Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart
Abstract
:1. Introduction
2. β-Adrenoceptors in the Diabetic Heart
2.1. mRNA and Protein Expression
2.1.1. mRNA and Protein Expression in Type 1 Diabetes Mellitus
2.1.2. mRNA and Protein Expression in Type 2 Diabetes Mellitus
2.2. β-AR Mediated Signaling Pathways
2.2.1. Changes in Gs-Coupling β-Adrenoceptor Mediated Signaling Pathways in Diabetes
2.2.2. Changes in Gi-Coupling β-Adrenoceptor Mediated Signaling Pathways in Diabetes
2.3. The Inotropic and Chronotropic Response to β-AR Stimulation in the Diabetic Heart
2.3.1. Type 1 Diabetes Mellitus
2.3.2. Type 2 Diabetes Mellitus
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Diabetes 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 25 July 2020).
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ovbiagele, B.; Feng, W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. Am. J. Med. Sci. 2016, 351, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haffner, S.M.; Lehto, S.; Ronnemaa, T.; Pyorala, K.; Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.; Vitale, C.; Seferovic, P. Heart Failure in Patients with Diabetes Mellitus. Card. Fail. Rev. 2017, 3, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Action to Control Cardiovascular Risk in Diabetes Study. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar] [CrossRef] [Green Version]
- Group, A.C.; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Bylund, D.B.; Eikenberg, D.C.; Hieble, J.P.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Molinoff, P.B.; Ruffolo, R.R., Jr.; Trendelenburg, U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 1994, 46, 121–136. [Google Scholar]
- Emorine, L.J.; Marullo, S.; Briend-Sutren, M.M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A.D. Molecular characterization of the human beta 3-adrenergic receptor. Science 1989, 245, 1118–1121. [Google Scholar] [CrossRef]
- Harms, H.H.; Zaagsma, J.; Van der Wal, B. Beta-adrenoceptor studies. III. On the beta-adrenoceptors in rat adipose tissue. Eur. J. Pharmacol. 1974, 25, 87–91. [Google Scholar] [CrossRef]
- Gauthier, C.; Tavernier, G.; Charpentier, F.; Langin, D.; Le Marec, H. Functional beta3-adrenoceptor in the human heart. J. Clin. Invest. 1996, 98, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Arioglu-Inan, E.; Kayki-Mutlu, G.; Michel, M.C. Cardiac β3--adrenoceptors—A role in human pathophysiology? Br. J. Pharmacol. 2019, 176, 2482–2495. [Google Scholar] [CrossRef] [PubMed]
- Del Monte, F.; Kaumann, A.J.; Poole-Wilson, P.A.; Wynne, D.G.; Pepper, J.; Harding, S.E. Coexistence of functioning beta 1- and beta 2-adrenoceptors in single myocytes from human ventricle. Circulation 1993, 88, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gille, E.; Lemoine, H.; Ehle, B.; Kaumann, A.J. The affinity of (-)-propranolol for beta 1- and beta 2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn. Schmiedebergs. Arch. Pharmacol. 1985, 331, 60–70. [Google Scholar] [CrossRef]
- Brodde, O.E.; Michel, M.C.; Zerkowski, H.R. Signal transduction mechanisms controlling cardiac contractility and their alterations in chronic heart failure. Cardiovasc. Res. 1995, 30, 570–584. [Google Scholar] [CrossRef]
- Wachter, S.B.; Gilbert, E.M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 2012, 122, 104–112. [Google Scholar] [CrossRef]
- Walsh, D.A.; Van Patten, S.M. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J. 1994, 8, 1227–1236. [Google Scholar] [CrossRef]
- Xiao, R.P.; Ji, X.; Lakatta, E.G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol. Pharmacol. 1995, 47, 322–329. [Google Scholar]
- Xiao, R.P.; Avdonin, P.; Zhou, Y.Y.; Cheng, H.; Akhter, S.A.; Eschenhagen, T.; Lefkowitz, R.J.; Koch, W.J.; Lakatta, E.G. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ. Res. 1999, 84, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Strohman, M.J.; Maeda, S.; Hilger, D.; Masureel, M.; Du, Y.; Kobilka, B.K. Local membrane charge regulates beta2 adrenergic receptor coupling to Gi3. Nat. Commun. 2019, 10, 2234. [Google Scholar] [CrossRef]
- Cannavo, A.; Koch, W.J. Targeting beta3-Adrenergic Receptors in the Heart: Selective Agonism and beta-Blockade. J. Cardiovasc. Pharmacol. 2017, 69, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nantel, F.; Bonin, H.; Emorine, L.J.; Zilberfarb, V.; Strosberg, A.D.; Bouvier, M.; Marullo, S. The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol. Pharmacol. 1993, 43, 548–555. [Google Scholar]
- Okeke, K.; Angers, S.; Bouvier, M.; Michel, M.C. Agonist-induced desensitisation of beta3-adrenoceptors: Where, when, and how? Br. J. Pharmacol. 2019, 176, 2539–2558. [Google Scholar] [CrossRef] [PubMed]
- Rozec, B.; Gauthier, C. beta3-adrenoceptors in the cardiovascular system: Putative roles in human pathologies. Pharmacol. Ther. 2006, 111, 652–673. [Google Scholar] [CrossRef]
- Gauthier, C.; Tavernier, G.; Trochu, J.N.; Leblais, V.; Laurent, K.; Langin, D.; Escande, D.; Le Marec, H. Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J. Pharmacol. Exp. Ther. 1999, 290, 687–693. [Google Scholar]
- Gauthier, C.; Leblais, V.; Kobzik, L.; Trochu, J.N.; Khandoudi, N.; Bril, A.; Balligand, J.L.; Le Marec, H. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Invest. 1998, 102, 1377–1384. [Google Scholar] [CrossRef]
- Belge, C.; Hammond, J.; Dubois-Deruy, E.; Manoury, B.; Hamelet, J.; Beauloye, C.; Markl, A.; Pouleur, A.C.; Bertrand, L.; Esfahani, H.; et al. Enhanced expression of beta3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 2014, 129, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Moniotte, S.; Kobzik, L.; Feron, O.; Trochu, J.N.; Gauthier, C.; Balligand, J.L. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 2001, 103, 1649–1655. [Google Scholar] [CrossRef] [Green Version]
- Dal Monte, M.; Evans, B.A.; Arioglu-Inan, E.; Michel, M.C. Upregulation of β 3-adrenoceptors—a general marker of and protective mechanism against hypoxia? Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 141–146. [Google Scholar] [CrossRef]
- Rozec, B.; Noireaud, J.; Trochu, J.N.; Gauthier, C. Place of beta 3-adrenoceptors among other beta-adrenoceptor subtypes in the regulation of the cardiovascular system. Arch. Mal. Coeur. Vaiss. 2003, 96, 905–913. [Google Scholar]
- Moniotte, S.; Balligand, J.-L. The β 3-adrenoceptor and its regulation in cardiac tissue. Intensivmed. Notf. 2003, 40, 484–493. [Google Scholar] [CrossRef]
- Bundgaard, H.; Axelsson, A.; Hartvig, T.J.; Sorgaard, M.; Kofoed, K.F.; Hasselbalch, R.; Fry, N.A.; Valeur, N.; Boesgaard, S.; Gustafsson, F.; et al. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: The BEAT-HF trial. Eur. J. Heart Fail 2017, 19, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouleur, A.C.; Anker, S.; Brito, D.; Brosteanu, O.; Hasenclever, D.; Casadei, B.; Edelmann, F.; Filippatos, G.; Gruson, D.; Ikonomidis, I.; et al. Rationale and design of a multicentre, randomized, placebo-controlled trial of mirabegron, a Beta3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease Beta3-left ventricular hypertrophy (Beta3-LVH). ESC Heart Fail 2018, 5, 830–841. [Google Scholar] [PubMed]
