Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Culture
2.3. Translocation Assay
2.4. Docking
2.4.1. Receptor and Ligands Preparation
2.4.2. Molecular Docking
2.4.3. Figures
2.5. Time-Resolved Fluorescence Energy Transfer (TR-FRET CAR) Coactivator Binding Assay
2.6. Plasmids
2.7. Transient Transfection and Luciferase Gene Reporter Assays
2.8. qRT-PCR
2.9. Primary Human Hepatocyte Isolation and Culture
2.9.1. siRNA Transfection
2.9.2. RNA Isolation and RT-PCR Assays of PHHs
2.10. Animal Experiments
2.11. Statistics
3. Results
3.1. Diazepam and its Metabolites Nordazepam, Temazepam, and Oxazepam Significantly Translocate EGFP-hCAR+Ala into the Nucleus
3.2. Diazepam is a Direct hCAR Activator in Luciferase Reporter Gene Assays and Loses Activity after Metabolic Oxidation
3.3. Diazepam Interacts with CAR-LBD Protein in TR-FRET Assay in the Absence of a Cellular Background
3.4. Diazepam and Its Metabolites Fits hCAR-LBD Cavity in Silico Docking Experiments
3.5. Diazepam Promotes Induction of CYP2B6 mRNA in Primary Human Hepatocytes
3.6. Diazepam Has No Effect on Xenobiotic and Endobiotic Metabolism and on Liver Proliferation Genes In Vivo in hCAR/hPXR/hCYP3A4 Mice
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Honkakoski, P.; Zelko, I.; Sueyoshi, T.; Negishi, M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol. Cell Biol. 1998, 18, 5652–5658. [Google Scholar] [CrossRef] [Green Version]
- Mackowiak, B.; Hodge, J.; Stern, S.; Wang, H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab. Dispos. 2018, 46, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhong, J.; Hu, L.; Li, R.; Du, Q.; Cai, J.; Li, Y.; Gao, Y.; Cui, X.; Yang, X.; et al. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr. Drug. Metab. 2019, 20, 29–35. [Google Scholar] [CrossRef]
- Mutoh, S.; Sobhany, M.; Moore, R.; Perera, L.; Pedersen, L.; Sueyoshi, T.; Negishi, M. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci. Signal. 2013, 6, ra31. [Google Scholar] [CrossRef] [Green Version]
- Mackowiak, B.; Wang, H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta 2016, 1859, 1130–1140. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, T.; Sueyoshi, T.; Zelko, I.; Moore, R.; Washburn, K.; Negishi, M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell. Biol. 1999, 19, 6318–6322. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, T.; Cottrell, J.; Wang, H. Nuclear translocation of adenoviral-enhanced yellow fluorescent protein-tagged-human constitutive androstane receptor (hCAR): A novel tool for screening hCAR activators in human primary hepatocytes. Drug Metab. Dispos. 2009, 37, 1098–1106. [Google Scholar] [CrossRef]
- Parkinson, A.; Leonard, N.; Draper, A.; Ogilvie, B.W. On the mechanism of hepatocarcinogenesis of benzodiazepines: Evidence that diazepam and oxazepam are CYP2B inducers in rats, and both CYP2B and CYP4A inducers in mice. Drug. Metab. Rev. 2006, 38, 235–259. [Google Scholar] [CrossRef]
- Ono, S.; Hatanaka, T.; Miyazawa, S.; Tsutsui, M.; Aoyama, T.; Gonzalez, F.J.; Satoh, T. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: Role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 1996, 26, 1155–1166. [Google Scholar] [CrossRef]
- Goodwin, B.; Hodgson, E.; D’Costa, D.J.; Robertson, G.R.; Liddle, C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol. Pharmacol. 2002, 62, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Gerbal-Chaloin, S.; Pascussi, J.M.; Pichard-Garcia, L.; Daujat, M.; Waechter, F.; Fabre, J.M.; Carrere, N.; Maurel, P. Induction of CYP2C genes in human hepatocytes in primary culture. Drug. Metab. Dispos. 2001, 29, 242–251. [Google Scholar] [PubMed]
- Yang, T.J.; Krausz, K.W.; Shou, M.; Yang, S.K.; Buters, J.T.; Gonzalez, F.J.; Gelboin, H.V. Inhibitory monoclonal antibody to human cytochrome P450 2B6. Biochem. Pharmacol. 1998, 55, 1633–1640. [Google Scholar] [CrossRef]
- Maglich, J.M.; Parks, D.J.; Moore, L.B.; Collins, J.L.; Goodwin, B.; Billin, A.N.; Stoltz, C.A.; Kliewer, S.A.; Lambert, M.H.; Willson, T.M.; et al. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J. Biol. Chem. 2003, 278, 17277–17283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keminer, O.; Windshugel, B.; Essmann, F.; Lee, S.M.L.; Schiergens, T.S.; Schwab, M.; Burk, O. Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Arch. Toxicol. 2019, 93, 2247–2264. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.; Zhao, J.; Huang, R.; Xiao, J.; Li, L.; Heyward, S.; Xia, M.; Wang, H. Quantitative high-throughput identification of drugs as modulators of human constitutive androstane receptor. Sci. Rep. 2015, 5, 10405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrich, W.D.; Hassan, H.E.; Wang, H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm. Sin. B 2016, 6, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Lake, B.G. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol. Res. 2018, 7, 697–717. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Tompkins, L.M.; Li, L.; Li, H.; Kim, G.; Zheng, Y.; Wang, H. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J. Pharmacol. Exp. Ther. 2010, 332, 106–115. [Google Scholar] [CrossRef]
