Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases
Abstract
:1. Introduction
2. Cell Therapy
2.1. Hepatocyte Transplantation
2.2. Stem Cell Therapy
2.2.1. HSCs and EPCs in Liver Repair
2.2.2. MSCs in Liver Repair
2.2.3. Liver Stem Cells
2.2.4. Adult Pluripotent Stem Cells and Transdifferentiated Cells
2.2.5. Current Limitations of Cell Therapy
2.3. Recent Improvements in Clinical Cell-Based Strategies
2.3.1. Encapsulation
2.3.2. Bioartificial Liver Device
2.3.3. Bioscaffolds
2.3.4. Liver Organoids
3. Cell-Free Approach: Extracellular Vesicles
4. Cell-Based and Cell-Free Gene Therapy for Liver Diseases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Axenfeld, E.; Stonesifer, E.G.; Hutson, W.; Hanish, S.; Raufman, J.P.; Urrunaga, N.H. Current and prospective therapies for acute liver failure. Dis Mon. 2018, 64, 493–522. [Google Scholar] [CrossRef] [PubMed]
- Testino, G.; Leone, S.; Fagoonee, S.; Pellicano, R. Alcoholic liver fibrosis: Detection and treatment. Minerva Med. 2018, 109, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Toniutto, P.; Bitetto, D.; Fornasiere, E.; Fumolo, E. Challenges and future developments in liver transplantation. Minerva Gastroenterol. Dietol. 2019, 65, 136–152. [Google Scholar] [CrossRef] [PubMed]
- Carmody, I.C.; Romano, J.; Bohorquez, H.; Bugeaud, E.; Bruce, D.S.; Cohen, A.J.; Seal, J.; Reichman, T.W.; Loss, G.E. Novel Biliary Reconstruction Techniques During Liver Transplantation. Ochsner J. 2017, 17, 42–45. [Google Scholar] [PubMed]
- Bellini, M.I.; Nozdrin, M.; Yiu, J.; Papalois, V. Machine Perfusion for Abdominal Organ Preservation: A Systematic Review of Kidney and Liver Human Grafts. J. Clin. Med. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayant, K.; Reccia, I.; Virdis, F.; Shapiro, A.M.J. The Role of Normothermic Perfusion in Liver Transplantation (TRaNsIT Study): A Systematic Review of Preliminary Studies. HPB Surg. 2018, 2018, 6360423. [Google Scholar] [CrossRef]
- Patrono, D.; Surra, A.; Catalano, G.; Rizza, G.; Berchialla, P.; Martini, S.; Tandoi, F.; Lupo, F.; Mirabella, S.; Stratta, C.; et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci. Rep. 2019, 9, 9337. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, H.; Li, H.Y.; Chen, K.F.; Liu, F.; Wei, Y.G.; Li, B. Feasibility of using marginal liver grafts in living donor liver transplantation. World J. Gastroenterol. 2018, 24, 2441–2456. [Google Scholar] [CrossRef]
- Toniutto, P.; Zanetto, A.; Ferrarese, A.; Burra, P. Current challenges and future directions for liver transplantation. Liver Int. 2017, 37, 317–327. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines: Liver transplantation. J. Hepatol. 2016, 64, 433–485. [CrossRef] [PubMed]
- Lobato, C.M.O.; Codes, L.; Silva, G.F.; Souza, A.F.M.; Coelho, H.S.M.; Pedroso, M.L.A.; Parise, E.R.; Lima, L.; Borba, L.A.; Evangelista, A.S.; et al. Direct antiviral therapy for treatment of hepatitis C: A real-world study from Brazil. Ann. Hepatol. 2019, 18, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Collo, A.; Belci, P.; Fagoonee, S.; Loreti, L.; Gariglio, V.; Parise, R.; Magistroni, P.; Durazzo, M. Efficacy and safety of long-term entecavir therapy in a European population. Minerva Gastroenterol. Dietol. 2018, 64, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Maggi, U.; Andorno, E.; Rossi, G.; De Carlis, L.; Cillo, U.; Bresadola, F.; Mazzaferro, V.; Risaliti, A.; Bertoli, P.; Consonni, D.; et al. Liver retransplantation in adults: The largest multicenter Italian study. PLoS ONE 2012, 7, e46643. [Google Scholar] [CrossRef]
- Kelly, D.; Verkade, H.J.; Rajanayagam, J.; McKiernan, P.; Mazariegos, G.; Hubscher, S. Late graft hepatitis and fibrosis in pediatric liver allograft recipients: Current concepts and future developments. Liver Transpl. 2016, 22, 1593–1602. [Google Scholar] [CrossRef]
- Berenguer, M.; Schuppan, D. Progression of liver fibrosis in post-transplant hepatitis C: Mechanisms, assessment and treatment. J. Hepatol. 2013, 58, 1028–1041. [Google Scholar] [CrossRef] [Green Version]
