Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sensitivity Measurement of ARV7 Detection
2.2. Patients, Controls, and Samples
2.3. PBMC Subpopulation Isolation and TCD4+ Selection
2.4. PBMC Isolation, RNA Extraction and qRT-PCR
2.5. CTC Enrichment
2.6. In Vitro Experiments
2.7. Statistical Analysis
3. Results
3.1. ARV7 Amplification Efficiency, Sensitivity, and Sequence Confirmation
3.2. ARV7 and ARFL Expression in PBMC from Non-Cancer Patients
3.3. ARV7, ARFL, KLK3, and PTPRC (CD45) Expression in CTC-Enriched Samples
3.4. ARV7 and ARFL Expression in PBMC and AA/E Activity
3.5. ARV7 and ARFL Expression in PBMC and Taxane Activity
3.6. Variations in ARV7 and ARFL Expression Levels in PBMC after Taxanes
3.7. ARV7 and ARFL Expression in CTC and Benefit to Taxanes
3.8. ARV7 and Taxane Activity In Vitro
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mülders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- Zhu, M.-L.; Horbinski, C.M.; Garzotto, M.; Qian, D.Z.; Beer, T.M.; Kyprianou, N. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010, 70, 7992–8002. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Lu, C.; Mostaghel, E.A.; Yegnasubramanian, S.; Gurel, M.; Tannahill, C.; Edwards, J.; Isaacs, W.B.; Nelson, P.S.; Bluemn, E.; et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012, 72, 3457–3462. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [Green Version]
- Todenhöfer, T.; Azad, A.; Stewart, C.; Gao, J.; Eigl, B.J.; Gleave, M.E.; Joshua, A.M.; Black, P.C.; Chi, K.N. AR-V7 Transcripts in Whole Blood RNA of Patients with Metastatic Castration Resistant Prostate Cancer Correlate with Response to Abiraterone Acetate. J. Urol. 2017, 197, 135–142. [Google Scholar] [CrossRef]
- Qu, F.; Xie, W.; Nakabayashi, M.; Zhang, H.; Jeong, S.H.; Wang, X.; Komura, K.; Sweeney, C.J.; Sartor, O.; Lee, G.M.; et al. Association of AR-V7 and Prostate-Specific Antigen RNA Levels in Blood with Efficacy of Abiraterone Acetate and Enzalutamide Treatment in Men with Prostate Cancer. Clin. Cancer Res. 2017, 23, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; et al. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol. 2015, 1, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Z.; Tang, K.; Zhou, H.; Liu, H.; Yan, L.; Guan, W.; Chen, K.; Xu, H.; Ye, Z. Prognostic Value of Androgen Receptor Splice Variant 7 in the Treatment of Castration-resistant Prostate Cancer with Next generation Androgen Receptor Signal Inhibition: A Systematic Review and Meta-analysis. Eur. Urol. Focus 2017, 4, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016, 2, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Antonarakis, E.S.; Gjyrezi, A.; Galletti, G.; Kim, S.; Worroll, D.; Stewart, J.; Zaher, A.; Szatrowski, T.P.; Ballman, K.V.; et al. Expression of AR-V7 and Arv (567es) in Circulating Tumor Cells Correlates with Outcomes to Taxane Therapy in Men with Metastatic Prostate Cancer Treated in TAXYNERGY. Clin. Cancer Res. 2019, 25, 1880–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurentino, S.S.; Pinto, P.I.; Tomas, J.; Cavaco, J.E.; Sousa, M.; Barros, A.; Power, D.M.; Canario, A.V.; Socorro, S. Identification of androgen receptor variants in testis from humans and other vertebrates. Andrologia 2013, 45, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.M.; Batista, R.L.; Rodrigues, A.D.S.; Nishi, M.Y.; Costa, E.M.; Domenice, S.; Carvalho, L.R.; Mendonca, B.B. Androgen receptor mRNA analysis from whole blood: A low-cost strategy for detection of androgen receptor gene splicing defects. Clin. Genet. 2018, 94, 489–490. [Google Scholar] [CrossRef]
