Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies
Abstract
:1. Introduction
1.1. Sex and Gender
1.2. Pharmacological Response
1.3. Sex–Gender in RCT
2. Rules
2.1. Rule 1: Trialists Should Define Terminology for Sex or Gender in Clinical Protocols
2.2. Rule 2: Research Teams Should be Trained to Avoid Investigator Sex–Gender Bias
2.3. Rule 3: Appropriate Inclusion of Sex–Gender as a Basic Variable in RCT Should Consider the Whole Human Life-Span
2.4. Rule 4: Patient History-Awareness of Socio-Economic Status, Education Levels, Stressors, Microbiota, and Geographical Localization, as well as Specific Sex–Gender Aspects
2.5. Rule 5: Detection of SGD in Placebo and Nocebo Responses
2.6. Rule 6: PK of the Excipient and Active Drug According to a Single Route of Administration, Hormonal Fluctuations, and Alcohol and Tobacco Use
2.7. Rule 7: The Exclusion of Women of Child-Bearing Age Does Not Permit the Appropriate Pharmacological Therapy
2.8. Rule 8: Clinical Studies in Pregnancy and Lactation
2.9. Rule 9: To Be Aware about the Influence of Sex–Gender on Biomarkers
2.10. Rule 10: Lack of Detection of SGD Must Be Reported
2.11. Rule 11: Ethics Committees Need to Put on Sex–Gender Glasses
2.12. Rule 12: The Creation of Gender Alliance
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Gender, Equity and Human Rights. Available online: https://www.who.int/gender-equity-rights/understanding/gender-definition/en/ (accessed on 26 April 2019).
- Government of Canada. What is Gender? What is Sex? Canadian Institutes of Health Research. Available online: http://www.cihr-irsc.gc.ca/e/48642.html (accessed on 26 April 2019).
- European Institute for Gender Equality. Concepts and definitions. Available online: https://eige.europa.eu/gender-mainstreaming/concepts-and-definitions (accessed on 26 April 2019).
- Australian Government. Australian Government guidelines on the recognition of sex and gender Attorney General’s Department. Available online: https://www.ag.gov.au/Pages/default.aspx (accessed on 26 April 2019).
- Marino, M.; Masella, R.; Bulzomi, P.; Campesi, I.; Malorni, W.; Franconi, F. Nutrition and human health from a sex-gender perspective. Mol. Aspects Med. 2011, 32, 1–70. [Google Scholar] [CrossRef]
- Springer, K.W.; Hankivsky, O.; Bates, L.M. Gender and health: Relational, intersectional, and biosocial approaches. Soc. Sci. Med. 2012, 74, 1661–1666. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V. Sex and Gender Differences in Pharmacology; Springer: Berlin, Germany, 2012. [Google Scholar]
- Horwitz, R.I.; Hayes-Conroy, A.; Singer, B.H. Biology, social environment, and personalized medicine. Psychother. Psychosom. 2017, 86, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 2007, 55, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Campesi, I. Sex and gender influences on pharmacological response: An overview. Expert Rev. Clin. Pharmacol. 2014, 7, 469–485. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: Interaction with biological differences between men and women. Br. J. Pharmacol. 2014, 171, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Rosano, G.; Campesi, I. Need for gender-specific pre-analytical testing: The dark side of the moon in laboratory testing. Int. J. Cardiol. 2015, 179, 514–535. [Google Scholar] [CrossRef]
- Legato, M.J. Principles of Gender-Specific Medicine. Gender in the Genomic Era, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2017; 792p. [Google Scholar]
- Tantibanchachai, C.; Yang, J. Studies of Thalidomide’ Effects on Rodent Embryos from 1962–2008. Embryo Project Encyclopedia. Available online: http://embryo.asu.edu/handle/10776/17642 (accessed on 26 April 2019).
- Fort, D.J.; Stover, E.L.; Bantle, J.A.; Finch, R.A. Evaluation of the developmental toxicity of thalidomide using frog embryo teratogenesis assay-xenopus (FETAX): Biotransformation and detoxification. Teratog. Carcinog. Mutagen. 2000, 20, 35–47. [Google Scholar] [CrossRef]
- Merker, H.J.; Heger, W.; Sames, K.; Sturje, H.; Neubert, D. Embryotoxic effects of thalidomide-derivatives in the non-human primate Callithrix jacchus. I. Effects of 3-(1,3-dihydro-1-oxo-2H-isoindol-2-yl)-2,6-dioxopiperidine (EM12) on skeletal development. Arch. Toxicol. 1988, 61, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Vargesson, N. Thalidomide-induced limb defects: Resolving a 50-year-old puzzle. Bioessays 2009, 31, 1327–1336. [Google Scholar] [CrossRef]
- Spear, B.B.; Heath-Chiozzi, M.; Huff, J. Clinical application of pharmacogenetics. Trends Mol. Med. 2001, 7, 201–204. [Google Scholar] [CrossRef]
- Phillips, S.P.; Hamberg, K. Doubly blind: A systematic review of gender in randomised controlled trials. Glob. Health Action 2016, 9, 29597. [Google Scholar] [CrossRef] [PubMed]
- Segarra, I.; Modamio, P.; Fernandez, C.; Marino, E.L. Sunitinib possible sex-divergent therapeutic outcomes. Clin. Drug Investig. 2016, 36, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.; Lee, W.L.; Liang, T.; Liao, I.C. Factors associated with gender differences in medication adherence: A longitudinal study. J. Adv. Nurs. 2014, 70, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Canevelli, M.; Quarata, F.; Remiddi, F.; Lucchini, F.; Lacorte, E.; Vanacore, N.; Bruno, G.; Cesari, M. Sex and gender differences in the treatment of Alzheimer’s disease: A systematic review of randomized controlled trials. Pharmacol. Res. 2017, 115, 218–223. [Google Scholar] [CrossRef]
- Mazure, C.M.; Jones, D.P. Twenty years and still counting: Including women as participants and studying sex and gender in biomedical research. BMC Womens Health 2015, 15, 94. [Google Scholar] [CrossRef]
- Pirmohamed, M.; James, S.; Meakin, S.; Green, C.; Scott, A.K.; Walley, T.J.; Farrar, K.; Park, B.K.; Breckenridge, A.M. Adverse drug reactions as cause of admission to hospital: Prospective analysis of 18 820 patients. BMJ 2004, 329, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Gartlehner, G.; Chapman, A.; Strobelberger, M.; Thaler, K. Differences in efficacy and safety of pharmaceutical treatments between men and women: An umbrella review. PLoS ONE 2010, 5, e11895. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kajiwara, A. Female sex as a risk factor for adverse drug reactions. Nihon Rinsho 2015, 73, 581–585. [Google Scholar]
- Rodenburg, E.M.; Stricker, B.H.; Visser, L.E. Sex differences in cardiovascular drug-induced adverse reactions causing hospital admissions. Br. J. Clin. Pharmacol. 2012, 74, 1045–1052. [Google Scholar] [CrossRef]
- Heinrich, J. Drug Safety: Most Drugs Withdrawn in Recent Years had Greater Health Risks for Women; General Accounting Office: Washington, DC, USA, 2001. [Google Scholar]
- Montane, E.; Arellano, A.L.; Sanz, Y.; Roca, J.; Farre, M. Drug-related deaths in hospital inpatients: A retrospective cohort study. Br. J. Clin. Pharmacol. 2018, 84, 542–552. [Google Scholar] [CrossRef]
- Shepherd, G.; Mohorn, P.; Yacoub, K.; May, D.W. Adverse drug reaction deaths reported in United States vital statistics, 1999–2006. Ann. Pharmacother. 2012, 46, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Ekman, E.; Jorsater Blomgren, K. Influence of age, sex and seriousness on reporting of adverse drug reactions in Sweden. Pharmacoepidemiol. Drug Saf. 2017, 26, 335–343. [Google Scholar] [CrossRef]
- Leone, S. 5-year trend of reporting adverse drug reaction: An Italian general practice experience. EC Pharmacol. Toxicol. 2017, 5, 29–37. [Google Scholar]
- Eurostat. Women Use Medicine More Often Than Men. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20170505–1?inheritRedirect=true (accessed on 19 February 2019).