- Abou-Beih, S.; Masson, S.; Saunders, R.; Haugk, B.; Oakley, F.; Tiniakos, D. Sinusoidal and pericellular fibrosis in adult post-transplant liver biopsies: Association with hepatic stellate cell activation and patient outcome. Virchows Arch. 2019, 475, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Makowa, L.; Cramer, D.V.; Hoffman, A.; Breda, M.; Sher, L.; Eiras-Hreha, G.; Tuso, P.J.; Yasunaga, C.; Cosenza, C.A.; Wu, G.D.; et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation 1995, 59, 1654–1659. [Google Scholar] [CrossRef]
- Cooper, D.K.; Dou, K.F.; Tao, K.S.; Yang, Z.X.; Tector, A.J.; Ekser, B. Pig Liver Xenotransplantation: A Review of Progress Toward the Clinic. Transplantation 2016, 100, 2039–2047. [Google Scholar] [CrossRef]
- Cooper, D.K.C.; Wijkstrom, M.; Hariharan, S.; Chan, J.L.; Singh, A.; Horvath, K.; Mohiuddin, M.; Cimeno, A.; Barth, R.N.; LaMattina, J.C.; et al. Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation 2017, 101, 1551–1558. [Google Scholar] [CrossRef]
- Meier, R.P.H.; Navarro-Alvarez, N.; Morel, P.; Schuurman, H.J.; Strom, S.; Buhler, L.H. Current status of hepatocyte xenotransplantation. Int. J. Surg. 2015, 23, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, A.; Perera, D.; Olabisi, R.M. Polymeric Materials for Cell Microencapsulation. Methods Mol. Biol. 2017, 1479, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Schiano, T.D.; Rhodes, R. The Ethics of living related liver transplantation when deceased donation is not an option. Clin. Liver Dis. (Hoboken) 2015, 6, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bethea, E.D.; Samur, S.; Kanwal, F.; Ayer, T.; Hur, C.; Roberts, M.S.; Terrault, N.; Chung, R.T.; Chhatwal, J. Cost Effectiveness of Transplanting HCV-Infected Livers Into Uninfected Recipients With Preemptive Antiviral Therapy. Clin. Gastroenterol. Hepatol. 2019, 17, 739–747 e738. [Google Scholar] [CrossRef] [PubMed]
- Iansante, V.; Mitry, R.R.; Filippi, C.; Fitzpatrick, E.; Dhawan, A. Human hepatocyte transplantation for liver disease: Current status and future perspectives. Pediatr. Res. 2018, 83, 232–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mito, M.; Kusano, M.; Kawaura, Y. Hepatocyte transplantation in man. Transplant. Proc. 1992, 24, 3052–3053. [Google Scholar] [CrossRef] [PubMed]
- Fox, I.J.; Chowdhury, J.R.; Kaufman, S.S.; Goertzen, T.C.; Chowdhury, N.R.; Warkentin, P.I.; Dorko, K.; Sauter, B.V.; Strom, S.C. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 1998, 338, 1422–1426. [Google Scholar] [CrossRef]
- Muraca, M.; Gerunda, G.; Neri, D.; Vilei, M.T.; Granato, A.; Feltracco, P.; Meroni, M.; Giron, G.; Burlina, A.B. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 2002, 359, 317–318. [Google Scholar] [CrossRef]
- Bilir, B.M.; Guinette, D.; Karrer, F.; Kumpe, D.A.; Krysl, J.; Stephens, J.; McGavran, L.; Ostrowska, A.; Durham, J. Hepatocyte transplantation in acute liver failure. Liver Transpl. 2000, 6, 32–40. [Google Scholar] [CrossRef]
- Puppi, J.; Strom, S.C.; Hughes, R.D.; Bansal, S.; Castell, J.V.; Dagher, I.; Ellis, E.C.; Nowak, G.; Ericzon, B.G.; Fox, I.J.; et al. Improving the techniques for human hepatocyte transplantation: Report from a consensus meeting in London. Cell Transplant. 2012, 21, 1–10. [Google Scholar] [CrossRef]
- Ribes-Koninckx, C.; Ibars, E.P.; Calzado Agrasot, M.A.; Bonora-Centelles, A.; Miquel, B.P.; Vila Carbo, J.J.; Aliaga, E.D.; Pallardo, J.M.; Gomez-Lechon, M.J.; Castell, J.V. Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. Cell Transplant. 2012, 21, 2267–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareja, E.; Gomez-Lechon, M.J.; Cortes, M.; Bonora-Centelles, A.; Castell, J.V.; Mir, J. Human hepatocyte transplantation in patients with hepatic failure awaiting a graft. Eur. Surg. Res. 2013, 50, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Ibars, E.P.; Cortes, M.; Tolosa, L.; Gomez-Lechon, M.J.; Lopez, S.; Castell, J.V.; Mir, J. Hepatocyte transplantation program: Lessons learned and future strategies. World J. Gastroenterol. 2016, 22, 874–886. [Google Scholar] [CrossRef] [PubMed]
