Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Culture Conditions
2.2. Plasmids
2.3. Bulk Autophagy Assay
2.4. Pexophagy Assay
2.5. Ribophagy Assay
2.6. Immunodetection
2.7. Fluorescence Microscopy
2.8. Statistical Analysis
3. Results
3.1. The Biosynthetic Transport via the Carboxy-Peptidase Y (CPY) Pathway Occurs in vac8Δ Cells
3.2. Vac8 Is Required for Efficient Bulk Autophagy of the Cytosolic Protein Pgk1
3.3. Vac8 is Essential for Pexophagy in S. cerevisiae
3.4. Vac8 is Essential for Ribophagy
3.5. Palymitoylation of Vac8 Controls Pexophagy and Ribophagy
3.6. The Vacuolar Fusion-Defect of Glucose-Grown vac8Δ Cells Can Be Complemented by Oleic Acid and Glycerol
3.7. The Defect of Peroxisome Degradation in vac8Δ Cells Can Be Complemented by Oleic Acid and Glycerol
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.C.; Kane, P.M. The yeast lysosome-like vacuole: Endpoint and crossroads. Biochim. Biophys. Acta. 2009, 1793, 650–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Magraoui, F.; Reidick, C.; Meyer, H.E.; Platta, H.W. Autophagy-related deubiquitinating enzymes involved in health and disease. Cells 2015, 4, 596–621. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, D.; Rohde, M.; Klionsky, D.J.; Rüdiger, M. Yel013p (vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane. J. Cell Sci. 1998, 111, 3109–3118. [Google Scholar] [PubMed]
- Pan, X.; Goldfarb, D.S. Yeb3/vac8 encodes a myristylated armadillo protein of the saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J. Cell Sci. 1998, 111, 2137–2147. [Google Scholar] [PubMed]
- Wang, Y.X.; Catlett, N.L.; Weisman, L.S. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J. Cell Biol. 1998, 140, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.V.; Nice, D.C.r.; Nau, J.J.; Weisman, L.S.; Kamada, Y.; Keizer-Gunnink, I.; Funakoshi, T.; Veenhuis, M.; Ohsumi, Y.; Klionsky, D.J. Apg13p and vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J. Biol. Chem. 2000, 275, 25840–25849. [Google Scholar] [CrossRef]
- Veit, M.; Laage, R.; Dietrich, L.; Wang, L.; Ungermann, C. Vac8p release from the snare complex and its palmitoylation are coupled and essential for vacuole fusion. EMBO J. 2001, 20, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, J.; Kim, H.I.; Lee, M.; Ko, Y.J.; Lee, S.; Jun, Y.; Lee, C. Mechanistic insight into the nucleus-vacuole junction based on the vac8p-nvj1p crystal structure. Proc. Natl. Acad. Sci. USA 2017, 114, E4539–E4548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Kauffman, E.J.; Duex, J.E.; Weisman, L.S. Fusion of docked membranes requires the armadillo repeat protein vac8p. J. Biol. Chem. 2001, 276, 35133–35140. [Google Scholar] [CrossRef]
- Tang, F.; Kauffman, E.J.; Novak, J.L.; Nau, J.J.; Catlett, N.L.; Weisman, L.S. Regulated degradation of a class v myosin receptor directs movement of the yeast vacuole. Nature 2003, 422, 87–92. [Google Scholar] [CrossRef]
- Pan, X.; Roberts, P.; Chen, Y.; Kvam, E.; Shulga, N.; Huang, K.; Lemmon, S.; Goldfarb, D.S. Nucleus-vacuole junctions in saccharomyces cerevisiae are formed through the direct interaction of vac8p with nvj1p. Mol. Biol. Cell. 2000, 11, 2445–2457. [Google Scholar] [CrossRef]
- Hou, H.; Subramanian, K.; LaGrassa, T.J.; Markgraf, D.; Dietrich, L.E.; Urban, J.; Decker, N.; Ungermann, C. The dhhc protein pfa3 affects vacuole-associated palmitoylation of the fusion factor vac8. Proc. Natl. Acad. Sci. USA 2005, 102, 17366–17371. [Google Scholar] [CrossRef] [PubMed]
- Nadolski, M.J.; Linder, M.E. Molecular recognition of the palmitoylation substrate vac8 by its palmitoyltransferase pfa3. J. Biol. Chem. 2009, 284, 17720–17730. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, F.; Weisman, L.S. Palmitoylation plays a role in targeting vac8p to specific membrane subdomains. Traffic 2006, 7, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.; Dietrich, L.E.; Hou, H.; LaGrassa, T.J.; Meiringer, C.T.; Ungermann, C. Palmitoylation determines the function of vac8 at the yeast vacuole. J. Cell Sci. 2006, 119, 2477–2485. [Google Scholar] [CrossRef]
