Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection?
Abstract
:1. Introduction
2. Human Immunodeficiency Virus
HIV Replication
3. The ABO Blood Group System
4. The Duffy Blood Group System
5. The Rh Blood Group
6. The Pk Antigen
7. Other Blood Group Antigens
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global HIV & AIDS Statistics–2019 Fact Sheet. Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS. 2019. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 30 March 2020).
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell binding and entry. Cold Spring Harb. Perspect. Med. 2012, 2, a006866. [Google Scholar] [CrossRef] [PubMed]
- Horakova, E.; Gasser, O.; Sadallah, S.; Inal, J.M.; Bourgeois, G.; Ziekau, I.; Klimkait, T.; Schifferli, J.A. Complement mediates the binding of HIV-1 to erythrocytes. J. Immunol. 2004, 173, 4236–4241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, Z.; Brown, B.K.; Wieczorek, L.; Peachman, K.K.; Matyas, G.R.; Polonis, V.R.; Rao, M.; Alving, C.R. Human Erythrocytes Selectively Bind and Enrich Infectious HIV-1 Virions. PLoS ONE 2009, 4, e8297. [Google Scholar] [CrossRef] [PubMed]
- Namdar, A.; Dunsmore, G.; Shahbaz, S.; Koleva, P.; Xu, L.; Jovel, J.; Houston, S.; Elahi, S. CD71+ Erythroid Cells Exacerbate HIV-1 Susceptibility, Mediate trans-Infection, and Harbor Infective Viral Particles. mBio 2019, 10, e02767-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooling, L. Blood groups in infection and host susceptibility. Clin. Microbiol. Rev. 2015, 28, 801–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storry, J.R.; Clausen, F.B.; Castilho, L.; Chen, Q.; Daniels, G.; Denomme, G.; Flegel, W.A.; Gassner, C.; de Haas, M.; Hyland, C.; et al. International Society of Blood Transfusion Working party on red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sanguinis 2019, 114, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.E.; Yahalom, V. Blood groups and their function. Bailliers Best Pract. Res. Clin. Haematol. 2000, 13, 485–509. [Google Scholar] [CrossRef]
- Dean, L. The ABO blood group. In Blood Groups and Red Cell Antigens; Bethesda (MD): National Center for Biotechnology Information, National Institutes of Health (NIH): Washington, DC, USA, 2005; Chapter 5; Available online: https://www.ncbi.nlm.nih.gov/books/NBK2267/.
- Lund, N.; Olsson, M.L.; Ramkumar, S.; Sakac, D.; Yahalom, V.; Levene, C.; Hellberg, Å.; Ma, X.Z.; Binnington, B.; Jung, D.; et al. The human Pk histo-blood group antigen provides protection against HIV-1 infection. Blood 2009, 113, 4980–4991. [Google Scholar] [CrossRef] [Green Version]
- Anstee, J. The relationship between blood groups and disease. Blood 2010, 115, 4635–4643. [Google Scholar] [CrossRef] [Green Version]
- Motswaledi, M.S.; Kasvoswe, I.; Oguntibeju, O.O. The role of Red blood cells in enhancing or preventing HIV infection and other diseases. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Fanchini, M.; Bonfanti, C. Evolutionary aspects of ABO blood groups in humans. Clin. Chem. Acta 2015, 444, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Benktander, J.; Angstrom, J.; Karlsson, H.; Teymournejad, O.; Linden, S.; Lebens, M.; Teneberg, S. The repertoire of glycosphingolipids recognized by Vibrio Cholera. PLoS ONE 2013, 8, e53999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaff, M.S. Relation between ABO blood groups and Helicobacter pylori infection in symptomatic patients. Clin. Exp. Gastroenterol. 2011, 4, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Hutson, A.M.; Atmar, R.I.; Marcus, D.M.; Estes, M.K. Norwalk virus infection and disease are associated with the ABO histo-blood group type. J. Infect. Dis. 2002, 185, 1335–1337. [Google Scholar] [CrossRef]