- Meyburg, J.; Das, A.M.; Hoerster, F.; Lindner, M.; Kriegbaum, H.; Engelmann, G.; Schmidt, J.; Ott, M.; Pettenazzo, A.; Luecke, T.; et al. One liver for four children: First clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 2009, 87, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Mitry, R.R.; Hughes, R.D.; Lehec, S.; Terry, C.; Bansal, S.; Arya, R.; Wade, J.J.; Verma, A.; Heaton, N.D.; et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 2004, 78, 1812–1814. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Lee, J.H.; Shin, S.W.; Kim, S.J.; Joh, J.W.; Lee, D.H.; Kim, J.W.; Park, H.Y.; Lee, S.Y.; Lee, H.H.; et al. Hepatocyte transplantation for glycogen storage disease type Ib. Cell Transplant. 2007, 16, 629–637. [Google Scholar] [CrossRef]
- Sokal, E.M.; Smets, F.; Bourgois, A.; Van Maldergem, L.; Buts, J.P.; Reding, R.; Bernard Otte, J.; Evrard, V.; Latinne, D.; Vincent, M.F.; et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: Technique, safety, and metabolic follow-up. Transplantation 2003, 76, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Stephenne, X.; Najimi, M.; Sibille, C.; Nassogne, M.C.; Smets, F.; Sokal, E.M. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 2006, 130, 1317–1323. [Google Scholar] [CrossRef]
- Ogawa, M.; LaRue, A.C.; Mehrotra, M. Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol. Dis. 2013, 51, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bizzaro, D.; Russo, F.P.; Burra, P. New Perspectives in Liver Transplantation: From Regeneration to Bioengineering. Bioengineering (Basel) 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Levine, P.; McDaniel, K.; Francis, H.; Kennedy, L.; Alpini, G.; Meng, F. Molecular mechanisms of stem cell therapy in alcoholic liver disease. Dig. Liver Dis. 2014, 46, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Stock, P.; Bruckner, S.; Winkler, S.; Dollinger, M.M.; Christ, B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int. J. Mol. Sci. 2014, 15, 7004–7028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miguel, M.P.; Prieto, I.; Moratilla, A.; Arias, J.; Aller, M.A. Mesenchymal Stem Cells for Liver Regeneration in Liver Failure: From Experimental Models to Clinical Trials. Stem Cells Int. 2019, 2019, 3945672. [Google Scholar] [CrossRef] [PubMed]
- Gardin, C.; Ferroni, L.; Bellin, G.; Rubini, G.; Barosio, S.; Zavan, B. Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Kim, Y.H.; Woo, S.Y.; Lee, H.J.; Yu, Y.; Kim, H.S.; Park, Y.S.; Jo, I.; Park, J.W.; Jung, S.C.; et al. Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci. Rep. 2015, 5, 8616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.H.; Uhm, Y.K.; Lim, Y.J.; Yim, S.V. Human umbilical cord blood-derived mesenchymal stem cells improve glucose homeostasis in rats with liver cirrhosis. Int. J. Oncol. 2011, 39, 137–143. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Sun, H.C.; Zheng, L.B.; Guo, J.B.; Zhang, X.L. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis. World J. Gastroenterol. 2017, 23, 8152–8168. [Google Scholar] [CrossRef]
- Noronha, N.C.; Mizukami, A.; Caliari-Oliveira, C.; Cominal, J.G.; Rocha, J.L.M.; Covas, D.T.; Swiech, K.; Malmegrim, K.C.R. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Gong, Y.; Wang, B.; Shi, K.; Hou, Y.; Wang, L.; Lin, Z.; Han, Y.; Lu, L.; Chen, D.; et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: Regulation of Treg/Th17 cells. J. Gastroenterol. Hepatol. 2014, 29, 1620–1628. [Google Scholar] [CrossRef]
- Jang, Y.O.; Kim, Y.J.; Baik, S.K.; Kim, M.Y.; Eom, Y.W.; Cho, M.Y.; Park, H.J.; Park, S.Y.; Kim, B.R.; Kim, J.W.; et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: A pilot study. Liver Int. 2014, 34, 33–41. [Google Scholar] [CrossRef]
- Suk, K.T.; Yoon, J.H.; Kim, M.Y.; Kim, C.W.; Kim, J.K.; Park, H.; Hwang, S.G.; Kim, D.J.; Lee, B.S.; Lee, S.H.; et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 2016, 64, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, H.; Zhao, C.; Wang, D.; Ma, X.; Zhao, S.; Wang, S.; Niu, L.; Sun, L. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int. J. Rheum. Dis. 2017, 20, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. A clinical study of bone mesenchymal stem cells for the treatment of hepatic fibrosis induced by hepatolenticular degeneration. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, A.; Takeuchi, S.; Watanabe, T.; Yoshida, T.; Nojiri, S.; Ogawa, M.; Terai, S. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as “conducting cells” for improvement of liver fibrosis and regeneration. Inflamm. Regen. 2019, 39, 18. [Google Scholar] [CrossRef] [Green Version]