- Altan, V.M.; Arioglu, E.; Guner, S.; Ozcelikay, A.T. The influence of diabetes on cardiac beta-adrenoceptor subtypes. Heart Fail. Rev. 2007, 12, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Arioglu-Inan, E.; Ozakca, I.; Kayki-Mutlu, G.; Sepici-Dincel, A.; Altan, V.M. The role of insulin-thyroid hormone interaction on beta-adrenoceptor-mediated cardiac responses. Eur. J. Pharmacol. 2013, 718, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Amour, J.; Loyer, X.; Le Guen, M.; Mabrouk, N.; David, J.S.; Camors, E.; Carusio, N.; Vivien, B.; Andriantsitohaina, R.; Heymes, C.; et al. Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: The role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 2007, 107, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragno, M.; Mastrocola, R.; Ghe, C.; Arnoletti, E.; Bassino, E.; Alloatti, G.; Muccioli, G. Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: Underlying mechanisms. Cardiovasc. Diabetol. 2012, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Carillion, A.; Feldman, S.; Na, N.; Biais, M.; Carpentier, W.; Birenbaum, A.; Cagnard, N.; Loyer, X.; Bonnefont-Rousselot, D.; Hatem, S.; et al. Atorvastatin reduces beta-Adrenergic dysfunction in rats with diabetic cardiomyopathy. PLoS ONE 2017, 12, e0180103. [Google Scholar] [CrossRef] [Green Version]
- Kayki-Mutlu, G.; Arioglu-Inan, E.; Ozakca, I.; Ozcelikay, A.T.; Altan, V.M. beta3-Adrenoceptor-mediated responses in diabetic rat heart. Gen. Physiol. Biophys. 2014, 33, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Okatan, E.N.; Tuncay, E.; Hafez, G.; Turan, B. Profiling of cardiac beta-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol. 2015, 93, 517–525. [Google Scholar] [CrossRef]
- Dincer, U.D.; Bidasee, K.R.; Guner, S.; Tay, A.; Ozcelikay, A.T.; Altan, V.M. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes 2001, 50, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Bidasee, K.R.; Zheng, H.; Shao, C.H.; Parbhu, S.K.; Rozanski, G.J.; Patel, K.P. Exercise training initiated after the onset of diabetes preserves myocardial function: Effects on expression of beta-adrenoceptors. J. Appl. Physiol. (1985) 2008, 105, 907–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Kuroda, A.; Tanaka, H. Characterisation of beta 1 and beta 2 adrenoceptor subtypes in the atrioventricular node of diabetic rat hearts by quantitative autoradiography. Cardiovasc. Res. 1991, 25, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Niclauß, N.; Michel-Reher, M.B.; Alewijnse, A.E.; Michel, M.C. Comparison of three radioligands for the labelling of human β-adrenoceptor subtypes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2006, 374, 99–105. [Google Scholar]
- Pradidarcheep, W.; Stallen, J.; Labruyère, W.T.; Dabhoiwala, N.F.; Michel, M.C.; Lamers, W.H. Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 379, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarese, J.J.; Berkowitz, B.A. beta-Adrenergic receptor decrease in diabetic rat hearts. Life Sci. 1979, 25, 2075–2078. [Google Scholar] [CrossRef]
- Heyliger, C.E.; Pierce, G.N.; Singal, P.K.; Beamish, R.E.; Dhalla, N.S. Cardiac alpha- and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res. Cardiol. 1982, 77, 610–618. [Google Scholar] [CrossRef]
- Williams, R.S.; Schaible, T.F.; Scheuer, J.; Kennedy, R. Effects of experimental diabetes on adrenergic and cholinergic receptors of rat myocardium. Diabetes 1983, 32, 881–886. [Google Scholar] [CrossRef]
- Ingebretsen, C.G.; Hawelu-Johnson, C.; Ingebretsen, W.R., Jr. Alloxan-induced diabetes reduces beta-adrenergic receptor number without affecting adenylate cyclase in rat ventricular membranes. J. Cardiovasc. Pharmacol. 1983, 5, 454–461. [Google Scholar] [CrossRef]
- Ramanadham, S.; Tenner, T.E., Jr. Alterations in cardiac performance in experimentally-induced diabetes. Pharmacology 1983, 27, 130–139. [Google Scholar] [CrossRef]
- Sylvestre-Gervais, L.; Nadeau, A.; Tancrede, G.; Nuyen, M.; Rousseau-Migneron, S. Decrease in ventricular beta-adrenergic receptors in trained diabetic rats. Basic Res. Cardiol. 1984, 79, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Latifpour, J.; McNeill, J.H. Cardiac autonomic receptors: Effect of long-term experimental diabetes. J. Pharmacol. Exp. Ther. 1984, 230, 242–249. [Google Scholar]
- Sundaresan, P.R.; Sharma, V.K.; Gingold, S.I.; Banerjee, S.P. Decreased beta-adrenergic receptors in rat heart in streptozotocin-induced diabetes: Role of thyroid hormones. Endocrinology 1984, 114, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Atkins, F.L.; Dowell, R.T.; Love, S. Beta-Adrenergic receptors, adenylate cyclase activity, and cardiac dysfunction in the diabetic rat. J. Cardiovasc. Pharmacol. 1985, 7, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ramanadham, S.; Tenner, T.E., Jr. Chronic effects of streptozotocin diabetes on myocardial sensitivity in the rat. Diabetologia 1986, 29, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Ramanadham, S.; Young, J.; Tenner, T.E., Jr. Prevention of streptozotocin-induced alterations in the rat heart by 3-O-methyl glucose and insulin treatments. J. Cardiovasc. Pharmacol. 1987, 9, 291–297. [Google Scholar] [CrossRef]
- Ramanadham, S.; Tenner, T.E., Jr. Alterations in the myocardial beta-adrenoceptor system of streptozotocin-diabetic rats. Eur. J. Pharmacol. 1987, 136, 377–389. [Google Scholar] [CrossRef]
- Bitar, M.S.; Koulu, M.; Rapoport, S.I.; Linnoila, M. Adrenal catecholamine metabolism and myocardial adrenergic receptors in streptozotocin diabetic rats. Biochem. Pharmacol. 1987, 36, 1011–1016. [Google Scholar] [CrossRef]
- Nishio, Y.; Kashiwagi, A.; Kida, Y.; Kodama, M.; Abe, N.; Saeki, Y.; Shigeta, Y. Deficiency of cardiac beta-adrenergic receptor in streptozocin-induced diabetic rats. Diabetes 1988, 37, 1181–1187. [Google Scholar] [CrossRef]
- Durante, W.; Sunahara, F.A.; Sen, A.K. Alterations in atrial reactivity in a strain of spontaneously diabetic rats. Br. J. Pharmacol. 1989, 97, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Plourde, G.; Martin, M.; Rousseau-Migneron, S.; Nadeau, A. Effect of physical training on ventricular beta-adrenergic receptor adenylate cyclase system of diabetic rats. Metabolism 1991, 40, 362–367. [Google Scholar] [CrossRef]
- Eckel, J.; Gerlach-Eskuchen, E.; Reinauer, H. Alpha-adrenoceptor-mediated increase in cytosolic free calcium in isolated cardiac myocytes. J. Mol. Cell Cardiol. 1991, 23, 617–625. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Young, J.A.; Tenner, T.E., Jr. Pharmacological study of isoproterenol and diabetic cardiomyopathies in rat right ventricular strips. Pharmacology 1993, 46, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Dixon, I.M.; Hata, T.; Elimban, V.; Shah, K.R.; Dhalla, N.S. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Res. Clin. Pract. 1996, 113–122. [Google Scholar] [CrossRef]
- Dubois, E.A.; Kam, K.L.; Somsen, G.A.; Boer, G.J.; de Bruin, K.; Batink, H.D.; Pfaffendorf, M.; van Royen, E.A.; van Zwieten, P.A. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension. Eur. J. Nucl. Med. 1996, 23, 901–908. [Google Scholar] [CrossRef]
- Beenen, O.H.; Batink, H.D.; Pfaffendorf, M.; van Zwieten, P.A. Beta-andrenoceptors in the hearts of diabetic-hypertensive rats: Radioligand binding and functional experiments. Blood Press. 1997, 6, 44–51. [Google Scholar] [CrossRef]
- Matsuda, N.; Hattori, Y.; Gando, S.; Akaishi, Y.; Kemmotsu, O.; Kanno, M. Diabetes-induced down-regulation of beta1-adrenoceptor mRNA expression in rat heart. Biochem Pharmacol. 1999, 58, 881–885. [Google Scholar] [CrossRef]