- Barbé, L.; Le Moullac-Vaidye, B.; Echasserieau, K.; Bernardeau, K.; Carton, T.; Bovin, N.; Nordgren, J.; Svensson, L.; Ruvoën-Clouet, N.; Le Pendu, J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci. Rep. 2018, 8, 1–4. [Google Scholar] [CrossRef]
- Motswaledi, M.S.; Kasvosve, I.; Oguntibeju, O.O. Blood group antigens C, Lub and P1 may have a role in HIV infection in Africans. PLoS ONE 2016, 11, e149883. [Google Scholar] [CrossRef] [Green Version]
- Rowe, J.A.; Opi, D.H.; Williams, T.N. Blood groups and malaria: Fresh insights into pathogenesis and identification of targets for intervention. Curr. Opin. Hematol. 2009, 16, 480–487. [Google Scholar] [CrossRef]
- Fanales-Belasio, E.; Raimondo, M.; Suligoi, B.; Butto, S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann. Ist. Super. Sanità 2010, 46, 5–14. [Google Scholar] [CrossRef]
- Seitz, R. Human Immunodeficiency Virus (HIV) (For German Advisory Committee Blood). Transfus. Med. Hemother. 2016, 43, 203–222. [Google Scholar] [CrossRef]
- Hillerman, M.R. Comparative biology and pathogenesis of AIDS and Hepatitis B Viruses: Related but different. AIDS Res. Hum. Retroviruses 1994, 10, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Naif, H.M. Pathogenesis of HIV Infection. Infect. Dis. Rep. 2013, 6, e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurapati, K.R.; Samikkannu, T.; Atluri, V.S.; Nair, M.P. Cell cycle checkpoints and pathogenesis of HIV-1 infection: A brief overview. J. Basic Clin. Physiol. Pharmacol. 2014, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yakovian, O.; Schwartzer, R.; Sajman, J.; Neve-Oz, Y.; Razwag, Y.; Herrmann, A.; Sherman, E. Gp41 dynamically interacts with the TCR in the immune synapse and promotes early T-cell activation. Sci. Rep. 2018, 8, 9747. [Google Scholar] [CrossRef]
- Neill, S.J.D.; McKnight, A.; Gustafsson, K.; Weiss, R.A. HIV-1 incorporates ABO histo-blood group antigens that sensitize virions to complement-mediated inactivation. Blood 2005, 105, 4693–4699. [Google Scholar] [CrossRef] [Green Version]
- Canizalez-Román, A.; Campos-Romero, A.; Castro-Sánchez, J.A.; López-Martínez, M.A.; Andrade-Muñoz, F.J.; Cruz-Zamudio, C.K.; Ortíz-Espinoza, T.G.; León-Sicairos, N.; Llanos, G.; Alma, M.; et al. Blood Groups Distribution and Gene Diversity of the ABO and Rh (D) Loci in the Mexican Population. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Farhud, D.D.; Yeganeh, M.Z. A brief history of human blood groups. Iran. J. Public Health 2013, 42, 1–6. [Google Scholar] [PubMed]
- Turcot-Dubois, A.L.; Le Moullac-Vaidye, B.; Despiau, S.; Roubinet, F.; Bovin, N.; Le Pendu, J.; Blancher, A. Long-term evolution of the CAZY glycosyltransferase 6 (ABO) gene family from fishes to mammals—A birth-and-death evolution model. Glycobiology 2007, 17, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Rowe, J.A.; Handel, I.G.; Thera, M.A.; Deans, A.M.; Lyke, K.E.; Koné, A.; Diallo, D.A.; Raza, A.; Kai, O.; Marsh, K.; et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc. Natl. Acad. Sci. USA 2007, 104, 17471–17476. [Google Scholar] [CrossRef] [Green Version]