- Colombo, D.; Banfi, G.; Cassano, N.; Graziottin, A.; Vena, G.A.; Fiori, G.G.; Zagni, E.; Stingeni, L.; Chimenti, S.; Berardesca, E.; et al. The GENDER ATTENTION observational study: Gender and hormonal status differences in the incidence of adverse events during Cyclosporine treatment in psoriatic patients. Adv. Ther. 2017, 34, 1349–1363. [Google Scholar] [CrossRef]
- Konigstein, M.; Rosso, R.; Topaz, G.; Postema, P.G.; Friedensohn, L.; Heller, K.; Zeltser, D.; Belhassen, B.; Adler, A.; Viskin, S. Drug-induced Brugada syndrome: Clinical characteristics and risk factors. Heart Rhythm 2016, 13, 1083–1087. [Google Scholar] [CrossRef]
- Alizadeh Ghamsari, A.; Dadpour, B.; Najari, F. Frequency of electrocardiographic abnormalities in Tramadol poisoned patients; a brief report. Emergency 2016, 4, 151–154. [Google Scholar] [PubMed]
- U.S. Food and Drug Administration. General Considerations for the Clinical Evaluation of Drugs; FDA: Silver Spring, MD, USA, 1977.
- U.S. Food and Drug Administration. Guideline for the study and evaluation of gender differences in the clinical evaluation of drugs; notice. Fed. Regist. 1993, 58, 39406–39416. [Google Scholar]
- U.S. Food and Drug Administration. FDA Action Plan to Enhance the Collection and Availability of Demographic Subgroup Data; FDA: Silver Spring, MD, USA, 2014.
- FDA. Evaluation of Sex-Specific Data in Medical Device Clinical Studies—Guidance for Industry and Food and Drug Administration Staff; FDA: Silver Spring, MD, USA, 2014.
- Duke-Margolis Center for Health Policy. Biologic Variability to Drug Response: Sex Differences in Clinical Trials; Duke: Washington, DC, USA, 2016. [Google Scholar]
- Geller, S.E.; Koch, A.R.; Roesch, P.; Filut, A.; Hallgren, E.; Carnes, M. The more things change, the more they stay the same: A study to evaluate compliance with inclusion and assessment of women and minorities in randomized controlled trials. Acad. Med. 2018, 93, 630–635. [Google Scholar] [CrossRef]
- Duma, N.; Vera Aguilera, J.; Paludo, J.; Haddox, C.L.; Gonzalez Velez, M.; Wang, Y.; Leventakos, K.; Hubbard, J.M.; Mansfield, A.S.; et al. Representation of minorities and women in oncology clinical trials: Review of the past 14 years. J. Oncol. Pract. 2018, 14, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.A.; Ronald, L.M. Sex, gender, and pharmaceutical politics: From drug development to marketing. Gender Med. 2010, 7, 357–370. [Google Scholar] [CrossRef]
- Labots, G.; Jones, A.; de Visser, S.J.; Rissmann, R.; Burggraaf, J. Gender differences in clinical registration trials: Is there a real problem? Br. J. Clin. Pharmacol. 2018, 84, 700–707. [Google Scholar] [CrossRef]
- Sullivan, D. Women Underrepresented in Cardiovascular Studies: Implications for Medical Affairs Professionals. Available online: https://medmeme.com/women-underrepresented-cardiovascular-studies-implications-medical-affairs-professionals/ (accessed on 26 February 2019).
- Kaufman, J.S.; MacLehose, R.F. Which of These Things is Not Like the Others? Cancer 2013, 119, 4216–4222. [Google Scholar] [CrossRef] [PubMed]
- Consort. Available online: http://www.consort-statement.org/resources/glossary. (accessed on 26 February 2019).