- Huisamen, B.; Marais, E.; Genade, S.; Lochner, A. Serial changes in the myocardial beta-adrenergic signaling system in two models of non-insulin dependent diabetes mellitus. Mol. Cell Biochem. 2001, 219, 73–82. [Google Scholar] [CrossRef]
- Bilginoglu, A.; Cicek, F.A.; Ugur, M.; Gurdal, H.; Turan, B. The role of gender differences in beta-adrenergic receptor responsiveness of diabetic rat heart. Mol. Cell Biochem. 2007, 305, 63–69. [Google Scholar] [CrossRef]
- Bilginoglu, A.; Seymen, A.; Tuncay, E.; Zeydanli, E.; Aydemir-Koksoy, A.; Turan, B. Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. Cardiovasc. Toxicol. 2009, 9, 21–29. [Google Scholar] [CrossRef]
- Gotzsche, O. The adrenergic beta-receptor adenylate cyclase system in heart and lymphocytes from streptozotocin-diabetic rats. In vivo and in vitro evidence for a desensitized myocardial beta-receptor. Diabetes 1983, 32, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Sellers, D.J.; Chess-Williams, R. The effect of streptozotocin-induced diabetes on cardiac beta-adrenoceptor subtypes in the rat. J. Auton. Pharmacol. 2001, 21, 15–21. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Morley, J.E.; Scarpace, P.J. The role of zinc status in altered cardiac adenylate cyclase activity in diabetic rats. Acta Endocrinol. (Copenh) 1988, 119, 174–180. [Google Scholar] [CrossRef]
- Tuncay, E.; Okatan, E.N.; Vassort, G.; Turan, B. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS ONE 2013, 8, e71014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cros, G.; Chanez, P.; Michel, A.; McNeill, J.; Serrano, J. Cardiac beta-adrenergic receptors in diabetic rats: Alteration of guanyl nucleotide regulation. J. Pharmacol. 1986, 17, 595–600. [Google Scholar]
- Gotzsche, L.B.; Rosenqvist, N.; Gronbaek, H.; Flyvbjerg, A.; Gotzsche, O. Increased number of myocardial voltage-gated Ca2+ channels and unchanged total beta-receptor number in long-term streptozotocin-diabetic rats. Eur. J. Endocrinol. 1996, 134, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, R.B.; Fomovsky, G.M.; Lee, S.; Tan, M.; Wang, B.F.; Patwari, P.; Yoshioka, J. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1748–H1759. [Google Scholar] [CrossRef] [Green Version]
- Austin, C.E.; Chess-Williams, R. Transient elevation of cardiac beta-adrenoceptor responsiveness and receptor number in the streptozotocin-diabetic rat. J. Auton Pharmacol. 1992, 12, 205–214. [Google Scholar] [CrossRef]
- Austin, C.E.; Chess-Williams, R. Diabetes-induced changes in cardiac beta-adrenoceptor responsiveness: Effects of aldose reductase inhibition with ponalrestat. Br. J. Pharmacol. 1991, 102, 478–482. [Google Scholar] [CrossRef]
- Roth, D.A.; White, C.D.; Hamilton, C.D.; Hall, J.L.; Stanley, W.C. Adrenergic desensitization in left ventricle from streptozotocin diabetic swine. J. Mol. Cell. Cardiol. 1995, 27, 2315–2325. [Google Scholar] [CrossRef]
- Stanley, W.C.; Dore, J.J.; Hall, J.L.; Hamilton, C.D.; Pizzurro, R.D.; Roth, D.A. Diabetes reduces right atrial beta-adrenergic signaling but not agonist stimulation of heart rate in swine. Can. J. Physiol. Pharmacol. 2001, 79, 346–351. [Google Scholar] [CrossRef]
- Zola, B.E.; Miller, B.; Stiles, G.L.; Rao, P.S.; Sonnenblick, E.H.; Fein, F.S. Heart rate control in diabetic rabbits: Blunted response to isoproterenol. Am. J. Physiol. Endocrinol. Metab. 1988, 255, E636–E641. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Zhang, X.-J.; Lin, B.-K.; Reigel, C.E.; Tenner, J.; Thomas, E. Altered inotropic reactivity in diabetic rabbit right ventricular myocardium. Can. J. Physiol. Pharmacol. 2004, 82, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Uekita, K.; Tobise, K.; Onodera, S. Enhancement of the cardiac β-adrenergic system at an early diabetic state in spontaneously diabetic Chinese hamsters. Jpn. Circ. J. 1997, 61, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Amour, J.; Loyer, X.; Michelet, P.; Birenbaum, A.; Riou, B.; Heymes, C. Preservation of the positive lusitropic effect of beta-adrenoceptors stimulation in diabetic cardiomyopathy. Anesth Analg. 2008, 107, 1130–1138. [Google Scholar] [CrossRef]
- Sharma, V.; Parsons, H.; Allard, M.F.; McNeill, J.H. Metoprolol increases the expression of beta(3)-adrenoceptors in the diabetic heart: Effects on nitric oxide signaling and forkhead transcription factor-3. Eur. J. Pharmacol. 2008, 595, 44–51. [Google Scholar] [CrossRef]
- Lahaye Sle, D.; Gratas-Delamarche, A.; Malarde, L.; Vincent, S.; Zguira, M.S.; Morel, S.L.; Delamarche, P.; Zouhal, H.; Carre, F.; Bekono, F.R. Intense exercise training induces adaptation in expression and responsiveness of cardiac beta-adrenoceptors in diabetic rats. Cardiovasc. Diabetol. 2010, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.K.; Givvimani, S.; Metreveli, N.; Tyagi, S.C. Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 2010, 401, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Le Douairon Lahaye, S.; Rebillard, A.; Zguira, M.S.; Malarde, L.; Saiag, B.; Gratas-Delamarche, A.; Carre, F.; Bekono, F.R. Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats. Mol. Cell Biochem. 2011, 347, 53–62. [Google Scholar] [CrossRef]
- Monnerat-Cahli, G.; Trentin-Sonoda, M.; Guerra, B.; Manso, G.; Ferreira, A.C.; Silva, D.L.; Coutinho, D.C.; Carneiro-Ramos, M.S.; Rodrigues, D.C.; Cabral-da-Silva, M.C.; et al. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int. J. Cardiol. 2014, 171, 199–208. [Google Scholar] [CrossRef]
- Garris, D.R. The effects of estradiol and progesterone on reproductive tract atrophy and tissue adrenergic indices in diabetic C57BL/KsJ mice. Proc. Soc. Exp. Biol. Med. 1990, 193, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Allo, S.; Punna, S.; White, T. Defective response to cAMP-dependent protein kinase in non-insulin-dependent diabetic heart. Am. J. Physiol. Endocrinol. Metab. 1991, 261, E369–E376. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, R.R.; Lingam, S.J.; Wang, H.-Y.; Bollen, I.A.; Hughes, G.; Galvin, I.F.; Bunton, R.W.; Bahn, A.; Katare, R.; Baldi, J.C. Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction. Cardiovasc. Diabetol. 2014, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, N.; Wang, X.; Lu, Y.; Bi, Y.; Wang, W.; Li, X.; Ning, G. Aberrant expression and modification of silencing mediator of retinoic acid and thyroid hormone receptors involved in the pathogenesis of tumoral cortisol resistance. Endocrinology 2010, 151, 3697–3705. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Hu, Y.; Wang, Q.; Liu, Y.; Li, N.; Xu, B.; Kim, S.; Chiamvimonvat, N.; Xiang, Y.K. High--fat diet induces protein kinase A and G--protein receptor kinase phosphorylation of β2--adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J. Physiol. 2017, 595, 1973–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thackeray, J.T.; Parsa-Nezhad, M.; Kenk, M.; Thorn, S.L.; Kolajova, M.; Beanlands, R.S.; DaSilva, J.N. Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl. Med. Biol. 2011, 38, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, A.; Battault, S.; Belaidi, E.; Tanguy, S.; Rosselin, M.; Boulghobra, D.; Meyer, G.; Gayrard, S.; Walther, G.; Geny, B. Exercise does not activate the β 3 adrenergic receptor–eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res. Cardiol. 2016, 111, 40. [Google Scholar] [CrossRef]
- Jiang, C.; Carillion, A.; Na, N.; De Jong, A.; Feldman, S.; Lacorte, J.-M.; Bonnefont-Rousselot, D.; Riou, B.; Amour, J. Modification of the β-adrenoceptor stimulation pathway in Zucker obese and obese diabetic rat myocardium. Crit. Care Med. 2015, 43, E241–E249. [Google Scholar] [CrossRef] [Green Version]