- Rowe, J.A.; Claessens, A.; Corrigan, R.A.; Arman, M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: Molecular mechanisms and therapeutic implications. Exp. Rev. Mol. Med. 2009, 11, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, C.; Uddin, M.; Wildman, D.E.; Gray, E.A.; Trucco, M.; Starzl, T.E.; Goodman, M. Functionally important glycosyltransferase gain and loss during catarrhine primate emergence. Proc. Natl. Acad. Sci. USA 2007, 104, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson Hedestam, G.B.; Fouchier, R.A.; Phogat, S.; Burton, D.R.; Sodroski, J.; Wyatt, R.T. The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat. Rev. Microbiol. 2008, 6, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, D.M.; Stewart, J. Immunohaematology. In Immunology, Revised 8th ed.; Stewart, J., Ed.; Churchill Livingstone: New York, NY, USA, 1997; pp. 232–241. [Google Scholar]
- Sayal, S.K.; Das, A.L.; Nema, S.K. Study of blood groups in HIV seropositive patients. Indian J. Dermatol. Venereol. Leprol. 1996, 62, 295–297. [Google Scholar] [PubMed]
- Davison, G.M.; Hendrickse, H.L.; Matsha, T.E. The relationship between immunogenic red blood cell antigens and HIV. J. Transci. 2018, 57, 58–62. [Google Scholar] [CrossRef]
- Abdulazeez, A.A.; Alo, E.B.; Rebecca, S.N. Carriage rate of Human Immunodeficiency Virus (HIV infection among ABO and Rhesus blood groups in Adamawa state, Nigeria. Biomed. Res. 2008, 19, 41–44. [Google Scholar]
- Onsten, T.G.; Callegari-Jacques, S.M.; Goldani, L.Z. The Higher Frequency of Blood Group B in a Brazilian Population with HIV Infection. Open Aids J. 2013, 7, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Siransky, L.K.; Nanga, Z.Y.; Zaba, F.S.; Tufa, N.Y.; Dasse, S.R. ABO/Rh Blood groups and risk of HIV infection and Hepatitis B among blood donors of Abidjan, Cote D’Ivoire. Eur. J. Microbiol. Immunol. 2015, 5, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Nkenfou, C.N.; Nkenfou, C.N.; Tiedeu, B.A.; Mbanya, D. ABO-Rhesus Blood Groups and susceptibility to HIV infection. J. Pharm. Chem. Biol. Sci. 2015, 3, 324–328. [Google Scholar]
- Bamisaye, E.; Adepeju, A.; Akanni, E.; Akinbo, D.; Omisore, A. Association between Blood Group Antigens, CD4 Cell Count and Haemoglobin Electrophoretic Pattern in HIV Infection. Int. J. Life Sci. Sci. Res. 2017, 3, 1300–1304. [Google Scholar] [CrossRef]
- Ferrer-Admetlla, A.; Sikora, M.; Laayouni, H.; Esteve, A.; Roubinet, F.; Blancher, A.; Calafell, F. A Natural History of FUT2 polymorphism in Humans. Mol. Biol. Evol. 2009, 26, 1993–2003. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Farkas, T.; Marionneau, S.; Zhong, W.; Ruvoën-Clouet, N.; Morrow, A.L.; Altaye, M.; Pickering, L.K.; Newburg LePendu, J.; Jiang, X. Noroviruses Bind to Human ABO, Lewis, and Secretor Histo-Blood Group Antigens: Identification of 4 Distinct Strain-Specific Patterns. J. Infect. Dis. 2003, 188, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Niang, M.A.F.; N’doye, I.; Critchlow, C.W.; Hawes, S.E.; Hill, A.V.S.; Kiviat, N.B. Secretor Polymorphism and Human Immunodeficiency Virus Infection in Senegalese Women. J. Infect. Dis. 2000, 181, 737–739. [Google Scholar] [CrossRef]
- Nordgren, J.; Nitiema, L.W.; Ouermi, D.; Simpore, J.; Svensson, L. Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso. PLoS ONE 2013, 8, e69557. [Google Scholar] [CrossRef] [PubMed]