- Omiecinski, C.J.; Coslo, D.M.; Chen, T.; Laurenzana, E.M.; Peffer, R.C. Multi-species analyses of direct activators of the constitutive androstane receptor. Toxicol. Sci. 2011, 123, 550–562. [Google Scholar] [CrossRef]
- Scheer, N.; Ross, J.; Rode, A.; Zevnik, B.; Niehaves, S.; Faust, N.; Wolf, C.R. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J. Clin. Investig. 2008, 118, 3228–3239. [Google Scholar] [CrossRef] [Green Version]
- Kanno, Y.; Suzuki, M.; Miyazaki, Y.; Matsuzaki, M.; Nakahama, T.; Kurose, K.; Sawada, J.I.; Inouye, Y. Difference in nucleocytoplasmic shuttling sequences of rat and human constitutive active/androstane receptor. Biochim. Biophys. Acta 2007, 1773, 934–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.X.; Lambert, M.H.; Wisely, B.B.; Warren, E.N.; Weinert, E.E.; Waitt, G.M.; Williams, J.D.; Collins, J.L.; Moore, L.B.; Willson, T.M.; et al. A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol. Cell 2004, 16, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Carazo, A.; Pavek, P. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists. Sensors 2015, 15, 9265–9276. [Google Scholar] [CrossRef] [Green Version]
- Pichard, L.; Raulet, E.; Fabre, G.; Ferrini, J.B.; Ourlin, J.C.; Maurel, P. Human hepatocyte culture. Methods Mol. Biol. 2006, 320, 283–293. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.; Stanton, J.D.; Sueyoshi, T.; Negishi, M.; Wang, H. The peripheral benzodiazepine receptor ligand 1-(2-chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of human constitutive androstane receptor. Mol. Pharmacol. 2008, 74, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Vrzal, R.; Kubesova, K.; Pavek, P.; Dvorak, Z. Benzodiazepines medazepam and midazolam are activators of pregnane X receptor and weak inducers of CYP3A4: Investigation in primary cultures of human hepatocytes and hepatocarcinoma cell lines. Toxicol. Lett. 2010, 193, 183–188. [Google Scholar] [CrossRef]
- Haines, C.; Elcombe, B.M.; Chatham, L.R.; Vardy, A.; Higgins, L.G.; Elcombe, C.R.; Lake, B.G. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes. Toxicology 2018, 396–397, 23–32. [Google Scholar] [CrossRef]
- Ross, J.; Plummer, S.M.; Rode, A.; Scheer, N.; Bower, C.C.; Vogel, O.; Henderson, C.J.; Wolf, C.R.; Elcombe, C.R. Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol. Sci. 2010, 116, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kapelyukh, Y.; Tahara, H.; Seibler, J.; Rode, A.; Krueger, S.; Lee, D.N.; Wolf, C.R.; Scheer, N. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line. Mol. Pharmacol. 2011, 80, 518–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, L.; Farhan, F.; Reilly, J.; Bartholomew, C.; Shu, X. TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int. J. Mol. Sci. 2018, 19, 3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschuor, C.; Kachaylo, E.; Limani, P.; Raptis, D.A.; Linecker, M.; Tian, Y.; Herrmann, U.; Grabliauskaite, K.; Weber, A.; Columbano, A.; et al. Constitutive androstane receptor (Car)-driven regeneration protects liver from failure following tissue loss. J. Hepatol. 2016, 65, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, S.A.; Jack, M.L.; Alexander, K.; Weinfeld, R.E. Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations. J. Pharm. Sci. 1973, 62, 1789–1796. [Google Scholar] [CrossRef]
- Matsuda, Y.; Konno, Y.; Hashimoto, T.; Nagai, M.; Taguchi, T.; Satsukawa, M.; Yamashita, S. Quantitative assessment of intestinal first-pass metabolism of oral drugs using portal-vein cannulated rats. Pharm. Res. 2015, 32, 604–616. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoda, J.; Dusek, J.; Drastik, M.; Stefela, A.; Dohnalova, K.; Chalupsky, K.; Smutny, T.; Micuda, S.; Gerbal-Chaloin, S.; Pavek, P. Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells 2020, 9, 2532. https://doi.org/10.3390/cells9122532
Skoda J, Dusek J, Drastik M, Stefela A, Dohnalova K, Chalupsky K, Smutny T, Micuda S, Gerbal-Chaloin S, Pavek P. Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells. 2020; 9(12):2532. https://doi.org/10.3390/cells9122532
Chicago/Turabian StyleSkoda, Josef, Jan Dusek, Martin Drastik, Alzbeta Stefela, Klara Dohnalova, Karel Chalupsky, Tomas Smutny, Stanislav Micuda, Sabine Gerbal-Chaloin, and Petr Pavek. 2020. "Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain" Cells 9, no. 12: 2532. https://doi.org/10.3390/cells9122532
APA StyleSkoda, J., Dusek, J., Drastik, M., Stefela, A., Dohnalova, K., Chalupsky, K., Smutny, T., Micuda, S., Gerbal-Chaloin, S., & Pavek, P. (2020). Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells, 9(12), 2532. https://doi.org/10.3390/cells9122532