- Haley, J.M.; Thackeray, J.T.; Kolajova, M.; Thorn, S.L.; DaSilva, J.N. Insulin therapy normalizes reduced myocardial beta-adrenoceptors at both the onset and after sustained hyperglycemia in diabetic rats. Life Sci. 2015, 132, 101–107. [Google Scholar] [CrossRef]
- Haley, J.M.; Thackeray, J.T.; Thorn, S.L.; DaSilva, J.N. Cardiac beta-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses. PLoS ONE 2015, 10, E0127581. [Google Scholar] [CrossRef]
- Thaung, H.P.; Baldi, J.C.; Wang, H.Y.; Hughes, G.; Cook, R.F.; Bussey, C.T.; Sheard, P.W.; Bahn, A.; Jones, P.P.; Schwenke, D.O.; et al. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes. Diabetes 2015, 64, 2944–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dincer, U.D.; Guner, S.; Tay, A.; Arioglu, E.; Tasdelen, A.; Aslamaci, S.; Bidasee, K.R. Decreased expression of beta1- and beta2-adrenoceptors in human diabetic atrial appendage. Cardiovasc. Diabetol. 2003, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, A.; Van Bilsen, M.; Janssen, B.; Brouns, A.; Cleutjens, J.; Roemen, T.; Schaart, G.; Van Der Velden, J.; Van Der Vusse, G.; Van Nieuwenhoven, F. Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta. Physiol. 2010, 200, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Anand-Srivastava, M.B. Streptozotocin-induced diabetes and hormone sensitivity of adenylate cyclase in rat myocardial sarcolemma, aorta and liver. Biochem. Pharmacol. 1985, 34, 2013–2017. [Google Scholar] [CrossRef]
- Ingebretsen Jr, W.; Peralta, C.; Monsher, M.; Wagner, L.; Ingebretsen, C. Diabetes alters the myocardial cAMP-protein kinase cascade system. Am. J. Physiol. Heart Circ. Physiol. 1981, 240, H375–H382. [Google Scholar] [CrossRef]
- Miller, T., Jr. Phosphorylase activation hypersensitivity in hearts of diabetic rats. Am. J. Physiol.-Endocrinol. Metab. 1984, 246, E134–E140. [Google Scholar] [CrossRef]
- Vadlamudi, R.; McNeill, J.H. Effect of experimental diabetes on rat cardiac cAMP, phosphorylase, and inotropy. Am. J. Physiol. Heart Circ. Physiol. 1983, 244, H844–H851. [Google Scholar] [CrossRef]
- Das, I. Effect of diabetes and insulin on the rat heart adenyl cyclase, cyclic AMP phosphodiesterase and cyclic AMP. Horm. Metab. Res. 1973, 5, 330–333. [Google Scholar] [CrossRef]
- Bockus, L.B.; Humphries, K.M. cAMP-dependent protein kinase (PKA) signaling is impaired in the diabetic heart. J. Biol. Chem. 2015, 290, 29250–29258. [Google Scholar] [CrossRef] [Green Version]
- El-Hage, A.N.; Herman, E.H.; Jordan, A.W.; Ferrans, V.J. Influence of the diabetic state on isoproterenol-induced cardiac necrosis. J. Mol. Cell. Cardiol. 1985, 17, 361–369. [Google Scholar] [CrossRef]
- West, T.M.; Wang, Q.; Deng, B.; Zhang, Y.; Barbagallo, F.; Reddy, G.R.; Chen, D.; Phan, K.S.; Xu, B.; Isidori, A. Phosphodiesterase 5 Associates With β2 Adrenergic Receptor to Modulate Cardiac Function in Type 2 Diabetic Hearts. J. Am. Heart Assoc. 2019, 8, E012273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilsted, J.; Richter, E.; Madsbad, S.; Tronier, B.; Christensen, N.J.; Hildebrandt, P.; Damkjær, M.; Galbo, H. Metabolic and cardiovascular responses to epinephrine in diabetic autonomic neuropathy. N. Engl. J. Med. 1987, 317, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Trovik, T.; Jaeger, R.; Jorde, R.; Sager, G. Reduced sensitivity to beta--adrenoceptor stimulation and blockade in insulin dependent diabetic patients with hypoglycaemia unawareness. Br. J. Clin. Pharmacol. 1994, 38, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, Y.; Fu, Q.; Xu, B.; Zhang, Y.; Kim, S.; Tan, R.; Barbagallo, F.; West, T.; Anderson, E. Inhibiting insulin-mediated β2-adrenergic receptor activation prevents diabetes-associated cardiac dysfunction. Circulation 2017, 135, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Wichelhaus, A.; Russ, M.; Petersen, S.; Eckel, J.G. protein expression and adenylate cyclase regulation in ventricular cardiomyocytes from STZ-diabetic rats. Am. J. Physiol.Heart Circ. Physiol. 1994, 267, H548–H555. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Pierce, G.; Dhalla, N. Alterations in adenylate cyclase activity due to streptozotocin-induced diabetic cardiomyopathy. Life Sci. 1984, 34, 1223–1230. [Google Scholar] [CrossRef]
- Michel, A.; Cros, G.; McNeill, J.; Serrano, J. Cardiac adenylate cyclase activity in streptozotocin-treated rats after 4 months of diabetes: Impairment of epinephrine and glucagon stimulation. Life Sci. 1985, 37, 2067–2075. [Google Scholar] [CrossRef]
- Menahan, L.; Chaudhuri, S.; Weber, H.; Shipp, J. Lack of epinephrine stimulation of rat heart adenylate cyclase in experimental diabetes. Horm. Metab. Res. 1977, 9, 527–528. [Google Scholar] [CrossRef]
- Tamada, A.; Hattori, Y.; Houzen, H.; Yamada, Y.; Sakuma, I.; Kitabatake, A.; Kanno, M. Effects of β-adrenoceptor stimulation on contractility, [Ca2+] i, and Ca2+ current in diabetic rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H1849–H1857. [Google Scholar] [CrossRef]
- Shao, C.-H.; Wehrens, X.H.; Wyatt, T.A.; Parbhu, S.; Rozanski, G.J.; Patel, K.P.; Bidasee, K.R. Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J. Appl. Physiol. 2009, 106, 1280–1292. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Quamme, G.; McNeill, J.H. Depressed [Ca2+] i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 1994, 266, H2334–H2342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Sharma, A.; Saran, V.; Bernatchez, P.N.; Allard, M.F.; McNeill, J.H. β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions. Eur. J. Pharmacol. 2011, 657, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.-P. β-Adrenergic signaling in the heart: Dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Sci. STKE 2001, 104, re15. [Google Scholar] [CrossRef]
- Smith, J.M.; Paulson, D.J.; Romano, F.D. Inhibition of Nitric Oxide Synthase byL-NAME Improves Ventricular Performance in Streptozotocin-diabetic Rats. J. Mol. Cell. Cardiol. 1997, 29, 2393–2402. [Google Scholar] [CrossRef]
- Song, D.; Kuo, K.-H.; Yao, R.; Hutchings, S.R.; Pang, C.C. Inducible nitric oxide synthase depresses cardiac contractile function in Zucker diabetic fatty rats. Eur. J. Pharmacol. 2008, 579, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Bundgaard, H.; Liu, C.-C.; Garcia, A.; Hamilton, E.J.; Huang, Y.; Chia, K.K.; Hunyor, S.N.; Figtree, G.A.; Rasmussen, H.H. β3 adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 2010, 122, 2699–2708. [Google Scholar] [CrossRef] [Green Version]
- Brodde, O.E.; Michel, M.C. Adrenergic and muscarinic receptors in the human heart. Pharmacol. Rev. 1999, 51, 651–690. [Google Scholar]
- Wenzel, S.; Soltanpour, G.; Schlüter, K.-D. No correlation between the p38 MAPK pathway and the contractile dysfunction in diabetic cardiomyocytes. Pflügers Arch. 2005, 451, 328–337. [Google Scholar] [CrossRef]
- Dutta, K.; Carmody, M.W.; Cala, S.E.; Davidoff, A.J. Depressed PKA activity contributes to impaired SERCA function and is linked to the pathogenesis of glucose-induced cardiomyopathy. J. Mol. Cell. Cardiol. 2002, 34, 985–996. [Google Scholar] [CrossRef]
- Norby, F.; Aberle, N.; Kajstura, J.; Anversa, P.; Ren, J. Transgenic overexpression of insulin-like growth factor I prevents streptozotocin-induced cardiac contractile dysfunction and beta-adrenergic response in ventricular myocytes. J. Endocrinol. 2004, 180, 175–182. [Google Scholar] [CrossRef]