- Chanzu, N.M.; Mwanda, W.; Oyugi, J.; Anzala, O. Mucosal Blood Group Antigen Expression Profiles and HIV Infections: A Study among Female Sex Workers in Kenya. PLoS ONE 2015, 10, e0133049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackwell, C.C.; James, V.S.; Davidson, S.; Wyld, R.; Brettle, R.P.; Robertson, R.J.; Weir, D.M. Secretor status and heterosexual transmission of HIV. BMJ 1991, 303, 825–826. [Google Scholar] [CrossRef] [Green Version]
- Horuk, R. The Duffy antigen receptor for chemokines DARC/ACKR1. Front. Immunol. 2015, 6, 279. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R.B.; Baumert, J.; Barbalic, M.; Dupuis, J.; Ellinor, P.T.; Durda, P.; Dehghan, A.; Bis, J.C.; Illig, T.; Morrison, A.C.; et al. Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein- 1 and other inflammatory mediators. Blood 2010, 115, 5289–5299. [Google Scholar] [CrossRef] [Green Version]
- Walton, R.T.; Rowland-Jones, S.L. HIV and Chemokine binding to red cells –DARC matters. Cell Host Microb. 2008, 4, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R. Influence of Duffy antigen receptor for chemokines on HIV infection. Retrovirology 2013, 10, O31. [Google Scholar] [CrossRef]
- He, W.; Neil, S.; Kulkarni, H.; Wright, E.; Agan, B.K.; Marconi, V.C.; Dolan, M.J.; Weiss, R.A.; Ahuja, S.K. Duffy Antigen Receptor for Chemokines Mediates trans-Infection of HIV- 1 from Red Blood Cells to Target Cells and Affects HIV-AIDS Susceptibility. Cell Host Microb. J. 2008, 4, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, H.; Marconi, V.C.; He, W.; Landrum, M.L.; Okulicz, J.F.; Delmar, J.; Ahuja, S.K. The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood 2009, 114, 2783–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsuran, V.; Kulkarni, H.; He, W.; Mlisana, K.; Wright, E.J.; Werner, L.; Castiblanco, J.; Dhanda, R.; Le, T.; Dolan, M.J.; et al. Duffy-Null-Associated Low neutrophil Counts Influence HIV-1 Susceptibility in High-Risk South African Black Women. Clin. Infect. Dis. 2011, 52, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.A.; Ping An Johnson, R.; Nelson, G.W.; Kirk, G. Expression of Duffy Antigen Receptor for Chemokines (DARC) Has No Effect on HIV-1 Acquisition or Progression to AIDS in African Americans. Cell Host Microb. 2009, 5, 411–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicole Lund, N.; Branch, D.; Sakac, D.; Lingwood, C.; Siatskas, C.; Robinson, C.; Brady, R.; Medin, J. Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 2005, 19, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Telen, M.J. Lutheran antigens, CD44-related antigens, and Lutheran regulatory genes. Transfus Clin. Biol. 1995, 2, 291–301. [Google Scholar] [CrossRef]
- Pushkarsky, T.; Zybarth, G.; Dubrovsky, L.; Yurchenko, V.; Tang, H.; Guo, H.; Bukrinsky, M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc. Natl. Acad. Sci. USA 2001, 98, 6360–6365. [Google Scholar] [CrossRef] [Green Version]
System | Chromosome | Gene | Type | Function |
---|---|---|---|---|
ABO | 9q34.2 | ABO | Carbohydrate | Glycosyltransferase |
MNS | 4q31.21 | GYPA GYPB | Single-pass protein | Single-pass protein, band 3 ankyrin complex, red cell zeta potential |
PIPK | 22q13.2 | A4GALT1 | Carbohydrate | α1,4 Galactosyltransferase |
Rh | 1p36.11 | RHD RHCE | Multi-pass protein | Ammonium transport, band 3 metabolism |