- Marín-Aguilera, M.; Reig, O.; Lozano, J.J.; Jimenez, N.; García-Recio, S.; Erill, N.; Gaba, L.; Tagliapietra, A.; Ortega, V.; Carrera, G.; et al. Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer. Oncotarget 2015, 6, 10604–10616. [Google Scholar] [CrossRef] [Green Version]
- Reig, Ò.; Marín-Aguilera, M.; Carrera, G.; Jiménez, N.; Paré, L.; García-Recio, S.; Gaba, L.; Pereira, M.V.; Fernandez, P.; Prat, A.; et al. TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 70, 709–713. [Google Scholar] [CrossRef]
- Marín-Aguilera, M.; Reig, Ò.; Milà-Guasch, M.; Font, A.; Domenech, M.; Rodríguez-Vida, A.; Carles, J.; Suárez, C.; Del Alba, A.G.; Jiménez, N.; et al. The influence of treatment sequence in the prognostic value of TMPRSS2-ERG as biomarker of taxane resistance in castration-resistant prostate cancer. Int. J. Cancer 2019, 7, 1970–1981. [Google Scholar] [CrossRef]
- Scher, H.I.; Halabi, S.; Tannock, I.; Morris, M.J.; Sternberg, C.N.; Carducci, M.A.; Eisenberger, M.A.; Higano, C.; Bubley, G.J.; Dreicer, R.; et al. Design and End Points of Clinical Trials for Patients With Progressive Prostate Cancer and Castrate Levels of Testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 2008, 26, 1148–1159. [Google Scholar] [CrossRef]
- Eisenhauer, E.; Therasse, P.; Bogaerts, J.; Schwartz, L.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Krause, W.C.; Shafi, A.A.; Nakka, M.; Weigel, N.L. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells. Int. J. Biochem. Cell Boil. 2014, 54, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhtar, E.; Adhami, V.M.; Siddiqui, I.A.; Verma, A.K.; Mukhtar, H. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells. Mol. Cancer Ther. 2016, 15, 2863–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hothorn, T.; Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003, 43, 121–137. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Chuang, K.-H.; Altuwaijri, S.; Li, G.; Lai, J.-J.; Chu, C.-Y.; Lai, K.-P.; Lin, H.-Y.; Hsu, J.-W.; Keng, P.; Wu, M.-C.; et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 2009, 206, 1181–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimir, M.; Ma, Y.; Jeffreys, S.A.; Opperman, T.; Young, F.; Khan, T.; Ding, P.; Chua, W.; Balakrishnar, B.; Cooper, A.; et al. Detection of AR-V7 in Liquid Biopsies of Castrate Resistant Prostate Cancer Patients: A Comparison of AR-V7 Analysis in Circulating Tumor Cells, Circulating Tumor RNA and Exosomes. Cells 2019, 8, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, T.; Okuno, Y.; Hattori-Kato, M.; Zaitsu, M.; Mikami, K. Detection of AR-V7 mRNA in whole blood may not predict the effectiveness of novel endocrine drugs for castration-resistant prostate cancer. Res. Rep. Urol. 2016, 8, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Zhu, Y.; Silberstein, J.L.; Taylor, M.N.; Maughan, B.L.; Denmeade, S.R.; et al. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J. Clin. Oncol. 2017, 35, 2149–2156. [Google Scholar] [CrossRef]
- Onstenk, W.; Sieuwerts, A.M.; Kraan, J.; Van, M.; Nieuweboer, A.J.; Mathijssen, R.H.; Hamberg, P.; Meulenbeld, H.J.; De Laere, B.; Dirix, L.Y.; et al. Efficacy of Cabazitaxel in Castration-resistant Prostate Cancer Is Independent of the Presence of AR-V7 in Circulating Tumor Cells. Eur. Urol. 2015, 68, 939–945. [Google Scholar] [CrossRef]
- Scher, H.I.; Graf, R.P.; Schreiber, N.A.; Jayaram, A.; Winquist, E.; McLaughlin, B.; Lu, D.; Fleisher, M.; Orr, S.; Lowes, L.; et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. 2018, 4, 1179–1186. [Google Scholar] [CrossRef]