- Kholodenko, I.V.; Kurbatov, L.K.; Kholodenko, R.V.; Manukyan, G.V.; Yarygin, K.N. Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Tableros, V.; Herrera Sanchez, M.B.; Figliolini, F.; Romagnoli, R.; Tetta, C.; Camussi, G. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng. Part A 2015, 21, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Herrera, M.B.; Bruno, S.; Buttiglieri, S.; Tetta, C.; Gatti, S.; Deregibus, M.C.; Bussolati, B.; Camussi, G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006, 24, 2840–2850. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef]
- Famulari, E.S.; Navarro-Tableros, V.; Herrera Sanchez, M.B.; Bortolussi, G.; Gai, M.; Conti, L.; Silengo, L.; Tolosano, E.; Tetta, C.; Muro, A.F.; et al. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci. Rep. 2020, 10, 887. [Google Scholar] [CrossRef] [Green Version]
- Smets, F.; Dobbelaere, D.; McKiernan, P.; Dionisi-Vici, C.; Broue, P.; Jacquemin, E.; Lopes, A.I.; Goncalves, I.; Mandel, H.; Pawlowska, J.; et al. Phase I/II Trial of Liver-derived Mesenchymal Stem Cells in Pediatric Liver-based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients. Transplantation 2019, 103, 1903–1915. [Google Scholar] [CrossRef]
- Spada, M.; Porta, F.; Righi, D.; Gazzera, C.; Tandoi, F.; Ferrero, I.; Fagioli, F.; Sanchez, M.B.H.; Calvo, P.L.; Biamino, E.; et al. Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study. Stem Cell Rev. Rep. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, J.M.; Kent, D.; Wesche, D.J.; Ng, S.S.; Serra, M.; Oules, B.; Kar, G.; Emerton, G.; Blackford, S.J.I.; Darmanis, S.; et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 2019, 10, 3350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wu, J.; Wang, L.; Han, W.; Yu, J.; Liu, X.; Wang, Y.; Zhang, Y.; Feng, G.; Li, W.; et al. Generation of qualified clinical-grade functional hepatocytes from human embryonic stem cells in chemically defined conditions. Cell Death Dis. 2019, 10, 763. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Feng, Y.; Qiu, D.; Xu, Y.; Pang, M.; Cai, N.; Xiang, A.P.; Zhang, Q. Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Res. Ther. 2018, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.L.; Duncan, S.A. iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front. Med. (Lausanne) 2019, 6, 265. [Google Scholar] [CrossRef]
- Calabrese, D.; Roma, G.; Bergling, S.; Carbone, W.; Mele, V.; Nuciforo, S.; Fofana, I.; Campana, B.; Szkolnicka, D.; Hay, D.C.; et al. Liver biopsy derived induced pluripotent stem cells provide unlimited supply for the generation of hepatocyte-like cells. PLoS ONE 2019, 14, e0221762. [Google Scholar] [CrossRef]
- Tapia, N.; Scholer, H.R. Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell 2016, 19, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Nakamori, D.; Akamine, H.; Takayama, K.; Sakurai, F.; Mizuguchi, H. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci. Rep. 2017, 7, 16675. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, L.; Gao, Y.; He, Z.; Yao, D.; Wu, Z.; Cen, J.; Chen, X.; Liu, C.; Hu, Y.; et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014, 14, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Sun, D.; Du, Y.; Jia, J.; Sun, S.; Xu, J.; Liu, Y.; Xiang, C.; Chen, S.; Xie, H.; et al. A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res. 2019, 29, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Fagoonee, S.; Hobbs, R.M.; De Chiara, L.; Cantarella, D.; Piro, R.M.; Tolosano, E.; Medico, E.; Provero, P.; Pandolfi, P.P.; Silengo, L.; et al. Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev. 2010, 19, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Fagoonee, S.; Famulari, E.S.; Silengo, L.; Tolosano, E.; Altruda, F. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells. PLoS ONE 2015, 10, e0136762. [Google Scholar] [CrossRef] [PubMed]