- Dincer, U.D.; Ozcelikay, A.T.; Yilmaz, E.D. The effects of chronic L-NAME and L-arginine administration on β-adrenergic responsiveness of STZ-diabetic rat atria. Pharmacol. Res. 2000, 41, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Özcelikay, A.T.; Yildizoglu-Ari, N.; Özuari, A.; Öztürk, Y.; Altan, V.M. The effect of vanadate on alloxan-diabetic rat atria. Diabetes Res. Clin. Pract. 1993, 19, 189–194. [Google Scholar] [CrossRef]
- Goyal, R.K.; Rodrigues, B.; McNeill, J.H. Effect of tri-iodothyronine on cardiac responses to adrenergic-agonists in STZ-induced diabetic rats. Gen. Pharmacol. 1987, 18, 357–362. [Google Scholar] [CrossRef]
- Sellers, D.J.; Chess--Williams, R. The effects of streptozotocin--induced diabetes and aldose reductase inhibition with sorbinil, on left and right atrial function in the rat. J. Pharm. Pharmacol. 2000, 52, 687–694. [Google Scholar] [CrossRef]
- Sato, N.; Hashimoto, H.; Takiguchi, Y.; Nakashima, M. Altered responsiveness to sympathetic nerve stimulation and agonists of isolated left atria of diabetic rats: No evidence for involvement of hypothyroidism. J. Pharmacol. Exp. Ther. 1989, 248, 367–371. [Google Scholar]
- Hicks, K.K.; Seifen, E.; Stimers, J.R.; Kennedy, R.H. Diabetes with and without ketoacidosis on right atrial pacemaker rate and autonomic responsiveness. Am. J. Physiol. Heart Circ. Physiol. 1997, 273, H1888–H1893. [Google Scholar] [CrossRef]
- Dinçer, Ü.D.; Onay, A.; Arı, N.; Özçelikay, A.T.; Altan, V.M. The effects of diabetes on β-adrenoceptor mediated responsiveness of human and rat atria. Diabetes Res. Clin. Pract. 1998, 40, 113–122. [Google Scholar] [CrossRef]
- Ramanadham, S.; Decker, P.; Tenner Jr, T.E. Effect of insulin replacement on streptozotocin-induced effects in the rat heart. Life Sci. 1983, 33, 289–296. [Google Scholar] [CrossRef]
- Austin, C.; Otter, D.; Chess-Williams, R. Influence of adrenoceptor stimulation on aggregation of platelets from diabetic and control rats. J. Auto. Pharmacol. 1995, 15, 169–176. [Google Scholar] [CrossRef]
- Ozturk, Y.; Yildizoglu-Ari, N.; Altan, V.M.; Ozcelikay, A.T. Effect of insulin on the decreased beta-adrenergic responses of duodenum and atrium isolated from streptozotocin diabetic rats. Gen. Pharmacol. 1993, 24, 217–223. [Google Scholar] [CrossRef]
- Yu, Z.; McNeill, J.H. Altered inotropic responses in diabetic cardiomyopathy and hypertensive-diabetic cardiomyopathy. J. Pharmacol. Exp. Ther. 1991, 257, 64–71. [Google Scholar]
- Banyasz, T.; Kalapos, I.; Kelemen, S.; Kovacs, T. Changes in cardiac contractility in IDDM and NIDDM diabetic rats. Gen. Physiol. Biophys. 1996, 15, 357. [Google Scholar]
- Wald, M.; Pascual, J.; Sterin-Borda, L. Role of thromboxanes in alterations of the diabetic β-adrenergic system. Biochem. Pharmacol. 1989, 38, 3347–3355. [Google Scholar] [CrossRef]
- Nagamine, F.; Murakami, K.; Mimura, G.; Sakanashi, M. Effects of beta-adrenoceptor blocking agents on isolated atrial and papillary muscles from experimentally diabetic rats. Jpn. J. Pharmacol. 1989, 49, 67–76. [Google Scholar] [CrossRef]
- Karasu, C.; Ozturk, Y.; Altan, N.; Yildizoglu-Ari, N.; Ikizler, C.; Altan, V.M. Thyroid hormones mediated effect of insulin on alloxan diabetic rat atria. Gen. Pharmacol. 1990, 21, 735–740. [Google Scholar] [CrossRef]
- Kamata, K.; Satoh, T.; Matsumoto, T.; Noguchi, E.; Taguchi, K.; Kobayashi, T.; Tanaka, H.; Shigenobu, K. Enhancement of methoxamine--induced contractile responses of rat ventricular muscle in streptozotocin--induced diabetes is associated with α1A adrenoceptor upregulation. Acta Physiol. 2006, 188, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Amour, J.; David, J.-S.; Vivien, B.; Coriat, P.; Riou, B. Interaction of halogenated anesthetics with α-and β-adrenoceptor stimulations in diabetic rat myocardium. J. Am. Soc. Anesthesiol. 2004, 101, 1145–1152. [Google Scholar] [CrossRef]
- Aragno, M.; Mastrocola, R.; Alloatti, G.; Vercellinatto, I.; Bardini, P.; Geuna, S.; Catalano, M.G.; Danni, O.; Boccuzzi, G. Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 2008, 149, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Kamata, K.; Satoh, T.; Tanaka, H.; Shigenobu, K. Changes in electrophysiological and mechanical responses of the rat papillary muscle to α-and β-agonist in streptozotocin-induced diabetes. Can. J. Physiol. Pharmacol. 1997, 75, 781–788. [Google Scholar] [CrossRef]
- Ojewole, J. The influence of streptozotocin-induced diabetes on myocardial contractile performance in vitro. Methods Find. Exp. Clin. Pharmacol. 1985, 7, 119–124. [Google Scholar]
- Austin, C.; Chess-Williams, R. The In--vitro Effects of Insulin and the Effects of Acute Fasting on Cardiac β--Adrenoceptor Responses in the Short--term Streptozotocin--diabetic Rat. J. Pharm. Pharmacol. 1994, 46, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.L.; Galasso, F.; Thompson, C.I.; Belloni, F.L. Vasodilative and anti-adrenergic effects of adenosine in diabetic rat hearts. Can. J. Physiol. Pharmacol. 1992, 70, 13–19. [Google Scholar] [CrossRef]
- Ingebretsen, C.G.; Moreau, P.; Hawelu-Johnson, C.; Ingebretsen Jr, W. Performance of diabetic rat hearts: Effects of anoxia and increased work. Am. J. Physiol. Heart Circulatory Physiol. 1980, 239, H614–H620. [Google Scholar] [CrossRef] [PubMed]
- Op den Buijs, J.; Miklós, Z.; Van Riel, N.A.; Prestia, C.M.; Szenczi, O.; Tóth, A.; Van der Vusse, G.J.; Szabó, C.; Ligeti, L.; Ivanics, T. β-adrenergic activation reveals impaired cardiac calcium handling at early stage of diabetes. Life Sci. 2005, 76, 1083–1098. [Google Scholar] [CrossRef] [PubMed]
- Ligeti, L.; Szenczi, O.; Prestia, C.M.; Szabó, C.; Horváth, K.; Marcsek, Z.L.; Van Stiphout, R.G.; Van Riel, N.A.; Den Buijs, J.O.; Van der Vusse, G.J. Altered calcium handling is an early sign of streptozotocin-induced diabetic cardiomyopathy. Int. J. Mol. Med. 2006, 17, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunagawa, R.; Murakami, K.; Mimura, G.; Sakanashi, M. Effects of adrenergic drugs on isolated and perfused hearts of streptozotocin-induced diabetic rats. Jpn. J. Pharmacol. 1987, 44, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, R.V.; McNeill, J.H. Effect of experimental diabetes on isolated rat heart responsiveness to isoproterenol. Can. J. Physiol. Pharmacol. 1984, 62, 124–131. [Google Scholar] [CrossRef]
- Ha, T.; Kotsanas, G.; Wendt, I. Intracellular Ca2+ and adrenergic responsiveness of cardiac myocytes in streptozotocin--induced diabetes. Clin. Exp. Pharmacol. Physiol. 1999, 26, 347–353. [Google Scholar] [CrossRef]
- Heller, B.A.; Paulson, D.J.; Kopp, S.J.; Peace, D.G.; Tow, J.P. Depressed in vivo myocardial reactivity to dobutamine in streptozotocin diabetic rats: Influence of exercise training. Cardiovasc. Res. 1988, 22, 417–424. [Google Scholar] [CrossRef]
- Romano, F.D.; Kopp, S.J.; Daar, J.T.; Smith, C.A. The antiadrenergic effect of cyclopentyladenosine on myocardial contractility is reduced in vivo in diabetic rats. Can. J. Physiol. Pharmacol. 1994, 72, 1245–1251. [Google Scholar] [CrossRef]