- Booth, C.M.; Tannock, I.F. Randomised controlled trials and population-based observational research: Partners in the evolution of medical evidence. Br. J. Cancer 2014, 110, 551–555. [Google Scholar] [CrossRef]
- Frieden, T.R. Evidence for health decision making—Beyond randomized, controlled trials. N. Engl. J. Med. 2017, 377, 465–475. [Google Scholar] [CrossRef]
- Bachur, C.; Singer, B.; Hayes-Conroy, A.; Horwitz, R.I. Social determinants of treatment response. Am. J. Med. 2018, 131, 480–483. [Google Scholar] [CrossRef]
- National Institutes of Health. Consideration of Sex as a Biological Variable in NIH-Funded Research; National Institutes of Health: Bethesda, MD, USA, 2015. [Google Scholar]
- Greenspan, J.D.; Craft, R.M.; LeResche, L.; Arendt-Nielsen, L.; Berkley, K.J.; Fillingim, R.B.; Gold, M.S.; Holdcroft, A.; Lautenbacher, S.; Mayer, E.A.; et al. Studying sex and gender differences in pain and analgesia: A consensus report. Pain 2007, 132, S26–S45. [Google Scholar] [CrossRef]
- Brunton, L.; Knollmann, B.; Hilal-Dandan, R. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics; Mc-Graw Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Adams, A.; Buckingham, C.D.; Lindenmeyer, A.; McKinlay, J.B.; Link, C.; Marceau, L.; Arber, S. The influence of patient and doctor gender on diagnosing coronary heart disease. Sociol. Health 2008, 30, 1–18. [Google Scholar] [CrossRef]
- Schieber, A.C.; Delpierre, C.; Lepage, B.; Afrite, A.; Pascal, J.; Cases, C.; Lombrail, P.; Lang, T.; Kelly-Irving, M. Do gender differences affect the doctor-patient interaction during consultations in general practice? Results from the INTERMEDE study. Fam. Pract. 2014, 31, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Gouni-Berthold, I.; Berthold, H.K. Role of physician gender in drug therapy. Handb. Exp. Pharmacol. 2012, 2014, 183–208. [Google Scholar]
- Domenighetti, G.; Luraschi, P.; Marazzi, A. Hysterectomy and sex of the gynecologist. N. Engl. J. Med. 1985, 313, 1482. [Google Scholar]
- Kallai, I.; Barke, A.; Voss, U. The effects of experimenter characteristics on pain reports in women and men. Pain 2004, 112, 142–147. [Google Scholar] [CrossRef]
- Gijsbers, K.; Nicholson, F. Experimental pain thresholds influenced by sex of experimenter. Percept. Motor. Skill. 2005, 101, 803–807. [Google Scholar] [CrossRef]
- Aslaksen, P.M.; Myrbakk, I.N.; Hoifodt, R.S.; Flaten, M.A. The effect of experimenter gender on autonomic and subjective responses to pain stimuli. Pain 2007, 129, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, A.T.; Hollingshead, N.A.; Matthias, M.S.; Bair, M.J.; Kroenke, K. The influence of patient sex, provider sex, and sexist attitudes on pain treatment decisions. J. Pain 2014, 15, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Chakkalakal, R.J.; Higgins, S.M.; Bernstein, L.B.; Lundberg, K.L.; Wu, V.; Green, J.; Long, Q.; Doyle, J.P. Does patient gender impact resident physicians’ approach to the cardiac exam? J. Gen. Intern Med. 2013, 28, 561–566. [Google Scholar] [CrossRef]
- Hadjistavropoulos, T.; McMurtry, B.; Craig, K.D. Beautiful faces in pain: Biases and accuracy in the perception of pain. Psychol. Health 1996, 11, 411–420. [Google Scholar] [CrossRef]
- Robinson, M.E.; Wise, E.A. Gender bias in the observation of experimental pain. Pain 2003, 104, 259–264. [Google Scholar] [CrossRef]
- McCalman, J.; Jongen, C.; Bainbridge, R. Organisational systems’ approaches to improving cultural competence in healthcare: A systematic scoping review of the literature. Int. J. Equity Health 2017, 16, 78. [Google Scholar] [CrossRef]
- Arousell, J.; Carlbom, A. Culture and religious beliefs in relation to reproductive health. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 32, 77–87. [Google Scholar] [CrossRef]
- Borkhoff, C.M.; Hawker, G.A.; Kreder, H.J.; Glazier, R.H.; Mahomed, N.N.; Wright, J.G. The effect of patients’ sex on physicians’ recommendations for total knee arthroplasty. CMAJ 2008, 178, 681–687. [Google Scholar] [CrossRef]
- Gabory, A.; Roseboom, T.J.; Moore, T.; Moore, L.G.; Junien, C. Placental contribution to the origins of sexual dimorphism in health and diseases: Sex chromosomes and epigenetics. Biol. Sex. Differ. 2013, 4, 5. [Google Scholar] [CrossRef]
- Cotreau, M.M.; von Moltke, L.L.; Greenblatt, D.J. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin. Pharmacokinet. 2005, 44, 33–60. [Google Scholar] [CrossRef]
- Mouat, M.A.; Coleman, J.L.J.; Smith, N.J. GPCRs in context: Sexual dimorphism in the cardiovascular system. Br. J. Pharmacol. 2018, 175, 4047–4059. [Google Scholar] [CrossRef] [PubMed]
- Alomar, M.J. Factors affecting the development of adverse drug reactions. Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar]
- National Center for Health Statistics. Plan and operation of the Hispanic health and examination survey 1982–84. In Vital and Health Statistics; U.S. Government Printing Office: Washington, DC, USA, 1985. [Google Scholar]
- Beal, C. Loneliness in older women: A review of the literature. Iss. Mental Health Nurs. 2006, 27, 795–813. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Arnegard, M.E. Taking cardiology clinical trials to the next level: A call to action. Clin. Cardiol. 2018, 41, 179–184. [Google Scholar] [CrossRef]
- Welch, V.; Petticrew, M.; Ueffing, E.; Benkhalti Jandu, M.; Brand, K.; Dhaliwal, B.; Kristjansson, E.; Smylie, J.; Wells, G.A.; Tugwell, P. Does consideration and assessment of effects on health equity affect the conclusions of systematic reviews? A methodology study. PLoS ONE 2012, 7, e31360. [Google Scholar] [CrossRef] [PubMed]
- Fava, G.A.; Cosci, F.; Sonino, N. Current psychosomatic practice. Psychother. Psychosom. 2017, 86, 13–30. [Google Scholar] [CrossRef]
- Healthypeople.gov. Disparities; Office of Disease Prevention and Health Promotion: Washington, DC, USA, 2015.