- Schneiter, R.; Guerra, C.E.; Lampl, M.; Tatzer, V.; Zellnig, G.; Klein, H.L.; Kohlwein, S.D. A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme a carboxylase, affects the morphology of the yeast vacuole through acylation of vac8p. Mol. Cell. Biol. 2000, 20, 2984–2995. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived from saccharomyces cerevisiae s288c: A useful set of strains and plasmids for pcr-mediated gene disruption and other applications. Yeast 1998, 14, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, R.; Veenhuis, M.; Mertens, D.; Kunau, W.-H. Isolation of peroxisome-deficient mutants of saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1989, 86, 5419–5423. [Google Scholar] [CrossRef] [PubMed]
- Welter, E.; Thumm, M.; Krick, R. Quantification of nonselective bulk autophagy in s. Cerevisiae using pgk1-gfp. Autophagy 2010, 6, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Mason, D.A.; Shulga, N.; Undavai, S.; Ferrando-May, E.; Rexach, M.F.; Goldfarb, D.S. Increased nuclear envelope permeability and pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res. 2005, 12, 1237–1251. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platta, H.W.; Girzalsky, W.; Erdmann, R. Ubiquitination of the peroxisomal import receptor pex5p. Biochem. J. 2004, 384, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Kerssen, D.; Hambruch, E.; Klaas, W.; Platta, H.W.; de Kruijff, B.; Erdmann, R.; Kunau, W.H.; Schliebs, W. Membrane association of the cycling peroxisome import receptor pex5p. J. Biol. Chem. 2006, 281, 27003–27015. [Google Scholar] [CrossRef] [PubMed]
- El Magraoui, F.; Brinkmeier, R.; Mastalski, T.; Hupperich, A.; Strehl, C.; Schwerter, D.; Girzalsky, W.; Meyer, H.E.; Warscheid, B.; Erdmann, R.; et al. The deubiquitination of the pts1-import receptor pex5p is required for peroxisomal matrix protein import. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Harding, T.M.; Morano, K.A.; Scott, S.V.; Klionsky, D.J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Hecht, K.A.; O’Donnell, A.F.; Brodsky, J.L. The proteolytic landscape of the yeast vacuole. Cell. Logist. 2014, 4, e28023. [Google Scholar] [CrossRef] [Green Version]
- Wolff, A.M.; Din, N.; Petersen, J.G. Vacuolar and extracellular maturation of saccharomyces cerevisiae proteinase a. Yeast 1996, 12, 823–832. [Google Scholar] [CrossRef]
- Sørensen, S.O.; van den Hazel, H.B.; Kielland-Brandt, M.C.; Winther, J.R. Ph-dependent processing of yeast procarboxypeptidase y by proteinase a in vivo and in vitro. Eur. J. Biochem. 1994, 220, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.; Mandiyan, S.; Nelson, N. A conserved gene encoding the 57-kda subunit of the yeast vacuolar h+-atpase. J. Biol. Chem. 1989, 264, 1775–1778. [Google Scholar] [PubMed]
- Boutouja, F.; Stiehm, C.M.; Platta, H.W. Mtor: A cellular regulator interface in health and disease. Cells 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Heitman, J.; Movva, N.R.; Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.; Yorimitsu, T.; Reggiori, F.; Legakis, J.E.; Wang, C.W.; Klionsky, D.J. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 2005, 16, 3438–3453. [Google Scholar] [CrossRef] [PubMed]
- Grimm, I.; Saffian, D.; Platta, H.W.; Erdmann, R. The aaa-type atpases pex1p and pex6p and their role in peroxisomal matrix protein import in saccharomyces cerevisiae. Biochim. Biophys. Acta 2012, 1823, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Platta, H.W.; Brinkmeier, R.; Reidick, C.; Galiani, S.; Clausen, M.P.; Eggeling, C. Regulation of peroxisomal matrix protein import by ubiquitination. Biochim. Biophys. Acta 2016, 1863, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Klionsky, D.J. The quantitative pho8delta60 assay of nonspecific autophagy. Methods Enzymol. 2008, 451, 33–42. [Google Scholar] [PubMed]