- Broderick, T.L.; Kopp, S.J.; Daar, J.T.; Romano, F.D.; Paulson, D.J. Relation of glycosylated hemoglobin to in vivo cardiac function in response to dobutamine in spontaneously diabetic BB Wor rats. Can. J. Physiol. Pharmacol. 1994, 72, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Foy, J.; Lucas, P. Effect of experimental diabetes, food deprivation and genetic obesity on the sensitivity of pithed rats to autonomic agents. Br. J. Pharmacol. 1976, 57, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, D.J.; Kopp, S.J.; Tow, J.P.; Feliksik, J.M.; Peace, D.G. Impaired in vivo myocardial reactivity to norepinephrine in diabetic rats. Proc. Soc. Exp. Biol. Med. 1986, 183, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Hoit, B.D.; Castro, C.; Bultron, G.; Knight, S.; Matlib, M.A. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J. Card. Fail. 1999, 5, 324–333. [Google Scholar] [CrossRef]
- Irlbeck, M.; Zimmer, H. The functional and metabolic responses of the heart to catecholamines are attenuated in diabetic rats. Cardioscience 1995, 6, 131–138. [Google Scholar] [PubMed]
- Irlbeck, M.; Zimmer, H.G. Functional responses of the left and right heart of diabetic rats to α-and β-adrenergic receptor stimulation. Diabetes Res. Clin. Pract. 1996, 31, S79–S86. [Google Scholar] [CrossRef]
- Borges, G.R.; De Oliveira, M.; Salgado, H.C.; Fazan, R. Myocardial performance in conscious streptozotocin diabetic rats. Cardiovasc. Diabetol. 2006, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.L.; Stanley, W.C.; Lopaschuk, G.D.; Wisneski, J.A.; Pizzurro, R.D.; Hamilton, C.D.; McCormack, J.G. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am. J. Physiol. Heart Circ. Physiol. 1996, 271, H2320–H2329. [Google Scholar] [CrossRef]
- Berlin, I.; Grimaldi, A.; Bosquet, F.; Puech, A.J. Decreased β-adrenergic sensitivity in insulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 1986, 63, 262–265. [Google Scholar] [CrossRef]
- Fritsche, A.; Stumvoll, M.; Grüb, M.; Sieslack, S.; Renn, W.; Schmülling, R.-M.; Häring, H.-U.; Gerich, J.E. Effect of hypoglycemia on β-adrenergic sensitivity in normal and type 1 diabetic subjects. Diabetes Care 1998, 21, 1505–1510. [Google Scholar] [CrossRef]
- Korytkowski, M.T.; Mokan, M.; Veneman, T.F.; Mitrakou, A.; Cryer, P.E.; Gerich, J.E. Reduced beta-adrenergic sensitivity in patients with type 1 diabetes and hypoglycemia unawareness. Diabetes Care 1998, 21, 1939–1943. [Google Scholar] [CrossRef] [PubMed]
- Dejgaard, A.; Andersen, P.; Hvidberg, A.; Hilsted, J. Cardiovascular, metabolic, and hormonal responses to noradrenaline in diabetic patients with autonomic neuropathy. Diabet. Med. 1996, 13, 983–989. [Google Scholar] [CrossRef]
- Steinhorn, B.; Sartoretto, J.L.; Sorrentino, A.; Romero, N.; Kalwa, H.; Abel, E.D.; Michel, T. Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4. Free Radical Biol. Med. 2017, 113, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Mago, N. Inotropic and chronotropic effects of propranolol in isolated atrium of rats with fructose-induced insulin-resistance. Investig. Clin. 2017, 58, 22–33. [Google Scholar]
- Cook, R.F.; Bussey, C.T.; Fomison-Nurse, I.C.; Hughes, G.; Bahn, A.; Cragg, P.A.; Lamberts, R.R. Beta2-Adrenoceptors indirectly support impaired beta1-adrenoceptor responsiveness in the isolated type 2 diabetic rat heart. Exp. Physiol. 2019, 104, 808–818. [Google Scholar] [CrossRef]
- Takada, A.; Miki, T.; Kuno, A.; Kouzu, H.; Sunaga, D.; Itoh, T.; Tanno, M.; Yano, T.; Sato, T.; Ishikawa, S. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes. PLoS ONE 2012, 7, E39893. [Google Scholar] [CrossRef]
- Wilson, G.A.; Wilson, L.C.; Lamberts, R.R.; Majeed, K.; Lal, S.; Wilkins, G.T.; Baldi, J.C. β-Adrenergic Responsiveness in the Type 2 Diabetic Heart: Effects on Cardiac Reserve. Med. Sci. Sports Exerc. 2017, 49, 907–914. [Google Scholar] [CrossRef]
- Bussey, C.T.; de Leeuw, A.E.; Lamberts, R.R. Increased haemodynamic adrenergic load with isoflurane anaesthesia in type 2 diabetic and obese rats in vivo. Cardiovasc. Diabetol. 2014, 13, 161. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.F.; Bussey, C.T.; Mellor, K.M.; Cragg, P.A.; Lamberts, R.R. beta1-Adrenoceptor, but not beta2-adrenoceptor, subtype regulates heart rate in type 2 diabetic rats in vivo. Exp. Physiol. 2017, 102, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Gregg, E.W.; Li, Y.; Wang, J.; Rios Burrows, N.; Ali, M.K.; Rolka, D.; Williams, D.E.; Geiss, L. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 2014, 370, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-J.; Zhang, Z.-S.; Onishi, K.; Ukai, T.; Sane, D.C.; Cheng, C.P. Upregulation of functional β3-adrenergic receptor in the failing canine myocardium. Circ. Res. 2001, 89, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Prieto, J.; García-Ruiz, J.M.; Sanz-Rosa, D.; Pun, A.; García-Alvarez, A.; Davidson, S.M.; Fernández-Friera, L.; Nuno-Ayala, M.; Fernández-Jiménez, R.; Bernal, J.A. β 3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res. Cardiol. 2014, 109, 422. [Google Scholar] [CrossRef] [PubMed]
- Aragón, J.P.; Condit, M.E.; Bhushan, S.; Predmore, B.L.; Patel, S.S.; Grinsfelder, D.B.; Gundewar, S.; Jha, S.; Calvert, J.W.; Barouch, L.A. Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J. Am. Coll. Cardiol. 2011, 58, 2683–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, R.; Jialal, I. Diabetes Mellitus Type 2; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
Reference | β-AR Protein (Binding) | β-AR Protein (Western Blot) | β-AR mRNA | Species | Sex | Diabetes Model | Duration of Diabetes |
---|---|---|---|---|---|---|---|
Amour et al., 2007 | n/a | β1-AR ↓ β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 4-week |
Amour et al., 2008 | n/a | β1-AR ↓ β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 4- and 12-week |
Aragno et al., 2012 | n/a | β1-AR ↓ | n/a | Wistar rat | Male | STZ induced T1DM | 6-week |
Arioglu-Inan et al., 2013 | n/a | β3-AR ↑ | β1-AR ↓ | SD rat | Male | STZ induced T1DM | 8-week |
Atkins et al., 1985 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 2- and 4-week |
Austin and Chess-Williams, 1991 | β-AR ↑ | n/a | n/a | Wistar rat | Female | STZ induced T1DM | 3-week |
Austin and Chess-Williams, 1992 | β-AR ↑ | n/a | n/a | Wistar rat | Female | STZ induced T1DM | 2-week |
Beenen et al., 1997 | β-AR ↓ | n/a | n/a | SHR rat, WKY rat | Male | STZ induced T1DM | 8-week |
Bidasee et al., 2008 | n/a | β1-AR ↓ β2-AR ↓ β3-AR ↑ | n/a | SD rat | Male | STZ induced T1DM | 7-week |
Bilginoglu et al., 2007 | β-AR binding site ↓ | n/a | n/a | Wistar rat | Male Female | STZ induced T1DM | 5-week |
Bilginoglu et al., 2009 | β-AR ↓ | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 5-week |
Bitar et al., 1987 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 2-month |
Carillion et al., 2017 | n/a | β1-AR ↓ β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 8-week |
Cros et al., 1986 | β-AR n.c. | n/a | n/a | Rat | n/a | STZ induced T1DM | 4-month |
Dincer et al., 2001 | n/a | β1-AR ↓ β2-AR ↓ β3-AR ↑ | β1-AR ↓ β2-AR ↑ β3-AR ↑ | Wistar rat | Male | STZ induced T1DM | 14-week |
Dubois et al., 1996 | β-AR ↓ | n/a | n/a | SHR rat, WKY rat | Male | STZ induced T1DM | 8-week |
Durante et al., 1989 | β-AR ↓ | n/a | n/a | Spontaneously diabetic Bio-Breeding (BB) rats | n/a | Genetic T1DM | 10-week |
Eckel et al., 1991 | β-AR ↓ | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 3-week |
Gotzsche, 1983 | β-AR n.c. | n/a | n/a | Wistar rat | Female | STZ induced T1DM | 8-day |
Gunasekaran et al., 1993 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 4-week |
Heyliger et al., 1982 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 8-week |