- Adler, N.E.; Stead, W.W. Patients in context—EHR capture of social and behavioral determinants of health. N. Engl. J. Med. 2015, 372, 698–701. [Google Scholar] [CrossRef]
- Laaksonen, M.; Talala, K.; Martelin, T.; Rahkonen, O.; Roos, E.; Helakorpi, S.; Laatikainen, T.; Prattala, R. Health behaviours as explanations for educational level differences in cardiovascular and all-cause mortality: A follow-up of 60,000 men and women over 23 years. Eur. J. Public Health 2008, 18, 38–43. [Google Scholar] [CrossRef]
- Kulhanova, I.; Menvielle, G.; Hoffmann, R.; Eikemo, T.A.; Kulik, M.C.; Toch-Marquardt, M.; Deboosere, P.; Leinsalu, M.; Lundberg, O.; Regidor, E.; et al. The role of three lifestyle risk factors in reducing educational differences in ischaemic heart disease mortality in Europe. Eur. J. Public Health 2016, 26, 1081–1088. [Google Scholar] [CrossRef]
- Franconi, F.; Omboni, S.; Ambrosioni, E.; Reggiardo, G.; Campesi, I.; Borghi, C. Effects of treatment with zofenopril in men and women with acute myocardial infarction: Gender analysis of the SMILE Program. PLoS ONE 2014, 9, e111558. [Google Scholar] [CrossRef]
- Schuck, R.N.; Florian, J.; Charlab, R.; Pacanowski, M. Trial geography, pharmacogenetics, and global drug development. Clin. Pharmacol. Ther. 2015, 97, 218–220. [Google Scholar] [CrossRef]
- Yusuf, S.; Wittes, J. Interpreting geographic variations in results of randomized, controlled trials. N. Engl. J. Med. 2016, 375, 2263–2271. [Google Scholar] [CrossRef]
- Miller, G.E.; Engen, P.A.; Gillevet, P.M.; Shaikh, M.; Sikaroodi, M.; Forsyth, C.B.; Mutlu, E.; Keshavarzian, A. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLoS ONE 2016, 11, e0148952. [Google Scholar] [CrossRef]
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 2016, 7, 1031. [Google Scholar] [CrossRef]
- Wallis, A.; Butt, H.; Ball, M.; Lewis, D.P.; Bruck, D. Support for the microgenderome invites enquiry into sex differences. Gut Microbes 2017, 8, 46–52. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Enck, P.; Bingel, U.; Schedlowski, M.; Rief, W. The placebo response in medicine: Minimize, maximize or personalize? Nat. Rev. Drug Discov. 2013, 12, 191–204. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I.; Occhioni, S.; Antonini, P.; Murphy, M.F. Sex and gender in adverse drug events, addiction, and placebo. Handb. Exp. Pharmacol. 2012, 107–126. [Google Scholar]
- Fava, G.A.; Guidi, J.; Rafanelli, C.; Rickels, K. The clinical inadequacy of the placebo model and the development of an alternative conceptual framework. Psychother. Psychosom. 2017, 86, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Vambheim, S.M.; Flaten, M.A. A systematic review of sex differences in the placebo and the nocebo effect. J. Pain. Res. 2017, 10, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Weimer, K.; Colloca, L.; Enck, P. Age and sex as moderators of the placebo response—An evaluation of systematic reviews and meta-analyses across medicine. Gerontology 2015, 61, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Keitt, S.K.; Wagner, C.R.; Tong, C.; Marts, S.A. Understanding the biology of sex and gender differences: Using subgroup analysis and statistical design to detect sex differences in clinical trials. MedGenMed 2003, 5, 39. [Google Scholar]
- Gochfeld, M. Sex differences in human and animal toxicology. Toxicol. Pathol. 2017, 45, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, D.; Manzano, L.; Krum, H.; Rosano, G.; Holmes, J.; Altman, D.G.; Collins, P.D.; Packer, M.; Wikstrand, J.; Coats, A.J.; et al. Effect of age and sex on efficacy and tolerability of beta blockers in patients with heart failure with reduced ejection fraction: Individual patient data meta-analysis. BMJ 2016, 353, i1855. [Google Scholar] [CrossRef] [PubMed]
- Farkas, R.H.; Unger, E.F.; Temple, R. Zolpidem and driving impairment—Identifying persons at risk. N. Engl. J. Med. 2013, 369, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Feghali, M.; Venkataramanan, R.; Caritis, S. Pharmacokinetics of drugs in pregnancy. Semin. Perinatol. 2015, 39, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Meade, T.W.; Dyer, S.; Howarth, D.J.; Imeson, J.D.; Stirling, Y. Antithrombin III and procoagulant activity: Sex differences and effects of the menopause. Br. J. Haematol. 1990, 74, 77–81. [Google Scholar] [CrossRef]
- Krobot, K.; Hense, H.W.; Cremer, P.; Eberle, E.; Keil, U. Determinants of plasma fibrinogen: Relation to body weight, waist-to-hip ratio, smoking, alcohol, age, and sex. Results from the second MONICA Augsburg survey 1989–1990. Arterioscler. Thromb. 1992, 12, 780–788. [Google Scholar] [CrossRef]
- Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009, 114, 1326–1331. [Google Scholar] [CrossRef]
- Kim, C.X.; Bailey, K.R.; Klee, G.G.; Ellington, A.A.; Liu, G.; Mosley, T.H., Jr.; Rehman, H.; Kullo, I.J. Sex and ethnic differences in 47 candidate proteomic markers of cardiovascular disease: The Mayo Clinic proteomic markers of arteriosclerosis study. PLoS ONE 2010, 5, e9065. [Google Scholar] [CrossRef]
- Tait, R.C.; Walker, I.D.; Islam, S.I.; McCall, F.; Conkie, J.A.; Mitchell, R.; Davidson, J.F. Influence of demographic factors on antithrombin III activity in a healthy population. Br. J. Haematol. 1993, 84, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Dykes, A.C.; Walker, I.D.; McMahon, A.D.; Islam, S.I.; Tait, R.C. A study of Protein S antigen levels in 3788 healthy volunteers: Influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br. J. Haematol. 2001, 113, 636–641. [Google Scholar] [CrossRef]
- Sanchez-Luceros, A.; Meschengieser, S.S.; Marchese, C.; Votta, R.; Casais, P.; Woods, A.I.; Nadal, M.V.; Salviu, M.J.; Lazzari, M.A. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul. Fibrinolysis 2003, 14, 647–651. [Google Scholar] [CrossRef]
- Meditec. A Comprehensive Guide to Normal Lab Values. Available online: https://www.meditec.com/resourcestools/medical-reference-links/normal-lab-values (accessed on 16 February 2019).