- Fagoonee, S.; Pellicano, R.; Silengo, L.; Altruda, F. Potential applications of germline cell-derived pluripotent stem cells in organ regeneration. Organogenesis 2011, 7, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streckfuss-Bomeke, K.; Jende, J.; Cheng, I.F.; Hasenfuss, G.; Guan, K. Efficient generation of hepatic cells from multipotent adult mouse germ-line stem cells using an OP9 co-culture system. Cell Reprogram. 2014, 16, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loya, K.; Eggenschwiler, R.; Ko, K.; Sgodda, M.; Andre, F.; Bleidissel, M.; Scholer, H.R.; Cantz, T. Hepatic differentiation of pluripotent stem cells. Biol. Chem. 2009, 390, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, M.; Yuan, Q.; Niu, M.; Yao, C.; Hou, J.; Wang, H.; Wen, L.; Liu, Y.; Li, Z.; et al. Generation of functional hepatocytes from human spermatogonial stem cells. Oncotarget 2016, 7, 8879–8895. [Google Scholar] [CrossRef] [Green Version]
- Fagoonee, S.; Famulari, E.S.; Silengo, L.; Camussi, G.; Altruda, F. Prospects for Adult Stem Cells in the Treatment of Liver Diseases. Stem Cells Dev. 2016, 25, 1471–1482. [Google Scholar] [CrossRef]
- Kwak, K.A.; Cho, H.J.; Yang, J.Y.; Park, Y.S. Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can. J. Gastroenterol. Hepatol. 2018, 2018, 4197857. [Google Scholar] [CrossRef]
- Meier, R.P.; Montanari, E.; Morel, P.; Pimenta, J.; Schuurman, H.J.; Wandrey, C.; Gerber-Lemaire, S.; Mahou, R.; Buhler, L.H. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications. Methods Mol. Biol. 2017, 1506, 259–271. [Google Scholar] [CrossRef]
- Mitry, R.R.; Jitraruch, S.; Iansante, V.; Dhawan, A. Alginate Encapsulation of Human Hepatocytes and Assessment of Microbeads. Methods Mol. Biol. 2017, 1506, 273–281. [Google Scholar] [CrossRef]
- Ramezanzadeh Andevari, R.; Hashemi-Najafabadi, S.; Bagheri, F. Immunoisolation of stem cells by simultaneous encapsulation and PEGylation. Prog. Biomater. 2018, 7, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jitraruch, S.; Dhawan, A.; Hughes, R.D.; Filippi, C.; Soong, D.; Philippeos, C.; Lehec, S.C.; Heaton, N.D.; Longhi, M.S.; Mitry, R.R. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS ONE 2014, 9, e113609. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Al-Akkad, W.; Rombouts, K.; Pinzani, M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol. Commun. 2018, 2, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starokozhko, V.; Groothuis, G.M.M. Challenges on the road to a multicellular bioartificial liver. J. Tissue Eng. Regen. Med. 2018, 12, e227–e236. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, B.; Gautier, A.; Legallais, C. Artificial and bioartificial liver devices: Present and future. Gut 2009, 58, 1690–1702. [Google Scholar] [CrossRef]
- Si-Tayeb, K.; Noto, F.K.; Nagaoka, M.; Li, J.; Battle, M.A.; Duris, C.; North, P.E.; Dalton, S.; Duncan, S.A. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010, 51, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Sakiyama, R.; Blau, B.J.; Miki, T. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World J. Gastroenterol. 2017, 23, 1974–1979. [Google Scholar] [CrossRef]
- Cooper, D.K.C.; Gaston, R.; Eckhoff, D.; Ladowski, J.; Yamamoto, T.; Wang, L.; Iwase, H.; Hara, H.; Tector, M.; Tector, A.J. Xenotransplantation-the current status and prospects. Br. Med. Bull. 2018, 125, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Sauer, I.M.; Zeilinger, K.; Obermayer, N.; Pless, G.; Grunwald, A.; Pascher, A.; Mieder, T.; Roth, S.; Goetz, M.; Kardassis, D.; et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J. Artif. Organs 2002, 25, 1001–1005. [Google Scholar] [CrossRef]
- Demetriou, A.A.; Brown, R.S., Jr.; Busuttil, R.W.; Fair, J.; McGuire, B.M.; Rosenthal, P.; Am Esch, J.S., 2nd; Lerut, J.; Nyberg, S.L.; Salizzoni, M.; et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann. Surg. 2004, 239, 660–667; discussion 667–670. [Google Scholar] [CrossRef]