Huisamen et al., 2001 | β-AR n.c. (6 and 10-week) β-AR ↓ (20-week) | n/a | n/a | Wistar rat | n/a | STZ induced T1DM | 6, 10- and 20-week |
Ingebretsen et al., 1983 | β-AR ↓ | n/a | n/a | Albino SD rat | Male | Alloxan induced T1DM | 5-day |
Kayki-Mutlu et al., 2014 | n/a | n/a | β3-AR ↑ | SD rat | Male | STZ induced T1DM | 8-week |
Lahaye Sle et al., 2010 | n/a | β1-AR ↓ β2-AR n.c. β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 9-week |
Latifpour and McNeill, 1984 | β-AR ↓ | n/a | n/a | Rat | n/a | STZ induced T1DM | 6-month |
Le Douairon Lahaye et al., 2011 | n/a | β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 9-week |
Lee et al., 2004 | β-AR ↓ | n/a | n/a | New Zealand white rabbit | Male | Alloxan induced T1DM | 12-week |
Matsuda et al., 1999 | β-AR ↓ | n/a | β1-AR ↓ | Wistar rat | Male | STZ induced T1DM | 6-week |
Mishra et al., 2010 | n/a | β2-AR ↓ | n/a | (Ins2+/− Akita) mice | Male | Genetic T1DM | 12-week |
Monnerat-Cahli et al., 2014 | n/a | n/a | β1-AR ↓ | Wistar rat | Male | STZ induced T1DM | 8-week |
Mooradian et al., 1988 | β-AR n.c. | n/a | n/a | CDF (F-344) rat | Male | STZ induced T1DM | 6-week |
Myers et al., 2016 | β-AR n.c. | n/a | n/a | C57BL/6 mice | Male/Female | STZ induced T1DM | 16-week |
Nishio et al., 1988 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 1-, 3- and 10-week |
Okatan et al., 2015 | n/a | β1-AR ↓ β2-AR ↓ β3-AR ↑ | β1-AR ↓ β2-AR ↑ β3-AR ↑ | Wistar rat | Male | STZ induced T1DM | n/a |
Plourde et al., 1991 | β-AR ↓ | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 10-day + 10-week |
Ramanadham et al., 1983 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 4-week |
Ramanadham and Tenner, 1983 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 4-week |
Ramanadham and Tenner, 1986 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 1-,3- and 6-month |
Ramanadham and Tenner, 1987 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 4-week |
Ramanadham et al., 1987 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 4-week |
Roth et al., 1995 | β-AR n.c. | n/a | n/a | Yucatan minipig | Male | STZ induced T1DM | 12-week |
Savarese and Berkowitz, 1979 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 8-week |
Saito et al., 1991 | β-AR ↓ (AV node) β-AR ↓ (IVS) β1-AR ↓ (AV node) β1-AR ↓ (IVS) β2-AR ↓ (AV node) β2-AR ↑ (IVS) β1/β2-AR (%) ↓ (AV node) β1/β2-AR ↓ (%) (IVS) | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 3-week |
Sellers and Chess-Williams, 2001 | β-AR n.c. | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 14-day |
Sharma et al., 2008 | n/a | β1-AR ↓ β2-AR ↑ β3-AR ↑ | n/a | Wistar rat | Male | STZ induced T1DM | 6-week |
Sun et al., 2016 | n/a | β1-AR n.c. | n/a | SD rat | Male | STZ induced T1DM | 8-week |
Sundaresan et al., 1984 | β-AR ↓ | n/a | n/a | SD rat | Male | STZ induced T1DM | 8-week |
Stanley et al., 2001 | β-AR ↓ | n/a | n/a | Yucatan micropig | Female | STZ induced T1DM | 11-week |
Sylvestre-Gervais et al., 1984 | β-AR ↓ | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 10-week |
Takeda et al., 1996 | β-AR n.c. (15, 18, 21, 24-day) β-AR ↓ (27-day) | n/a | n/a | SD rat | Male | STZ induced T1DM | 15, 18, 21, 24 and 27-day |
Tuncay et al., 2013 | β-AR n.c. | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 12-week |
Uekita et al., 1997 | β-AR ↑ (3- and 14-week) β-AR n.c. (24- and 35-week) | n/a | n/a | CHAD hamsters | Male/Female | Genetic T1DM | 3-, 14-, 24- and 35-week |
Williams et al., 1983 | β-AR ↓ | n/a | n/a | Wistar rat | Male | STZ induced T1DM | 8-week |
Zola et al., 1988 | β-AR n.c. | n/a | n/a | New Zealand white rabbit | Male | Alloxan induced T1DM | 10–13 months |
Daniels et al., 2010 | n/a | na | β1-AR n.c. | db/db mice | Male/Female | Genetic T2DM | 10-week |
Dincer et al., 2003 | n/a | n/a | β1-AR ↓ β2-AR ↓ | Human | Male/Female | T2DM | <5-year |
Dubois et al., 1996 | β-AR ↓ | n/a | n/a | Zucker obese rat | n/a | Insulin resistant diabetes | 20-week |
Fu et al., 2017 | n/a | β1-AR n.c β2-AR n.c. | n/a | C57BL/6 mice | Male | HFD induced T2DM | 8-week |
Garris, 1990 | β-AR n.c. | n/a | n/a | db/db mice | Female | Genetic T2DM | 4- and 12-week |
Haley et al., 2015 | β-AR ↓ | β1-AR ↓ β2-AR ↓ β3-AR n.c. | n/a | SD rat | Male | HDF/low dose STZ induced T2DM | 8-week |
Haley et al., 2015 | β-AR n.c. (10-week) β-AR ↓ (16-week) | β1-AR n.c. (10-week) β1-AR ↓ (16-week) β2-AR ↓ (10-/16-week) β3-AR ↑ (10-/16-week) | n/a | ZDF rat | Male | Genetic T2DM | 10- and 16-week |
Huisamen et al., 2001 | β-AR n.c. | n/a | n/a | Zucker obese rat | n/a | Insulin resistant diabetes model | 6-, 10- and 20-week |
Jiang et al., 2015 | n/a | β1-AR ↓ β2-AR ↓ β3-AR n.c. | n/a | Zucker obese diabetic rat | Male | Genetic T2DM | 15-week |
Kleindienst et al., 2016 | n/a | β1-AR n.c. β2-AR n.c. β3-AR ↓ | n/a | C57BL/6 mice | Male | HF/HS diet induced T2DM | 12-week |
Lamberts et al., 2014 | n/a | β1-AR n.c. | n/a | Human | Male/Female | T2DM | <1-year |
Schaffer et al., 1991 | β-AR n.c. | n/a | n/a | Neonatal Wistar rat | Male | Non insulin dependent diabetes | 10- and 12-month |
Thackeray et al., 2011 | β-AR n.c (2-week) β-AR ↓ (8-week) | β1-AR ↓ (8-week) β2-AR n.c. (8-week) | n/a | SD rat | Male | HDF/low dose STZ induced T2DM | 2- and 8-week |
Thaung et al., 2015 | n/a | β1-AR ↓ (LV) β1-AR ↑ (RA) β2-AR ↑ (LV and RA) | n/a | ZDF rat | Male | Genetic T2DM | 20-week |
Wang et al., 2017 | n/a | β1-AR n.c. | n/a | C57BL/6J mice | Male | HFD induced T2DM | 6-month |
Reference | Downstream Molecule | Change | Species | Sex | Diabetes Model | Duration of Diabetes |
---|---|---|---|---|---|---|
Amour et al., 2007 | G protein catalytic subunit dependent AC activity Receptor mediated AC activity Stimulated PKA activity NOS activity NOS1 expression | ↓ ↓ ↓ ↑ ↑ | Wistar rat | Male | STZ induced T1DM | 4-week |
Amour et al., 2008 | G protein catalytic subunit dependent AC activity Receptor mediated AC activity Stimulated PKA activity | n.c. n.c. n.c. | Wistar rat | Male | STZ induced T1DM | 4-week |
Aragno et al., 2012 | p-AKT/AKT | ↓ | Wistar rat | Male | STZ induced T1DM | 6-week |
Arioglu-Inan et al., 2013 | eNOS expression | n.c. | SD rat | Male | STZ induced T1DM | 8-week |
Austin and Chess-Williams, 1991 | G protein catalytic subunit dependent AC sensitivity | ↑ | Wistar rat | Female | STZ induced T1DM | 3-week |
Atkins et al., 1985 | Receptor mediated AC activity | ↓ | SD rat | Male | STZ induced T1DM | 4-week |
Beenen et al., 1997 | G protein catalytic subunit dependent AC activity | ↑ (SHR diabetic rat) | SHR ratWKY rat | Male | STZ induced T1DM | 8-week |
Bilginoglu et al., 2007 | Receptor mediated AC activity Receptor mediated AC activity | ↓ (male) n.c. (female) | Wistar rat | Male/Female | STZ induced T1DM | 5-week |
Bilginoglu et al., 2009 | Receptor mediated AC activity | ↓ | Wistar rat | Male | STZ induced T1DM | 5-week |
Bockus and Humphries, 2015 | Basal cAMP level Basal PKA activity Stimulated PKA activity | n.c. n.c. ↓ | C57BL/6J mice | Male | STZ induced T1DM | 4-month |
Das, 1973 | Basal cAMP level Basal AC activity | n.c. n.c. | SD rat | Male | STZ induced T1DM | 7-day |
El-Hage et al., 1985 | Basal cAMP level Receptor mediated cAMP level | n.c. n.c. | CDI miceC57BL/Ksjj mice | Male Male | Alloxan induced T1DM Genetic diabetes | 10-day 10-day |
Gotzsche, 1983 | Basal cAMP levels Receptor mediated cAMP levels Receptor mediated AC activity | n.c. ↓ ↓ | Wistar rat | Female | STZ induced T1DM | 8-day |