- Lam, C.S.; Cheng, S.; Choong, K.; Larson, M.G.; Murabito, J.M.; Newton-Cheh, C.; Bhasin, S.; McCabe, E.L.; Miller, K.K.; Redfield, M.M.; et al. Influence of sex and hormone status on circulating natriuretic peptides. J. Am. Coll. Cardiol. 2011, 58, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Lew, J.; Sanghavi, M.; Ayers, C.R.; McGuire, D.K.; Omland, T.; Atzler, D.; Gore, M.O.; Neeland, I.; Berry, J.D.; Khera, A.; et al. Sex-based differences in cardiometabolic biomarkers. Circulation 2017, 135, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Helm, T.; Varsi, K.; Flotre, C.H.; Lund, A.; Svingen, G.F.T.; Ueland, P.M.; Bjorke-Monsen, A.L. Plasma homoarginine concentrations according to use of hormonal contraception. Sci. Rep. 2018, 8, 12217. [Google Scholar] [CrossRef] [PubMed]
- The Royal College of Physicians and Surgeons of Canada. Clinical laboratory tests- reference values. Available online: http://www.royalcollege.ca/rcsite/search-e?N=4294967280&No=50&Nrpp=10 (accessed on 16 February 2019).
- Raghavan, D.; Jain, R. Increasing awareness of sex differences in airway diseases. Respirology 2016, 21, 449–459. [Google Scholar] [CrossRef]
- Bellemare, F.; Jeanneret, A.; Couture, J. Sex differences in thoracic dimensions and configuration. Am. J. Respir. Crit. Care Med. 2003, 168, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.H.; Kim, H.C.; Park, S.; Ihm, S.H.; Lee, H.Y. Gender differences in the association between serum gamma-glutamyltransferase and blood pressure change: A prospective community-based cohort study. J. Kor. Med. Sci. 2014, 29, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Mera, J.R.; Dickson, B.; Feldman, M. Influence of gender on the ratio of serum aspartate aminotransferase (AST) to alanine aminotransferase (ALT) in patients with and without hyperbilirubinemia. Dig. Dis. Sci. 2008, 53, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Khadapkar, R.; Sahu, P.S.; Das, B.R. Comparing age-wise reference intervals for serum creatinine concentration in a “Reality check” of the recommended cut-off. Ind. J. Clin. Biochem. 2006, 21, 90–94. [Google Scholar] [CrossRef]
- Gardner, M.D.; Scott, R. Age- and sex-related reference ranges for eight plasma constituents derived from randomly selected adults in a Scottish new town. J. Clin. Pathol. 1980, 33, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Groesbeck, D.; Kottgen, A.; Parekh, R.; Selvin, E.; Schwartz, G.J.; Coresh, J.; Furth, S. Age, gender, and race effects on cystatin C levels in US adolescents. Clin. J. Am. Soc. Nephrol. 2008, 3, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Cartier, A.; Cote, M.; Lemieux, I.; Perusse, L.; Tremblay, A.; Bouchard, C.; Despres, J.P. Sex differences in inflammatory markers: What is the contribution of visceral adiposity? Am. J. Clin. Nutr. 2009, 89, 1307–1314. [Google Scholar] [CrossRef]
- Campesi, I.; Occhioni, S.; Tonolo, G.; Cherchi, S.; Basili, S.; Carru, C.; Zinellu, A.; Franconi, F. Ageing/menopausal status in healthy women and ageing in healthy men differently affect cardiometabolic parameters. Int. J. Med. Sci. 2016, 13, 124–132. [Google Scholar] [CrossRef]
- Endrighi, R.; Hamer, M.; Steptoe, A. Post-menopausal women exhibit greater interleukin-6 responses to mental stress than older men. Ann. Behav. Med. 2016, 50, 564–571. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Campesi, I.; Scolamiero, E.; Pecce, R.; Caterino, M.; Cherchi, S.; Mercuro, G.; Tonolo, G.; Franconi, F. Serum metabolomic profiles suggest influence of sex and oral contraceptive use. Am. J. Transl. Res. 2014, 6, 614–624. [Google Scholar]
- Murphy, W.G. The sex difference in haemoglobin levels in adults—Mechanisms, causes, and consequences. Blood Rev. 2014, 28, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ashiru, D.A.; Patel, R.; Basit, A.W. Polyethylene glycol 400 enhances the bioavailability of a BCS class III drug (ranitidine) in male subjects but not females. Pharm. Res. 2008, 25, 2327–2333. [Google Scholar] [CrossRef]
- Koren, G.; Nordeng, H.; MacLeod, S. Gender differences in drug bioequivalence: Time to rethink practices. Clin. Pharmacol. Ther. 2013, 93, 260–262. [Google Scholar] [CrossRef]
- Ibarra, M.; Vazquez, M.; Fagiolino, P. Sex effect on average bioequivalence. Clin. Ther. 2017, 39, 23–33. [Google Scholar] [CrossRef]
- Institute of Medicine. Committee on understanding the biology of sex and gender differences. In Exploring the Biological Contributions to Human Health: Does Sex Matter? Wizemman, T.L., Pardue, M.L., Eds.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Fadiran, E.O.; Zhang, L. Effects of sex differences in the pharmacokinetics of drugs and their impact on the safety of medicines in women. In Medicines for Women; Harrison-Woolrych, M., Ed.; ADIS, Springer: Basel, Switzerland, 2015; pp. 41–68. [Google Scholar]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Schwartz, J.B. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin. Pharmacol. Ther. 2007, 82, 87–96. [Google Scholar] [CrossRef]
- Institute of Medicine. Women and Health Research: Ethical and Legal Issues of Including Women in Clinical Studies: Volume I; National Academies Press (US): Washington, DC, USA, 1994. [Google Scholar]
- Lange, B.; Mueller, J.K.; Leweke, F.M.; Bumb, J.M. How gender affects the pharmacotherapeutic approach to treating psychosis—A systematic review. Expert Opin. Pharmacother. 2017, 18, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Auro, K.; Joensuu, A.; Fischer, K.; Kettunen, J.; Salo, P.; Mattsson, H.; Niironen, M.; Kaprio, J.; Eriksson, J.G.; Lehtimaki, T.; et al. A metabolic view on menopause and ageing. Nat. Commun. 2014, 5, 4708. [Google Scholar] [CrossRef]
- Konstandi, M.; Johnson, E.O.; Lang, M.A. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci. Biobehav. Rev. 2014, 45, 149–167. [Google Scholar] [CrossRef]
- Fagiolino, P.; Vazquez, M.; Ibarra, M.; Magallanes, L.; Guevara, N.; Fotaki, N. Sex- and smoke-related differences in gastrointestinal transit of cyclosporin A microemulsion capsules. Eur. J. Pharm. Sci. 2014, 63, 140–146. [Google Scholar] [CrossRef]
- Copeland, V.; Parekh, A. FDA approved drug labels 2007–10: Dose adjustments for women based on exposure. In Proceedings of the Drug Information Association 2011 47th annual meeting, Chicago, IL, USA, 19–23 June 2011. [Google Scholar]
- Elahi, M.; Eshera, N.; Bambata, N.; Barr, H.; Lyn-Cook, B.; Beitz, J.; Rios, M.; Taylor, D.R.; Lightfoote, M.; Hanafi, N.; et al. The Food and Drug Administration Office of Women’s Health: Impact of science on regulatory policy: An update. J. Womens Health 2016, 25, 222–234. [Google Scholar] [CrossRef]
- Stewart, J.; Breslin, W.J.; Beyer, B.K.; Chadwick, K.; De Schaepdrijver, L.; Desai, M.; Enright, B.; Foster, W.; Hui, J.Y.; Moffat, G.J.; et al. Birth control in clinical trials: Industry survey of current use practices, governance, and monitoring. Ther. Innov. Regul. Sci. 2016, 50, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Campesi, I.; Sanna, M.; Zinellu, A.; Carru, C.; Rubattu, L.; Bulzomi, P.; Seghieri, G.; Tonolo, G.; Palermo, M.; Rosano, G.; et al. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function. Biol. Sex. Differ. 2012, 3, 4. [Google Scholar] [CrossRef]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Mori, T.A.; Beilin, L.J.; Oddy, W.H.; Hellmuth, C. Sex differences in the association of phospholipids with components of the metabolic syndrome in young adults. Biol. Sex. Differ. 2017, 8, 10. [Google Scholar] [CrossRef]
- Goverment of Canada. Guidance Document: Considerations for Inclusion of Women in Clinical Trials and Analysis of Sex Differences; Health Canada: Ottawa, ON, Canada, 2013.