- Thompson, J.; Jones, N.; Al-Khafaji, A.; Malik, S.; Reich, D.; Munoz, S.; MacNicholas, R.; Hassanein, T.; Teperman, L.; Stein, L.; et al. Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: A multinational, prospective, controlled, randomized trial. Liver Transpl. 2018, 24, 380–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Ding, F.; Gong, L.; Gu, X. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Curr. Stem Cell Res. Ther. 2017, 12, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Stocco, E.; Barbon, S.; Grandi, F.; Macchi, V.; De Caro, R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uygun, B.E.; Soto-Gutierrez, A.; Yagi, H.; Izamis, M.L.; Guzzardi, M.A.; Shulman, C.; Milwid, J.; Kobayashi, N.; Tilles, A.; Berthiaume, F.; et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010, 16, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Rombouts, K.; Rennie Hall, A.; Urbani, L.; Vinh Luong, T.; Al-Akkad, W.; Longato, L.; Brown, D.; Maghsoudlou, P.; Dhillon, A.P.; et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep. 2015, 5, 13079. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.M.A.; Willemse, J.; van den Hoek, S.; Kremers, G.J.; Luider, T.M.; van Huizen, N.A.; Willemssen, F.; Metselaar, H.J.; JNM, I.J.; van der Laan, L.J.W.; et al. Decellularization of Whole Human Liver Grafts Using Controlled Perfusion for Transplantable Organ Bioscaffolds. Stem Cells Dev. 2017, 26, 1304–1315. [Google Scholar] [CrossRef]
- Mazza, G.; Al-Akkad, W.; Telese, A.; Longato, L.; Urbani, L.; Robinson, B.; Hall, A.; Kong, K.; Frenguelli, L.; Marrone, G.; et al. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci. Rep. 2017, 7, 5534. [Google Scholar] [CrossRef]
- Shimoda, H.; Yagi, H.; Higashi, H.; Tajima, K.; Kuroda, K.; Abe, Y.; Kitago, M.; Shinoda, M.; Kitagawa, Y. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci. Rep. 2019, 9, 12543. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.K.; Kim, D.Y.; Ngo, H.; Lee, Y.; Seo, L.; Yoo, S.S.; Vincent, P.A.; Dai, G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014, 35, 8092–8102. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Chung, J.H.Y.; Naficy, S.; Yue, Z.L.; Kapsa, R.; Quigley, A.; Moulton, S.E.; Wallace, G.G. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013, 1, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Kolesky, D.B.; Truby, R.L.; Gladman, A.S.; Busbee, T.A.; Homan, K.A.; Lewis, J.A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014, 26, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
- Malda, J.; Visser, J.; Melchels, F.P.; Jungst, T.; Hennink, W.E.; Dhert, W.J.; Groll, J.; Hutmacher, D.W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011–5028. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, Y.; Pan, Y.; Xiong, Z.; Liu, H.; Cheng, J.; Liu, F.; Lin, F.; Wu, R.; Zhang, R.; et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 2006, 12, 83–90. [Google Scholar] [CrossRef]
- Nguyen, D.G.; Funk, J.; Robbins, J.B.; Crogan-Grundy, C.; Presnell, S.C.; Singer, T.; Roth, A.B. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro. PLoS ONE 2016, 11, e0158674. [Google Scholar] [CrossRef]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef]
- Pettinato, G.; Lehoux, S.; Ramanathan, R.; Salem, M.M.; He, L.X.; Muse, O.; Flaumenhaft, R.; Thompson, M.T.; Rouse, E.A.; Cummings, R.D.; et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Sci. Rep. 2019, 9, 8920. [Google Scholar] [CrossRef] [Green Version]
- Koike, H.; Iwasawa, K.; Ouchi, R.; Maezawa, M.; Giesbrecht, K.; Saiki, N.; Ferguson, A.; Kimura, M.; Thompson, W.L.; Wells, J.M.; et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 2019, 574, 112–116. [Google Scholar] [CrossRef]
- Prior, N.; Inacio, P.; Huch, M. Liver organoids: From basic research to therapeutic applications. Gut 2019, 68, 2228–2237. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, R.; Togo, S.; Kimura, M.; Shinozawa, T.; Koido, M.; Koike, H.; Thompson, W.; Karns, R.A.; Mayhew, C.N.; McGrath, P.S.; et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab. 2019, 30, 374–384 e376. [Google Scholar] [CrossRef]