- Thadani-Mulero, M.; Portella, L.; Sun, S.; Sung, M.; Matov, A.; Vessella, R.L.; Corey, E.; Nanus, D.M.; Plymate, S.R.; Giannakakou, P. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 2014, 74, 2270–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cato, L.; De Tribolet-Hardy, J.; Lee, I.; Rottenberg, J.T.; Coleman, I.; Melchers, D.; Houtman, R.; Xiao, T.; Li, W.; Uo, T.; et al. ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell 2019, 35, 401–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, A.; Coleman, I.; Yuan, W.; Sprenger, C.; Dolling, D.; Rodrigues, D.N.; Russo, J.W.; Figueiredo, I.; Bertan, C.; Seed, G.; et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Investig. 2019, 129, 192–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.-J.; Lai, K.-P.; Zeng, W.; Chuang, K.-H.; Altuwaijri, S.; Chang, C. Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: Lessons from conditional AR knockout mice. Am. J. Pathol. 2012, 181, 1504–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsini, E.; Galbiati, V.; Papale, A.; Kummer, E.; Pinto, A.; Serafini, M.M.; Guaita, A.; Spezzano, R.; Caruso, D.; Marinovich, M.; et al. Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes. Immun. Ageing 2016, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, O.T.M.; Yang, L.-X. The immunological effects of taxanes. Cancer Immunol. Immunother. 2000, 49, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Millrud, C.R.; Mehmeti, M.; Leandersson, K. Docetaxel promotes the generation of anti-tumorigenic human macrophages. Exp. Cell Res. 2018, 362, 525–531. [Google Scholar] [CrossRef]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef]
Samples (ARV7/ARFL) 1 | ||||
---|---|---|---|---|
Cell Type | S1 | S2 | S3 | S4 |
T-CD4 lymphocytes | +/+ | −/+ | +/+ | −/+ |
T-CD8 lymphocytes | +/+ | −/+ | −/+ | −/+ |
B lymphocytes | −/+ | +/+ | −/+ | +/+ |
NK cells | +/− | −/+ | −/+ | −/+ |
monocytes | +/+ | +/+ | +/+ | +/+ |
AA/E Cohort | Taxane Cohort | CTC Cohort | Pre-Post Taxane Cohort | |
---|---|---|---|---|
Number of patients (samples) | 55 (55) | 81 (92) | 22 (24) | 28 (56) |
Age (years) | ||||
Median (range) | 70.21 (53.3–93.3) | 62.85 (32.8–79.4) | 70 (41.6–87.1) | 62.85 (32.8–79.4) |
Stage at diagnosis, N (%) | ||||
<IV | 15 (27.3) | 33 (37.7) | 5 (20.8) | 12 (42.9) |
IV | 32 (58.2) | 46 (56.8) | 15 (62.5) | 14 (50) |
No data | 8 (14.5) | 2 (2.5) | 4 (16.7) | 2 (7.1) |
Gleason sum at diagnosis, N (%) | ||||
≤7 | 19 (34.5) | 34 (41.9) | 8 (33.3) | 11 (39.3) |
≥8 | 30 (54.5) | 47 (58) | 16 (66.7) | 17 (60.7) |
No data | 6 (10.9) | - | - | - |
Presence of bone metastases, N (%) | ||||
Yes | 51 (92.7) | 69 (85.2) | 21 (87.5) | 25 (89.3) |
No | 4 (7.3) | 12 (14.8) | 3 (12.5) | 3 (10.7) |
Presence of visceral metastases, N (%) | ||||
Yes | 10 (18.2) | 20 (24.7) | 7 (29.2) | 8 (28.6) |
No | 45 (81.8) | 61 (75.3) | 17 (70.8) | 20 (71.4) |
ECOG performance status score, N (%) | ||||
0 | 14 (25.5) | 19 (23.5) | 1 (4.2) | 4 (14.3) |
1 or 2 | 40 (72.7) | 62 (76.5) | 23 (95.8) | 23 (82.1) |
No data | 1 (1.8) | - | - | 1 |
Baseline prostate-specific antigen (ng/mL) | ||||
Median (range) | 38.5 (0.29–3282) | 60.2 (1.04–1284) | 27 (1.8–479.6) | 27.3 (2.8–675.5) |
No data (N) | - | 1 | - | - |
Baseline hemoglobin concentration (g/L) | ||||
Median (range) | 123 (84–146) | 124 (81–151) | 122 (84–498) | 132 (97–145) |
Baseline alkaline phosphatase (U/L) | ||||
Median (range) | 177 (53–2448) | 229.5 (47–4397) | 142 (54–873) | 175 (50–1143) |
No data (N) | 4 | 2 | - | |
Baseline lactate dehydrogenase | ||||
Median (range) | 412 (62–1921) | 396 (163–2954) | 356 (125–949) | 378 (163–949) |
No data (N) | 3 | 11 | - | - |
Chemotherapy treatment, N (%) | ||||
Post | 19 (34.5) | - | - | - |
Pre | 36 (65.5) | - | - | - |
Use of AA/E, N (%) | ||||
No | - | |||
Pre-chemotherapy | - | 22 (27.2%) | 17 (70.8) | 16 (57.1) |