Huisamen et al., 2001 | Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal cAMP level Receptor mediated cAMP level Basal cAMP level Receptor mediated cAMP level Basal cAMP level Receptor mediated cAMP level | n.c. (6-week) n.c. (6-week) n.c. (6-week) n.c. (10-week) n.c. (10-week) n.c. (10-week) n.c. (20-week) n.c. (20-week) n.c. (20-week) n.c. (6-week) n.c. (6-week) n.c. (10-week) n.c. (10-week) ↓ (20-week) n.c. (20-week) | Wistar rat | n/a | STZ induced T1DM | 6-, 10- and 20-week |
Ingebretsen Jr et al., 1981 | Basal cAMP level Basal cGMP level Receptor mediated cAMP level | n.c. n.c. ↓ | Albino SD rat | Male | Alloxan induced T1DM | n/a |
Ingebretsen et al., 1983 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity | n.c. n.c. n.c. n.c. | SD rat | Male | Alloxan induced T1DM | 5-day |
Kayki-Mutlu et al., 2014 | Giα2 expression eNOS expression | ↑ n.c. | SD rat | Male | STZ induced T1DM | 8-week |
Le Douairon Lahaye et al., 2011 | NOS1 expression | ↑ | Wistar rat | Male | STZ induced T1DM | 9-week |
Menahan et al., 1977 | Basal AC activity G protein dependent AC activity Receptor mediated AC activity | n.c. ↓ ↓ | Rat | n/a | Alloxan induced T1DM | 13–14 days |
Michel et al., 1985 | Basal AC activity G protein dependent AC activity Receptor mediated AC activity | n.c. n.c. ↓ | Wistar rat | Male | STZ induced T1DM | 4-month |
Miller Jr, 1984 | Basal cAMP level Receptor mediated cAMP level | n.c. ↓ | SD rat | Male | Alloxan induced T1DM | 3–7 days |
Mooradian et al., 1988 | G protein catalytic subunit dependent AC activity Receptor mediated AC activity | n.c. n.c. | CDF (F-344) rat | Male | STZ induced T1DM | 6-week |
Nishio et al., 1988 | Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity | n.c. n.c. ↓ | SD rat | Male | STZ induced T1DM | 10-week |
Plourde et al., 1991 | Basal AC activity G protein dependent AC activity Receptor mediated AC activity | n.c. n.c. ↓ | Wistar rat | Male | STZ induced T1DM | 10-day + 10-week |
Ramanadham and Tenner, 1987 | G protein catalytic subunit dependent AC activity | n.c. | SD rat | Male | STZ induced T1DM | 4-week |
Roth et al., 1995 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity Gs expression Gi expression Gi/Gs | n.c. n.c. ↓ ↓ ↓ ↑ ↑ | Yucatan minipig | Male | STZ induced T1DM | 12-week |
Sharma et al., 2008 | Basal PKA activity p-AKT expression β2-Gs couplingβ2-Gi coupling | n.c. ↓ n.c. n.c. | Wistar rat | Male | STZ induced T1DM | 6-week |
Sharma et al., 2011 | PKA phosphorylation AKT phosphorylation | n.c. ↓ | Wistar rat | Male | STZ induced T1DM | 6-week |
Shao et al., 2009 | Basal PKA activity Stimulated PKA activity p-RyR2 (Ser2814) expression p-RyR2 (Ser2808) expression | ↓ n.c. ↑ ↑ | SD rat | Male | STZ induced T1DM | 7-week |
Smith et al., 1984 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity | n.c. n.c. n.c. ↓ | SD rat | Male | STZ induced T1DM | 8–9 weeks |
Smith et al., 1997 | NO expression cNOS expression iNOS induction | ↑ ↑ ↑ | SD rat | Male | STZ induced T1DM | 8-week |
Srivastava and Anand-Srivastava, 1985 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity | ↑ ↓ ↓ ↓ | SD rat | Male | STZ induced T1DM | 5-day |
Stanley et al., 2001 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity Gs expression Gi expression | n.c. ↓ ↓ n.c. n.c. n.c. | Yucatan micropig | Female | STZ induced T1DM | 11-week |
Sundaresan et al., 1984 | Basal cAMP levels Receptor mediated cAMP levels Receptor mediated AC activity | n.c. n.c. n.c. | SD rat | Male | STZ induced T1DM | 2-month |
Tamada et al., 1998 | G protein catalytic subunit dependent AC activity Stimulated PKA activity | ↓ ↓ | Wistar rat | Male | STZ induced T1DM | 4–6 weeks |
Trovik et al., 1994 | Plasma cAMP level | n.c. | Human | Male/Female | Insulin dependent T1DM | n/a |
Tuncay et al., 2013 | p-PKA/PKA p-PLN expression p-RyR/RyR | ↑ ↓ ↑ | Wistar rat | Male | STZ induced T1DM | 12-week |
Uekita et al., 1997 | Basal AC activity G protein catalytic subunit dependent AC activity G protein dependent AC activity Receptor mediated AC activity Na+-K+ ATPase activity Basal cAMP levelGiα expression Gsα expression | ↑ (14-week) ↑ (14-/24-week) ↑ (14-/24-week) ↑ (14-/24-week) n.c.↑ (14-week) n.c. n.c. | CHAD hamsters | Male/Female | Genetic T1DM | 3-, 14-, 24- and 35-week |
Vadlamudi and McNeill, 1983 | Basal cAMP level Receptor mediated cAMP level Basal cAMP level Receptor mediated cAMP level | n.c. (3-day) n.c. (3-day) n.c. (100–120 days) n.c. (100–120 days) | Wistar rat | Female | STZ and/or alloxan induced T1DM | 3-day, 100–120 days |
Wichelhaus et al., 1994 | Receptor mediated cAMP level | ↓ | Wistar rat | Male | STZ induced T1DM | 4–5 weeks |
Yu et al., 1994 | Stimulated PKA activity Receptor mediated PKA activity | ↓ ↓ | Wistar rat | Male | STZ induced T1DM | 6-week |
Fu et al., 2017 | Gi expression p-TnI/TnI p-PLNSer16/PLN Receptor mediated p-PLNSer16/PLN | n.c. n.c. n.c. ↓ | C57BL/6 mice | Male | HFD induced T2DM | 8-week |
Hilsted et al., 1987 | Plasma cAMP level | n.c. | Human | Male | Insulin dependent juvenile onset diabetes | 12–16 years |
Huisamen et al., 2001 | Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal AC activity G protein catalytic subunit dependent AC activity Receptor mediated AC activity Basal cAMP level Receptor mediated cAMP level Basal cAMP level Receptor mediated cAMP level Basal cAMP level Receptor mediated cAMP level | n.c. (6-week) n.c. (6-week) n.c. (6-week) n.c. (10-week) n.c. (10-week) n.c. (10-week) n.c. (20-week) n.c. (20-week) n.c. (20-week) ↑ (6-week) n.c. (6-week) n.c. (10-week) n.c. (10-week) ↓ (20-week) n.c. (20-week) | Zucker obese rat | na | Insulin resistant diabetes | 6-, 10- and 20-week |
Jiang et al., 2015 | G protein catalytic subunit dependent AC activity Stimulated PKA activity | ↓ ↓ | Zucker obese diabetic rat | Male | Genetic T2DM | 15-week |
Kleindienst et al., 2016 | eNOS expression p-eNOSSer1177 expression p-eNOSThr495expression nNOS expression iNOS expression | ↑ ↑ ↑ ↓ ↑ | C57BL/6 mice | Male | HF/HS diet induced T2DM | 12-week |
Schaffer et al., 1991 | Receptor mediated AC activity Receptor mediated cAMP level Na+-K+ ATPase activity | n.c. n.c. ↓ | Neonatal Wistar rat | Male | Non insulin dependent diabetes | 10- and 12-month |
Song et al., 2008 | iNOS expression iNOS actvity | ↑ ↑ | ZDF rat | Male | Genetic T2DM | 20-week |
Wang et al., 2017 | Basal cAMP level Gi expression p-PLN/PLN p-AKT expression p-TnI/TnI | ↓ n.c. ↓ ↑ ↓ | C57BL/6J mice | Male | HFD induced T2DM | 6-month |
West et al., 2019 | Basal cAMP level Receptor mediated cAMP level Basal cGMP level Receptor mediated cGMP level Basal PKA activity Receptor mediated PKA activity p23–24/Total TnI p16/Total PLN | n.c. ↓ n.c. ↓ n.c. ↓ ↓ ↓ | C57BL/6J mice | Male | HFD induced T2DM | 4.5–5 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdogan, B.R.; Michel, M.C.; Arioglu-Inan, E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020, 9, 2548. https://doi.org/10.3390/cells9122548
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells. 2020; 9(12):2548. https://doi.org/10.3390/cells9122548
Chicago/Turabian StyleErdogan, Betul R., Martin C. Michel, and Ebru Arioglu-Inan. 2020. "Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart" Cells 9, no. 12: 2548. https://doi.org/10.3390/cells9122548
APA StyleErdogan, B. R., Michel, M. C., & Arioglu-Inan, E. (2020). Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells, 9(12), 2548. https://doi.org/10.3390/cells9122548