- Banales, J.M.; Feldstein, A.E.; Sanger, H.; Lukacs-Kornek, V.; Szabo, G.; Kornek, M. Extracellular Vesicles in Liver Diseases: Meeting Report from the International Liver Congress 2018. Hepatol. Commun. 2019, 3, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Fatima, F.; Ekstrom, K.; Nazarenko, I.; Maugeri, M.; Valadi, H.; Hill, A.F.; Camussi, G.; Nawaz, M. Non-coding RNAs in Mesenchymal Stem Cell-Derived Extracellular Vesicles: Deciphering Regulatory Roles in Stem Cell Potency, Inflammatory Resolve, and Tissue Regeneration. Front. Genet. 2017, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, M.; Fatima, F.; Vallabhaneni, K.C.; Penfornis, P.; Valadi, H.; Ekstrom, K.; Kholia, S.; Whitt, J.D.; Fernandes, J.D.; Pochampally, R.; et al. Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int. 2016, 2016, 1073140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Zhang, Q.; Cai, X.; Li, F.; Ma, Z.; Xu, M.; Lu, L. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J. Cell Mol. Med. 2017, 21, 2491–2502. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Pasquino, C.; Herrera Sanchez, M.B.; Tapparo, M.; Figliolini, F.; Grange, C.; Chiabotto, G.; Cedrino, M.; Deregibus, M.C.; Tetta, C.; et al. HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-alcoholic Steatohepatitis. Mol. Ther. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Povero, D.; Pinatel, E.M.; Leszczynska, A.; Goyal, N.P.; Nishio, T.; Kim, J.; Kneiber, D.; de Araujo Horcel, L.; Eguchi, A.; Ordonez, P.M.; et al. Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Haga, H.; Yan, I.K.; Takahashi, K.; Matsuda, A.; Patel, T. Extracellular Vesicles from Bone Marrow-Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice. Stem Cells Transl. Med. 2017, 6, 1262–1272. [Google Scholar] [CrossRef]
- Baruteau, J.; Waddington, S.N.; Alexander, I.E.; Gissen, P. Gene therapy for monogenic liver diseases: Clinical successes, current challenges and future prospects. J. Inherit. Metab. Dis. 2017, 40, 497–517. [Google Scholar] [CrossRef]
- Herrera Sanchez, M.B.; Previdi, S.; Bruno, S.; Fonsato, V.; Deregibus, M.C.; Kholia, S.; Petrillo, S.; Tolosano, E.; Critelli, R.; Spada, M.; et al. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Res. Ther. 2017, 8, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, G.; Yang, Y.; Liu, F.; Ye, B.; Chen, Z.; Zheng, M.; Liu, Y. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J. Cell Mol. Med. 2017, 21, 2963–2973. [Google Scholar] [CrossRef]
- Pomatto, M.A.C.; Bussolati, B.; D’Antico, S.; Ghiotto, S.; Tetta, C.; Brizzi, M.F.; Camussi, G. Improved Loading of Plasma-Derived Extracellular Vesicles to Encapsulate Antitumor miRNAs. Mol. Ther. Methods Clin. Dev. 2019, 13, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease | Donor Type | Conservation Type //Isolation method | Number of cells //Injection route | Outcome | Reference |
---|---|---|---|---|---|
Urea Cycle disorders | 9-day old neonate (post mortem) | Cryopreserved //3-step collagenase perfusion technique | 5.6 × 109 //Intraportal | Metabolic stabilisation from 4 to 13 months | Meyburg et al. [34] |
Crigler-Najjar Syndrome Type I | 5-year old boy (post mortem) | Stored at 4 °C in University of Wisconsin solution //3-step collagenase perfusion | 7.5 × 109 //Intraportal | Partial metabolic recovery up to 11 months | Fox et al. [27] |
Inherited Factor-VII Deficiency | Unused donor livers | Fresh and cryopreserved //Collagenase perfusion technique | 1.09 × 109 2.18 × 109 //Inferior mesenteric vein | Improvement in coagulation defects; reduced demand for recombinant exogenous factor VII by 20% | Dhawan et al. [35] |
Glycogen storage disease type Ia | Unused cadaveric donors | Fresh //2-step collagenase perfusion technique | 2 × 109 //Intraportal | Partial correction of metabolic abnormalities (increase in blood-glucose and larger and more persistent inhibition of lactate production compared to before transplantation). | Muraca et al. [28] |
Glycogen storage disease type Ib | Unused cadaveric donors | Cryopreserved //2-step collagenase perfusion technique | 1st infusion: 1 × 109 2nd infusion: 3 × 109 //Intraportal | Disappearing of hypoglycemic symptoms;body growth | Lee et al. [36] |
Peroxisomal biogenesis disease | Unused left liver segments of two compatible donors | Fresh and cryopreserved //2-step collagenase perfusion technique | 2 × 109 //spleno-mesenteric | Improved general condition and weight gain; ability to walk autonomously 6 months after transplantation | Sokal et al. [37] |
Acute liver failure by mushroom intoxication | Cadaveric donors | Cryopreserved //Multicatheter collagenase perfusion technique | 5 × 109 //4 out of 5 patients: intrasplenic 2 out of 5 patients: intraportal | 3 out of 5 patients survived from 12 to 52 days with improvement in clearance function. | Bilir et al. [29] |