- Institute of Medicine. Sex differences and implications for translational neuroscience research: Workshop summary. In Proceedings of the National Academies Collection: Reports funded by National Institutes of Health; Institute of Medicine: Washington, DC, USA, 2011. [Google Scholar]
- American College of Obstetricians and Gynecologists. Ethical considerations for including women as research participants. Available online: https://www.acog.org/Clinical-Guidance-and-Publications/Committee-Opinions/Committee-on-Ethics/Ethical-Considerations-for-Including-Women-as-Research-Participants (accessed on 16 February 2019).
- FDA. Pharmacokinetics in Pregnancy-Study Design, Data Analysis, and Recommendations for Labeling. Draft Guidance for Industry; CDER: Silver Spring, MA, USA, 2013.
- FDA. Pregnant Women: Scientific and Ethical Consoderations for Inclusion in Clinical Trials; Guidance for industry; U.S. Department of health and human services, Ed.; FDA: Silver Spring, MA, USA, 2018.
- Endicott, S.; Haas, D.M. The current state of therapeutic drug trials in pregnancy. Clin. Pharmacol. Ther. 2012, 92, 149–150. [Google Scholar] [CrossRef]
- Illamola, S.M.; Bucci-Rechtweg, C.; Costantine, M.M.; Tsilou, E.; Sherwin, C.M.; Zajicek, A. Inclusion of pregnant and breastfeeding women in research—Efforts and initiatives. Br. J. Clin. Pharmacol. 2018, 84, 215–222. [Google Scholar] [CrossRef]
- Macklin, R. Enroling pregnant women in biomedical research. Lancet 2010, 375, 632–633. [Google Scholar] [CrossRef]
- Rodger, M.A.; Makropoulos, D.; Walker, M.; Keely, E.; Karovitch, A.; Wells, P.S. Participation of pregnant women in clinical trials: Will they participate and why? Am. J. Perinatol. 2003, 20, 69–76. [Google Scholar] [CrossRef]
- Ventura, S.J.; Curtin, S.C.; Abma, J.C.; Henshaw, S.K. Estimated pregnancy rates and rates of pregnancy outcomes for the United States, 1990–2008. Natl. Vital Stat. Rep. 2012, 60, 1–21. [Google Scholar] [PubMed]
- Yogev, Y.; Melamed, N.; Bardin, R.; Tenenbaum-Gavish, K.; Ben-Shitrit, G.; Ben-Haroush, A. Pregnancy outcome at extremely advanced maternal age. Am. J. Obstet. Gynecol. 2010, 203, e551–e557. [Google Scholar] [CrossRef]
- Koren, G.; Pariente, G. Pregnancy—Associated changes in pharmacokinetics and their clinical implications. Pharm. Res. 2018, 35, 61. [Google Scholar] [CrossRef] [PubMed]
- Gee, R.E.; Wood, S.F.; Schubert, K.G. Women’s health, pregnancy, and the U.S. Food and Drug Administration. Obstet. Gynecol. 2014, 123, 161–165. [Google Scholar] [CrossRef]
- Kallen, B. The problem of confounding in studies of the effect of maternal drug use on pregnancy outcome. Obstet. Gynecol. Int. 2012, 2012, 148616. [Google Scholar] [CrossRef]
- National Institutes of Health; US GAO. Better Oversight Needed to Help Ensure Continued Progress Including Women in Health Research; U.S. Government Accountability Office: Washington, DC, USA, 2015.
