogan, M.; Uhlén, M.; Houshmand, M.; Tepeli, C.; Ashtiani, S.R.M.; Savolainen, P. Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization. Ecol. Evol. 2011, 1, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Frantz, L.A.F.; Mullin, V.E.; Pionnier-Capitan, M.; Lebrasseur, O.; Ollivier, M.; Perri, A.; Linderholm, A.; Mattiangeli, V.; Teasdale, M.D.; et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science (New York, N.Y.) 2016, 352, 1228–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottoni, C.; Van Neer, W.; De Cupere, B.; Daligault, J.; Guimaraes, S.; Peters, J.; Spassov, N.; Prendergast, M.E.; Boivin, N.; Morales-Muñiz, A.; et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 2017, 1, 139. [Google Scholar] [CrossRef]
- Driscoll, C.A.; Menotti-Raymond, M.; Roca, A.L.; Hupe, K.; Johnson, W.E.; Geffen, E.; Harley, E.H.; Delibes, M.; Pontier, D.; Kitchener, A.C.; et al. The Near Eastern origin of cat domestication. Science (New York, N.Y.) 2007, 317, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, P.; Sarojadevi, M. Development of Oligomeric Phthalonitrile Resins for Advanced Composite Applications. Macromol. Symp. 2009, 277, 190–200. [Google Scholar] [CrossRef]
- Palanichamy, M.G.; Mitra, B.; Debnath, M.; Agrawal, S.; Chaudhuri, T.K.; Zhang, Y.P. Tamil merchant in ancient Mesopotamia. PLoS ONE 2014, 9, e109331. [Google Scholar] [CrossRef]
- Witas, H.W.; Tomczyk, J.; Jedrychowska-Danska, K.; Chaubey, G.; Ploszaj, T. mtDNA from the early Bronze Age to the Roman period suggests a genetic link between the Indian subcontinent and Mesopotamian cradle of civilization. PLoS ONE 2013, 8, e73682. [Google Scholar] [CrossRef]
- Carpenter, R. Phoenicians in the West. Am. J. Archaeol. 1958, 62, 35–53. [Google Scholar] [CrossRef]
- Fellah, J.S.; Kerfourn, F.; Dumay, A.M.; Aubet, G.; Charlemagne, J. Structure and diversity of the T-cell receptor alpha chain in the Mexican axolotl. Immunogenetics 1997, 45, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Matisoo-Smith, E.A.; Gosling, A.L.; Boocock, J.; Kardailsky, O.; Kurumilian, Y.; Roudesli-Chebbi, S.; Badre, L.; Morel, J.P.; Sebai, L.L.; Zalloua, P.A. A European Mitochondrial Haplotype Identified in Ancient Phoenician Remains from Carthage, North Africa. PLoS ONE 2016, 11, e0155046. [Google Scholar] [CrossRef]
- Gazi, N.S.; Mohammad, Z.S. Mitochondrial DNA and Methods for Forensic Identification. Forensic Sci. Crim. Investig. 2018, 9. [Google Scholar] [CrossRef]
- Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef] [PubMed]
- Cann, R.L.; Stoneking, M.; Wilson, A.C. Mitochondrial DNA and human evolution. Nature 1987, 325, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Budowle, B.; Allard, M.W.; Wilson, M.R.; Chakraborty, R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu. Rev. Genom. Hum. Genet. 2003, 4, 119–141. [Google Scholar] [CrossRef]
- Rizzi, E.; Lari, M.; Gigli, E.; De Bellis, G.; Caramelli, D. Ancient DNA studies: New perspectives on old samples. Genet. Sel. Evol.: GSE 2012, 44, 21. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Macaulay, V.; Richards, M. Human Mitochondrial DNA and the Evolution of Homo Sapiens; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Barrowclough, G.F.; Zink, R.M. Funds enough, and time: mtDNA, nuDNA and the discovery of divergence. Mol. Ecol. 2009, 18, 2934–2936. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, E.; Willerslev, E.; Gilbert, M.T.; Nielsen, R. The effect of ancient DNA damage on inferences of demographic histories. Mol. Biol. Evol. 2008, 25, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Binladen, J.; Wiuf, C.; Gilbert, M.T.; Bunce, M.; Barnett, R.; Larson, G.; Greenwood, A.D.; Haile, J.; Ho, S.Y.; Hansen, A.J.; et al. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics 2006, 172, 733–741. [Google Scholar] [CrossRef]
- Gilbert, M.T.; Willerslev, E.; Hansen, A.J.; Barnes, I.; Rudbeck, L.; Lynnerup, N.; Cooper, A. Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet. 2003, 72, 32–47. [Google Scholar] [CrossRef]
- Galtier, N.; Nabholz, B.; Glemin, S.; Hurst, G.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef]
- Wallace, D.C.; Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a021220. [Google Scholar] [CrossRef] [PubMed]
- Dowling, D.K. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochim. Biophys. Acta 2014, 1840, 1393–1403. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondrial DNA variation in human radiation and disease. Cell 2015, 163, 33–38. [Google Scholar] [CrossRef] [PubMed]
- St John, J.C.; Facucho-Oliveira, J.; Jiang, Y.; Kelly, R.; Salah, R. Mitochondrial DNA transmission, replication and inheritance: A journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 2010, 16, 488–509. [Google Scholar] [CrossRef]
- Marks, J. Molecular evolutionary genetics. By M. Nei. New York: Columbia University Press. 1987. x + 512 pp., tables, figures, indexes. $50.00 (cloth). Am. J. Phys. Anthropol. 1988, 75, 428–429. [Google Scholar] [CrossRef]
- Weber, J.L.; Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 1993, 2, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Hammer, M.F.; Spurdle, A.B.; Karafet, T.; Bonner, M.R.; Wood, E.T.; Novelletto, A.; Malaspina, P.; Mitchell, R.J.; Horai, S.; Jenkins, T.; et al. The geographic distribution of human Y chromosome variation. Genetics 1997, 145, 787–805. [Google Scholar] [PubMed]
- Jobling, M.A.; Tyler-Smith, C. Fathers and sons: The Y chromosome and human evolution. Trends Genet.: TIG 1995, 11, 449–456. [Google Scholar] [CrossRef]
- Quintana-Murci, L.; Krausz, C.; McElreavey, K. The human Y chromosome: Function, evolution and disease. Forensic Sci. Int. 2001, 118, 169–181. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merheb, M.; Matar, R.; Hodeify, R.; Siddiqui, S.S.; Vazhappilly, C.G.; Marton, J.; Azharuddin, S.; AL Zouabi, H. Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases. Cells 2019, 8, 433. https://doi.org/10.3390/cells8050433
Merheb M, Matar R, Hodeify R, Siddiqui SS, Vazhappilly CG, Marton J, Azharuddin S, AL Zouabi H. Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases. Cells. 2019; 8(5):433. https://doi.org/10.3390/cells8050433
Chicago/Turabian StyleMerheb, Maxime, Rachel Matar, Rawad Hodeify, Shoib Sarwar Siddiqui, Cijo George Vazhappilly, John Marton, Syed Azharuddin, and Hussain AL Zouabi. 2019. "Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases" Cells 8, no. 5: 433. https://doi.org/10.3390/cells8050433
APA StyleMerheb, M., Matar, R., Hodeify, R., Siddiqui, S. S., Vazhappilly, C. G., Marton, J., Azharuddin, S., & AL Zouabi, H. (2019). Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases. Cells, 8(5), 433. https://doi.org/10.3390/cells8050433