- Chang, T.; Schroder, L.A.; Thomson, J.M.; Klocman, A.S.; Tomasini, A.J.; Strømhaug, P.E.; Dunn, W.A.J. Ppatg9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in pichia pastoris. Mol. Biol. Cell. 2005, 16, 4941–4953. [Google Scholar] [CrossRef]
- Fry, M.R.; Thomson, J.M.; Tomasini, A.J.; Dunn, W.A.J. Early and late molecular events of glucose-induced pexophagy in pichia pastoris require vac8. Autophagy 2006, 2, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Nazarko, T.Y.; Polupanov, A.S.; Manjithaya, R.R.; Subramani, S.; Sibirny, A.A. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol. Biol. Cell. 2007, 18, 106–118. [Google Scholar] [CrossRef]
- Hutchins, M.U.; Veenhuis, M.; Klionsky, D.J. Peroxisome degradation in saccharomyces cerevisiae is dependent on machinery of macroautophagy and the cvt pathway. J. Cell Sci. 1999, 112, 4079–4087. [Google Scholar]
- Lang, T.; Reiche, S.; Straub, M.; Bredschneider, M.; Thumm, M. Autophagy and the cvt pathway both depend on aut9. J. Bacteriol. 2000, 182, 2125–2133. [Google Scholar] [CrossRef]
- Wickner, W. Membrane fusion: Five lipids, four snares, three chaperones, two nucleotides, and a rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 2010, 26, 115–136. [Google Scholar] [CrossRef]
- Starr, M.L.; Fratti, R.A. The participation of regulatory lipids in vacuole homotypic fusion. Trends Biochem. Sci. 2018. [Google Scholar] [CrossRef]
- Haas, A.; Wickner, W. Homotypic vacuole fusion requires sec17p (yeast alpha-snap) and sec18p (yeast nsf). EMBO J. 1996, 15, 3296–3305. [Google Scholar] [CrossRef]
- Meiringer, C.T.; Ungermann, C. Probing protein palmitoylation at the yeast vacuole. Methods 2006, 40, 171–176. [Google Scholar] [CrossRef]
- Wagner, S.; Paltauf, F. Generation of glycerophospholipid molecular species in the yeast saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast 1994, 10, 1429–1437. [Google Scholar] [CrossRef]
- Das, S.; Rand, R.P. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 1984, 124, 491–496. [Google Scholar] [CrossRef]
- Seddon, J.M. An inverse face-centered cubic phase formed by diacylglycerol-phosphatidylcholine mixtures. Biochemistry (Mosc). 1990, 29, 7997–8002. [Google Scholar] [CrossRef]
- Sánchez-Migallón, M.P.; Aranda, F.J.; Gómez-Fernández, J.C. The dissimilar effect of diacylglycerols on ca(2+)-induced phosphatidylserine vesicle fusion. Biophys J. 1995, 68, 558–566. [Google Scholar] [CrossRef]
- Villar, A.V.; Alonso, A.; Goñi, F.M. Leaky vesicle fusion induced by phosphatidylinositol-specific phospholipase c: Observation of mixing of vesicular inner monolayers. Biochemistry 2000, 39, 14012–14018. [Google Scholar] [CrossRef] [PubMed]
- Miner, G.E.; Starr, M.L.; Hurst, L.R.; Fratti, R.A. Deleting the dag kinase dgk1 augments yeast vacuole fusion through increased ypt7 activity and altered membrane fluidity. Traffic 2017, 18, 315–329. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutouja, F.; Stiehm, C.M.; Reidick, C.; Mastalski, T.; Brinkmeier, R.; El Magraoui, F.; Platta, H.W. Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells 2019, 8, 661. https://doi.org/10.3390/cells8070661
Boutouja F, Stiehm CM, Reidick C, Mastalski T, Brinkmeier R, El Magraoui F, Platta HW. Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells. 2019; 8(7):661. https://doi.org/10.3390/cells8070661
Chicago/Turabian StyleBoutouja, Fahd, Christian M. Stiehm, Christina Reidick, Thomas Mastalski, Rebecca Brinkmeier, Fouzi El Magraoui, and Harald W. Platta. 2019. "Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae" Cells 8, no. 7: 661. https://doi.org/10.3390/cells8070661
APA StyleBoutouja, F., Stiehm, C. M., Reidick, C., Mastalski, T., Brinkmeier, R., El Magraoui, F., & Platta, H. W. (2019). Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells, 8(7), 661. https://doi.org/10.3390/cells8070661