- Ke, A.B.; Nallani, S.C.; Zhao, P.; Rostami-Hodjegan, A.; Isoherranen, N.; Unadkat, J.D. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab. Dispos. 2013, 41, 801–813. [Google Scholar] [CrossRef]
- Anderson, P.O. Drugs in lactation. Pharm. Res. 2018, 35, 45. [Google Scholar] [CrossRef]
- Legato, M.J. Gender-specific medicine in the genomic era. Clin. Sci. 2016, 130, 1–7. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Institute of Medicine. Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Pusztai, L.; Hatzis, C.; Andre, F. Reproducibility of research and preclinical validation: Problems and solutions. Nat. Rev. Clin. Oncol. 2013, 10, 720–724. [Google Scholar] [CrossRef]
- Das, M.; Borah, N.C.; Ghose, M.; Choudhury, N. Reference ranges for serum uric acid among healthy Assamese people. Biochem. Res. Int. 2014, 2014, 171053. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex impact on biomarkers, pharmacokinetics and pharmacodynamics. Curr. Med. Chem. 2017, 24, 2561–2575. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; Cooper, J.D.; Penninx, B.W.; Bahn, S. Variation in serum biomarkers with sex and female hormonal status: Implications for clinical tests. Sci. Rep. 2016, 6, 26947. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Niiranen, T.J.; Ojeda, F.M.; Gianfagna, F.; Blankenberg, S.; Njolstad, I.; Vartiainen, E.; Sans, S.; Pasterkamp, G.; Hughes, M.; et al. Sex differences and similarities in strial fibrillation epidemiology, risk factors, and mortality in community cohorts: Results from the BiomarCaRE Consortium (Biomarker for Cardiovascular Risk Assessment in Europe). Circulation 2017, 136, 1588–1597. [Google Scholar] [PubMed]
- Morera-Fumero, A.L.; Abreu-Gonzalez, P.; Henry-Benitez, M.; Fernandez-Lopez, L.; Diaz-Mesa, E.; Del Rosario Cejas-Mendez, M.; Guillen-Pino, F. Day/night and summer/winter changes in serum total antioxidant capacity. Med. Chem. 2018, 14, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Cain, S.W.; Chang, A.M.; Vlasac, I.; Tare, A.; Anderson, C.; Czeisler, C.A.; Saxena, R. Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women. J. Biol. Rhythms 2017, 32, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J.; et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef] [PubMed]
- Ruoppolo, M.; Scolamiero, E.; Caterino, M.; Mirisola, V.; Franconi, F.; Campesi, I. Female and male human babies have distinct blood metabolomic patterns. Mol. Biosyst. 2015, 11, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Maekawa, K.; Saito, K.; Senoo, Y.; Urata, M.; Murayama, M.; Tajima, Y.; Kumagai, Y.; Saito, Y. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS ONE 2014, 9, e91806. [Google Scholar] [CrossRef]
- Rist, M.J.; Roth, A.; Frommherz, L.; Weinert, C.H.; Kruger, R.; Merz, B.; Bunzel, D.; Mack, C.; Egert, B.; Bub, A.; et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS ONE 2017, 12, e0183228. [Google Scholar] [CrossRef]
- Trabado, S.; Al-Salameh, A.; Croixmarie, V.; Masson, P.; Corruble, E.; Feve, B.; Colle, R.; Ripoll, L.; Walther, B.; Boursier-Neyret, C.; et al. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS ONE 2017, 12, e0173615. [Google Scholar] [CrossRef]
- Innominato, P.F.; Roche, V.P.; Palesh, O.G.; Ulusakarya, A.; Spiegel, D.; Levi, F.A. The circadian timing system in clinical oncology. Ann. Med. 2014, 46, 191–207. [Google Scholar] [CrossRef]
- Salvatore, J.E.; Cho, S.B.; Dick, D.M. Genes, environments, and sex differences in alcohol research. J. Stud. Alcohol Drugs 2017, 78, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Kreatsoulas, C.; Anand, S. Considering race/ethnicity and socio-economic status in randomized controlled trials. A commentary on Frampton et al.’s systematic review generalizing trial findings and tackling health disparities in asthma research. Soc. Sci. Med. 2009, 69, 1155–1156. [Google Scholar] [CrossRef] [PubMed]
- Maney, D.L. Perils and pitfalls of reporting sex differences. Philos. Trans. R Soc. B Biol. Sci. 2016, 371, 20150119. [Google Scholar] [CrossRef] [PubMed]
- Chorghade, M.; Liebman, M.; Lushington, G.; Naylor, S.; Chaguturu, R. Translational chemical biology. Gap assessment for advancing drug discovery, development and precision medicine. Drug. Discov. World 2017, 1, 72–90. [Google Scholar]
Phase | Definition |
---|---|
0 | This phase, also called human micro-dosing studies, includes the administration of single sub-therapeutic doses of the studied drug to a small number of healthy subjects (10 to 15), to gather preliminary data on pharmacokinetics (PK). |
1 | This phase tests side effects, maximum tolerated dose and the dose-limiting toxicity, and drug formulation in a small number (20–100) of (often healthy) individuals. |
2 | This phase assesses the preliminary clinical safety and efficacy of selected doses in a dozen to a hundred patients with specific diseases. |
3 | This phase includes thousands of patients who have the disease or condition, to confirm clinical efficacy, effectiveness, and safety (confirmatory or pivotal studies). |
4 | Post-authorization safety studies, real world studies, and registries. |
Race or Ethnic Group, Countries Where People Lived or/and Live (Past and Present), History of Family |
---|
Education (years) |
Work (type, years, place, and so on) |
Economic and social status |
Marital status |
Social connection or isolation |
Stressors (Violence, intimate partner violence, loss of work, loss of a loved one, death in the family or among friends, lack of job, caregiver, and so on) |
Diseases (Depression, HIV, and so on) |
Physical activity (Days and hours for week engaged in moderate or strenuous exercise) |
Tobacco use (Smoked cigarettes per day; and ex-smokers) |
Alcohol use (How often and how much alcohol consumed) |
Use of prescribed drugs (including HC and HRT), over-the-counter medications, and herbal and nutraceutical use, present and past radiation therapy |
Sexual and reproductive history For women: Age of menarche and menstrual history; perimenopause/menopause with associated symptoms; polycystic ovary syndrome; obstetric history (list of all pregnancies and the outcome of each, including abortion; type of anesthesia for delivery (if any); weight of the fetus at delivery; any maternal, fetal, or neonatal complications; and whether the child is currently living should be recorded). |
Parameters | P vs NP | M vs W | Comments | References |
---|---|---|---|---|
Body height | = | +M | [98] | |
Body weight | +P | +M | Variations in body weight affect drug distribution. | [98,99] |
Body surface area | +P | +M | Variations in body surface affect drug distribution. | [98,99] |