Lutheran | 19q13.32 | LU | Single-pass protein | Laminin receptor |
Kell | 7q34 | KEL | Single-pass protein | Endothelin 3-converting enzyme |
Lewis | 19p13.3 | FUT3 | Carbohydrate | α¾-Fucosyltransferase |
Duffy | 1q23.2 | DARC | Multi-pass protein | Chemokine receptor |
Kidd | 18q12.3 | SLC14A1 | Multi-pass protein | Urea transport |
Diego | 17q21.31 | SLC4A1 | Multi-pass protein | Band 3/anion exchange/cytoskeleton stability |
Cartwright/Yt | 7q22.1 | ACHE | GPI-linked protein | Acetylcholinesterase |
Xg | Xp22.33 | XG, MIC2 | Single-pass protein | Adhesion molecule |
Scianna | 1p34.2 | ERMAP | Single-pass protein | Unknown |
Dombrock | 12p12.3 | ART4 | GPI-linked protein | ADP-ribosyltransferase |
Colton | 7p14.3 | AQP1 | Multi-pass protein | Water transport/band 3 metabolism |
Landsteiner–Wiener | 19p13.2 | ICAM4 | Single-pass protein | Adhesion molecule |
Chido/Rodgers | 6p21.3 | C4A, C4B | Absorbed from plasma | Complement, C4 |
H (SE) | 19q13.33 | FUT1 FUT2 | Carbohydrate | α1,2-Fucosyltransferase, type 2 H antigen α1,2-Fucosyltransferase, type 1, 3 and 4, secretor (ABH) |
Kx | Xp21.1 | XK | Multi-pass protein | Unknown |
Gerbich | 2q14.3 | GYPC | Single-pass protein | Glycophorins C and D, membrane stability |
Cromer | 1q32.2 | CD55 | GPI-linked protein | Complement regulation |
Knops | 1q32.2 | CR1 | Single-pass protein | Complement regulation |
Indian | 11p13 | CD44 | Single-pass protein | Cell adhesion |
Ok | 19p13.3 | BSG | Single-pass protein | Cell trafficking, cytophillin receptor, adhesion and signaling |
Raph | 11p15.5 | CD151 | Multi-pass protein | Cell adhesion |
John Milton Hagan | 15q21.1 | SEMA7A | GPI-linked protein | T-cell-mediated inflammation, integrin receptor |
I | 6p24.2 | GCNT2 | Carbohydrate | β1,6-N-acetylglucosaminyltransferase |
Globoside | 3q26.1 | B3GALNT1 | Carbohydrate | β1,6-N-acetylgalactosaminyltransferase |
Gill | 9p13.3 | AQP3 | Multi-pass protein | Water, glycerol, peroxide transport |
Rh-Associated glycoprotein | 6p21 | RHAG | Multi-pass protein | Ammonium transport—associated RhD and RhCE |
FORS | 9q34.13 | GBGT1 | Carbohydrate | α1,3-N-acetylgalactosaminyltransferase |
JR | 4p22 | ABCG2 | Multi-pass protein | ATP-dependent transport |
Lan | 2q36 | ABCG6 | Multi-pass protein | Porphyrin and heme transport |
Vel CD59 Augustine KANNO Sid | 1p36.32 11p13 6p21.1 20p13 17q21.32 | SMIM1 CD59 SLC29A1 PRNP B4GALNT2 | Single-pass protein GPI-linked protein Multi-pass protein Prion protein | Red cell formation regulation Complement regulation Protein transporter Acetylgalactosaminyltransferase |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davison, G.M.; Hendrickse, H.L.; Matsha, T.E. Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection? Cells 2020, 9, 845. https://doi.org/10.3390/cells9040845
Davison GM, Hendrickse HL, Matsha TE. Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection? Cells. 2020; 9(4):845. https://doi.org/10.3390/cells9040845
Chicago/Turabian StyleDavison, Glenda M., Heather L. Hendrickse, and Tandi E. Matsha. 2020. "Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection?" Cells 9, no. 4: 845. https://doi.org/10.3390/cells9040845
APA StyleDavison, G. M., Hendrickse, H. L., & Matsha, T. E. (2020). Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection? Cells, 9(4), 845. https://doi.org/10.3390/cells9040845