Argininosuccinate lyase deficiency | Cadaveric donors | Fresh and cryopreserved //2-step collagenase perfusion technique | 1st infusion: 7 infusions over 1 month: 1.7 × 1012 2nd infusion: 0.3 × 1012 and 0.7 × 1012 the day after 3rd infusion: 1 × 1012 //Intraportal sequential infusions; portal percutaneous puncture | 3.5-year-old patient with sustained metabolic control and clinical evolution of disease from severe to moderate form | Stéphenne et al. [38] |
NCT Number/EudraCT -Number | Title | Recruitment | Conditions //Intervention | Age //Number of Participants | Phases | Start Date | Outcomes/ Aims |
---|---|---|---|---|---|---|---|
NCT01765243 | A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Promethera HepaStem in Urea Cycle Disorders (UCD) and Crigler-Najjar Syndrome (CN) Paediatric Patients. | Completed | Urea Cycle Disorders, Crigler Najjar Syndrome //HepaStem infusion | Up to 17 Years //20 participants | Phase I/II | March 2012 | Long-term safety profile and preliminary efficacy of HepaStem in paediatric patients with Urea Cycle Disorders and Crigler-Najjar Syndrome |
NCT03632148 | In Vitro Evaluation of the Effect of HepaStem in the Coagulation Activity in Blood of Patients With Liver Disease | Enrolling by invitation | Decompensated Cirrhosis //Liver MSCs infusion | 12 Years to 80 Years //15 participants | N/A | December 2017 | Blood parameters in patients with liver disease |
NCT03884959 | A Prospective, Open Label, Safety and Efficacy Study of Infusions of HepaStem in Urea Cycle Disorders Pediatric Patients | Recruiting | Urea Cycle Disorder //HepaStem infusion | Up to 12 Years //5 participants | Phase II | July 2018 | Safety and Efficacy Study of Infusion of HepaStem in Urea Cycle Disorders Pediatric Patients |
NCT02946554 | Multicenter Phase II Safety and Preliminary Efficacy Study of 2 Dose Regimens of HepaStem in Patients With Acute on Chronic Liver Failure | Recruiting | Acute-on-Chronic-Liver Failure //HepaStem Infusion | 18 Years to 70 Years //12 participants | Phase II | December 2016 | Safety and Efficacy of 2 Dose Regimens of HepaStem in Patients With Acute on Chronic Liver Failure |
NCT03963921 | Multicenter, Open-label, Safety and Tolerability Study of Ascending Doses of HepaStem in Patients With Cirrhotic and Pre-cirrhotic Non-alcoholic Steatohepatitis | Recruiting | Nonalcoholic Steatohepatitis //HepaStem infusion | 18 Years to 70 Years //24 participants | Phase I/II | April 2019 | Evaluation of incidence of Adverse Event |
NCT02489292 | Prospective, Open Label, Multicenter, Efficacy and Safety Study of Several Infusions of HepaStem in Urea Cycle Disorders Paediatric Patients | Unknown | Urea Cycle Disorders //HepaStem infusion | Up to 12 Years //20 participants | Phase II | October 2014 | Efficacy of HepaStem in Urea Cycle Disorders Paediatric Patients |
HLSC 01–11, EudraCT-No. 2012–002120-33 | Human Liver Stem Cells (HLSCs) in patients suffering from liver-based inborn metabolic diseases causing life-threatening neonatal onset of hyperammonemic encephalopathy | Completed | Inherited Neonatal-Onset Hyperammone-mia | Up to 18 years//3 participants | Phase I | December 2013 | Safety and evaluation of short- and long-term clinical and biochemical data after HLSCs injections |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cernigliaro, V.; Peluso, R.; Zedda, B.; Silengo, L.; Tolosano, E.; Pellicano, R.; Altruda, F.; Fagoonee, S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020, 9, 386. https://doi.org/10.3390/cells9020386
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells. 2020; 9(2):386. https://doi.org/10.3390/cells9020386
Chicago/Turabian StyleCernigliaro, Viviana, Rossella Peluso, Beatrice Zedda, Lorenzo Silengo, Emanuela Tolosano, Rinaldo Pellicano, Fiorella Altruda, and Sharmila Fagoonee. 2020. "Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases" Cells 9, no. 2: 386. https://doi.org/10.3390/cells9020386
APA StyleCernigliaro, V., Peluso, R., Zedda, B., Silengo, L., Tolosano, E., Pellicano, R., Altruda, F., & Fagoonee, S. (2020). Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells, 9(2), 386. https://doi.org/10.3390/cells9020386