Fat tissue | +P | +W | Variations in body composition affect drug distribution. Lipophilic drugs may have a greater volume distribution in women. | [98,99] |
Skeletal muscle | +M | [98] | ||
Total body water | +P | +M | Changes during menstrual cycle. | [98,99] |
Plasma volume | +P | +M | Changes during menstrual cycle. | [98,99] |
Blood volume | +M | Even if it is corrected for body weight. Thus, metabolite concentration in blood is diluted more in men than in women, resulting in even greater differences between sexes than if this factor is not considered. | [12,98,99] | |
Albumin | −P | [99] | ||
Cardiac output | +P* | −M | [13,95] | |
Heart rate | +P | −M | [10,99] | |
QTc interval | -M | [10] | ||
Fibrinogen | +P | −M = | Depends on age, BMI, alcohol consumption in both sexes, and on cigarette smoking, especially in men. Increases with menopause. | [100,101,102] |
Factor II | −M | [103] | ||
Factor V | −M | [103] | ||
Factor VII | −M | Increases with menopause. | [100,103] | |
Factor VIII | +P | −M | [102,103] | |
Factor X | +P | [99] | ||
D-dimer | −M | [103] | ||
Fibrinolytic activity | −P | [102] | ||
Antithrombin III | −P | +M, −M | In pre-menopausal women, is lower than men. In post-menopausal, is higher in women than men and decreases with HRT. | [100,102] |
Total protein S (tPS) | -P | +M, = | In women, increasing age was associated with a significant increase in tPS levels. OC lowered it. | [102,104] |
Free protein S (fPS) | +M | In women, age had no effect on fPS after adjustment for menopausal state. Not influenced by HRT. | [105] | |
Von Willebrand factor | +P | −M | Increased markedly from non-pregnant values, up to the end of early puerperium. | [103,106] |
Myoglobin | +M | [107] | ||
NT-proBNP | −M | Lower in post-menopausal than premenopausal women and in OC users. | [103,108,109] | |
Homoarginine | +M | Influenced by OC | [109,110] | |
Creatinphosphokinase | +M | [111] | ||
Total lung capacity | −P | +M | [99,112,113] | |
Residual volume | −P | [99] | ||
Tidal volume | +P | [99] | ||
Forced vital capacity | −M | [112] | ||
Lung function | +M | [112] | ||
Airway diameters | +M | [113] | ||
Diffusion area | +M | [113] | ||
Portal vein flow | +P | [99] | ||
Artery hepatic flow | + | But the increase is not significant | [99] | |
Ỵ-glutamyltranspeptidase | +M | [114] | ||
Aspartate amino transferase | +M | [115] | ||
Alanine aminotransferase | +M | [115] | ||
COMT | +M | [11] | ||
CYP1A2 | -P | +M | Inducibility is increased (20%) by St. Johns wort in women only. | [11,99] |
CYP2A6 | +W | Increased by OC. | [11] | |
CYP3A4 | +P | +W | Inducibility may present SGD. For example, St. Johns wort increases its levels of 50% in men and 90% in women. | [11,99] |
CYP2B6 | +P | +M | [11,99] | |
CYP2C9 | +P | = | [11,99] | |
CYP2C19 | −P | = | Influenced by OC. | [11,99] |
CYP2D6 | +P | +M | [11,99] | |
CYP2E1 | +P | +M | [11,99] | |
UGT | +P | +M | [11,99] | |
NAT2 | −P | +M | [11,99] | |
Acid secretion | −P | +M | Men have < absorption of weak acids and > absorption of weak bases; P > absorption of weak bases and < absorption of weak acids. | [11,99] |
Mucus secretion | +P | +M | [11,99] | |
Gastric emptying | −P | +M | [11,99] | |
Intestinal mobility | −P | +M | P may have a major absorption of drug versus NP; NP may have a major absorption of drug versus men. | [11,99] |
Microbiome | = (1st trimester); after it changes | Diverge | [86] | |
Glomerular filtration rate | +P | +M | Depends on body weight and serum creatinine levels. If one considers body area, GFR lower is lower by about 10%–25%. | [98,99] |
Renal Blood flow | +P | +M | When standardized for body surface area. | [98] |
Tubular secretion | +P | +M | When standardized for body surface area. | [98] |
Tubular reabsorption | +P | +M | When standardized for body surface area. | [98] |
Creatinine | −P | +M | [99,116] | |
Uric acid | -P | +M | [117] | |
Urea | −P | [99] | ||
Cystatin | +M | [109,118] | ||
IL-6 | = −W | Influenced by menopause, age, and body weight. Post-menopausal women > exhibit IL-6 responses to acute stress. | [119,120,121] | |
IL-18 | +M | [109] | ||
Tumor necrosis factor-alpha | −M, +M | Depends on menopausal state, age, and body weight; subcutaneous fat. | [119,120] | |
CRP | −M | CRP appears to be due to a greater accumulation of subcutaneous fat. | [119] | |
ICAM | −M | [103] | ||
Hsp27 | −M | [103] | ||
Myeloperoxidase | −M | [103] | ||
RAGE | −M | [103,109] | ||
Total Cholesterol | −M | After body weight correction; more elevated in OC users. In absence of body weight normalisation | [120] | |
[109] | ||||
HDL | −M | Increased by OC. | [122] | |
LDL | +M, = | [122] | ||
Triglycerides | = +M | In some studies, difference disappears when body composition is considered. Increased by OC. | [122] | |
Lp (a) | −M | [103] | ||
ApoA-I | −M | [103] | ||
ApoC-III | −M | [103] | ||
ApoE, | −M | [103] | ||
Larger LDL particle size | −M | [103] | ||
Leptin | −M | [103] | ||
Adiponectin | -M | [103] | ||
Resistin | −M | [103] | ||
RBC | +M | [111] | ||
Haemoglobin | +M | Fertile age. | [111] | |
Hematocrit | +M | [111] | ||
Iron | +M | [111] | ||
Ferritin | =, +M | Fertile age. | [111,123] | |
Erythropoietin | +M | [123] | ||
White blood cells | =, −M | [120] | ||
Platelets | =, −M | Count varies with the menstrual cycle and body weight | [120] | |
Malondialdehyde | −M, = | Fertile women > than men; post-menopausal women = men > 45 years old. After body weight correction, the differences are significant between fertile women and young men; and between post-menopausal women and men > 45 years old. | [120] | |
Serum carbonyls | = | [120] | ||
Arginine | +M, = | In men under the age of 45 years; the difference disappeared after correcting for body weight. | [120] | |
ADMA | =, −M | Men < women after body weight correction. | [109,120] | |
SDMA | =, −M | Men < women after body weight correction. | [109,120] | |
ADMA/SDMA | = | [120] | ||
ADMA/arginine | =, −M | Men < fertile women. | [120] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells 2019, 8, 476. https://doi.org/10.3390/cells8050476
Franconi F, Campesi I, Colombo D, Antonini P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells. 2019; 8(5):476. https://doi.org/10.3390/cells8050476
Chicago/Turabian StyleFranconi, Flavia, Ilaria Campesi, Delia Colombo, and Paola Antonini. 2019. "Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies" Cells 8, no. 5: 476. https://doi.org/10.3390/cells8050476
APA StyleFranconi, F., Campesi, I., Colombo, D., & Antonini, P. (2019). Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells, 8(5), 476. https://doi.org/10.3390/cells8050476