Never or Post-chemotherapy | - | 59 (72.8%) | 7 (29.2) | 12 (42.9) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
PSA-PFS | HR | 95% CI | P-Value | HR | 95% CI | P-Value |
ARV7 * | 2.357 | (1.068–5.2) | 0.034 | 0.326 | (0.08–1.325) | 0.117 |
ARFL * | 1.718 | (0.841–3.511) | 0.138 | - | - | - |
ARV7/ARFL * | 3.8 | (1.54–9.39) | 0.004 | 8.492 | (1.82–39.6) | 0.006 |
ECOG * | 1.953 | (0.976–3.908) | 0.059 | 1.990 | (0.89–4.41) | 0.090 |
Stage * | 1.443 | (0.782–2.664) | 0.241 | - | - | - |
GLEASON * | 1.228 | (0.662–2.276) | 0.515 | - | - | - |
Visceral metastases * | 1.135 | (0.524–2.458) | 0.748 | - | - | - |
PSA ** | 1.00 | (1–1.001 | 0.172 | - | - | - |
HB ** | 0.961 | (0.938–0.985) | 0.001 | 0.964 | (0.938–0.992) | 0.011 |
LDH ** | 1.001 | (1–1.002) | 0.003 | 1.000 | (0.999–1.002) | 0.438 |
AP ** | 1.003 | (1.001–1.005) | 0.004 | 1.001 | (0.999–1.003) | 0.341 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
PSA-PFS | HR | 95% CI | P-Value | HR | 95% CI | P-Value |
ARV7 * | 0.449 | (0.273–0.739) | 0.002 | 0.487 | (0.267–0.889) | 0.019 |
ARFL * | 0.364 | (0.219–0.607) | 0.000 | 0.366 | (0.198–0.676) | 0.001 |
ARV7/ARFL * | 0.711 | (0.435–1.161) | 0.173 | - | - | - |
ECOG * | 1.479 | (0.862–2.539) | 0.156 | - | - | - |
STAGE * | 0.803 | (0.511–1.263) | 0.343 | - | - | - |
GLEASON * | 1.256 | (0.806–1.958) | 0.313 | - | - | - |
VISCERAL METASTASES * | 0.907 | (0.545–1.506) | 0.705 | - | - | - |
PSA ** | 1.001 | (1–1.002) | 0.005 | 1.001 | (1–1.002) | 0.04 |
HB ** | 0.983 | (0.969–0.997) | 0.015 | 0.994 | (0.979–1.01) | 0.469 |
LDH ** | 1.001 | (1–1.001) | 0.008 | 1 | (1–1.001) | 0.604 |
AP ** | 1 | (1–1.001) | 0.07 | 1.001 | (1–1.001) | 0.032 |
ARV7 | ARFL | |||||
---|---|---|---|---|---|---|
Expression Levels | Low | High | Total | Low | High | Total |
Taxane cohort | * OR: 3.957; P = 0.011 | * OR: 3.75, P = 0.007 | ||||
No AA/E pre-taxanes N(%) | 31 (57.4) | 32 (84.2) | 63 (68.5) | 14 (48.3) | 49 (77.8) | 63 (68.5) |
AA/E pre-taxanes N(%) | 23 (42.6) | 6 (15.8) | 29 (31.5) | 15 (51.7) | 14 (22.2) | 29 (31.5) |
Total | 54 (58.7) | 38 (41.3) | 92 (100) | 29 (31.5) | 63 (68.5) | 92 (100) |
AA/E cohort | OR: 0.414, P = 0.199 | * OR: 0.126, P = 0.040 | ||||
No taxanes pre-AA/E N(%) | 7 (50) | 12 (29.3) | 19 (34.5) | 18 (41.9) | 1 (8.3) | 19 (34.5) |
Taxanes pre-AA/E N(%) | 7 (50) | 29 (70.7) | 36 (65.5) | 25 (58.1) | 11 (91.7) | 36 (65.5) |
Total | 14 (24.4) | 41 (74.5) | 55 (100) | 43 (78.2) | 12 (21.8) | 55 (100) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Aguilera, M.; Jiménez, N.; Reig, Ò.; Montalbo, R.; Verma, A.K.; Castellano, G.; Mengual, L.; Victoria, I.; Pereira, M.V.; Milà-Guasch, M.; et al. Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer. Cells 2020, 9, 203. https://doi.org/10.3390/cells9010203
Marín-Aguilera M, Jiménez N, Reig Ò, Montalbo R, Verma AK, Castellano G, Mengual L, Victoria I, Pereira MV, Milà-Guasch M, et al. Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer. Cells. 2020; 9(1):203. https://doi.org/10.3390/cells9010203
Chicago/Turabian StyleMarín-Aguilera, Mercedes, Natalia Jiménez, Òscar Reig, Ruth Montalbo, Ajit K. Verma, Giancarlo Castellano, Lourdes Mengual, Iván Victoria, María V. Pereira, Maria Milà-Guasch, and et al. 2020. "Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer" Cells 9, no. 1: 203. https://doi.org/10.3390/cells9010203
APA StyleMarín-Aguilera, M., Jiménez, N., Reig, Ò., Montalbo, R., Verma, A. K., Castellano, G., Mengual, L., Victoria, I., Pereira, M. V., Milà-Guasch, M., García-Recio, S., Benítez-Ribas, D., Cabezón, R., González, A., Juan, M., Prat, A., & Mellado, B. (2020). Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer. Cells, 9(1), 203. https://doi.org/10.3390/cells9010203