How Diffusion Impacts Cortical Protein Distribution in Yeasts
Abstract
1. Introduction
2. Slow Diffusion Restricts Mobility in the Yeast Plasma Membrane
3. Basis for Asymmetric Distribution of Integral Membrane Proteins
4. Asymmetric Distribution of Peripheral Membrane Proteins: Recycling via the Cytoplasm
5. Differential Diffusion of Cdc42 at the Membrane
6. Differential Diffusion of GTP-Cdc42 and GDP-Cdc42
7. Conclusions and Open Questions
7.1. Why Is Diffusion So Slow in the Yeast Plasma Membrane?
7.2. Why Do So Many Membrane Proteins Accumulate Asymmetrically?
7.3. What Is the Basis for the Differential Diffusion of GDP-Cdc42 and GTP-Cdc42?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smits, G.J.; Schenkman, L.R.; Brul, S.; Pringle, J.R.; Klis, F.M. Role of Cell Cycle-Regulated Expression in the Localized Incorporation of Cell Wall Proteins in Yeast. Mol. Biol. Cell 2006, 17, 3267–3280. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schenkman, L.R.; Caruso, C.; Pagé, N.; Pringle, J.R. The Role of Cell Cycle–Regulated Expression in the Localization of Spatial Landmark Proteins in Yeast. J. Cell Biol. 2002, 156, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Klis, F.M.; de Koster, C.G.; Brul, S. Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 2014, 13, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Harms, G.S.; Cognet, L.; Lommerse, P.H.; Blab, G.A.; Kahr, H.; Gamsjaeger, R.; Spaink, H.P.; Soldatov, N.M.; Romanin, C.; Schmidt, T. Single-Molecule Imaging of L-Type Ca(2+) Channels in Live Cells. Biophys. J. 2001, 81, 2639–2646. [Google Scholar] [CrossRef][Green Version]
- Crane, J.M.; Verkman, A.S. Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane. Biophys. J. 2008, 94, 702–713. [Google Scholar] [CrossRef]
- Kumar, M.; Mommer, M.S.; Sourjik, V. Mobility of Cytoplasmic, Membrane, and DNA-Binding Proteins in Escherichia coli. Biophys. J. 2010, 98, 552–559. [Google Scholar] [CrossRef]
- Mika, J.T.; Poolman, B. Macromolecule Diffusion and Confinement in Prokaryotic Cells. Curr. Opin. Biotechnol. 2011, 22, 117–126. [Google Scholar] [CrossRef]
- Barral, Y.; Mermall, V.; Mooseker, M.S.; Snyder, M. Compartmentalization of the Cell Cortex by Septins Is Required for Maintenance of Cell Polarity in Yeast. Mol. Cell 2000, 5, 841–851. [Google Scholar] [CrossRef]
- Takizawa, P.A.; DeRisi, J.L.; Wilhelm, J.E.; Vale, R.D. Plasma Membrane Compartmentalization in Yeast by Messenger RNA Transport and a Septin Diffusion Barrier. Science 2000, 290, 341–344. [Google Scholar] [CrossRef]
- Sugiyama, S.; Tanaka, M. Distinct Segregation Patterns of Yeast Cell-Peripheral Proteins Uncovered by a Method for Protein Segregatome Analysis. Proc. Natl. Acad. Sci. USA 2019, 116, 8909–8918. [Google Scholar] [CrossRef]
- Valdez-Taubas, J.; Pelham, H.R. Slow Diffusion of Proteins in the Yeast Plasma Membrane Allows Polarity to Be Maintained by Endocytic Cycling. Curr. Biol. 2003, 13, 1636–1640. [Google Scholar] [CrossRef] [PubMed]
- Henderson, N.T.; Pablo, M.; Ghose, D.; Clark-Cotton, M.R.; Zyla, T.R.; Nolen, J.; Elston, T.C.; Lew, D.J. Ratiometric GPCR Signaling Enables Directional Sensing in Yeast. PLoS Biol. 2019, 17, e3000484. [Google Scholar] [CrossRef] [PubMed]
- Eldakak, A.; Rancati, G.; Rubinstein, B.; Paul, P.; Conaway, V.; Li, R. Asymmetrically Inherited Multidrug Resistance Transporters Are Recessive Determinants in Cellular Replicative Ageing. Nat. Cell Biol. 2010, 12, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Bendezú, F.O.; Vincenzetti, V.; Vavylonis, D.; Wyss, R.; Vogel, H.; Martin, S.G. Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking. PLoS Biol. 2015, 13, e1002097. [Google Scholar] [CrossRef]
- Singh, P.; Ramachandran, S.K.; Zhu, J.; Kim, B.C.; Biswas, D.; Ha, T.; Iglesias, P.A.; Li, R. Sphingolipids Facilitate Age Asymmetry of Membrane Proteins in Dividing Yeast Cells. Mol. Biol. Cell 2017, 28, 2712–2722. [Google Scholar] [CrossRef]
- Henderson, K.A.; Hughes, A.L.; Gottschling, D.E. Mother-Daughter Asymmetry of pH Underlies Aging and Rejuvenation in Yeast. eLife 2014, 3, e03504. [Google Scholar] [CrossRef]
- Thayer, N.H.; Leverich, C.K.; Fitzgibbon, M.P.; Nelson, Z.W.; Henderson, K.A.; Gafken, P.R.; Hsu, J.J.; Gottschling, D.E. Identification of Long-Lived Proteins Retained in Cells Undergoing Repeated Asymmetric Divisions. Proc. Natl. Acad. Sci. USA 2014, 111, 14019–14026. [Google Scholar] [CrossRef]
- Hicke, L.; Riezman, H. Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis. Cell 1996, 84, 277–287. [Google Scholar] [CrossRef]
- Hicke, L.; Zanolari, B.; Riezman, H. Cytoplasmic Tail Phosphorylation of the Alpha-Factor Receptor Is Required for Its Ubiquitination and Internalization. J. Cell Biol. 1998, 141, 349–358. [Google Scholar] [CrossRef]
- Emmerstorfer-Augustin, A.; Augustin, C.M.; Shams, S.; Thorner, J. Tracking Yeast Pheromone Receptor Ste2 Endocytosis Using Fluorogen-Activating Protein Tagging. Mol. Biol. Cell 2018, 29, 2720–2736. [Google Scholar] [CrossRef]
- Ayscough, K.R.; Drubin, D.G. A Role for the Yeast Actin Cytoskeleton in Pheromone Receptor Clustering and Signalling. Curr. Biol. 1998, 8, 927–930. [Google Scholar] [CrossRef][Green Version]
- Piao, H.L.; Machado, I.M.; Payne, G.S. NPFXD-Mediated Endocytosis Is Required for Polarity and Function of a Yeast Cell Wall Stress Sensor. Mol. Biol. Cell 2007, 18, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ziman, M.; Preuss, D.; Mulholland, J.; O’Brien, J.M.; Botstein, D.; Johnson, D.I. Subcellular Localization of Cdc42p, a Saccharomyces cerevisiae GTP-Binding Protein Involved in the Control of Cell Polarity. Mol. Biol. Cell 1993, 4, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Richman, T.J.; Sawyer, M.M.; Johnson, D.I. Saccharomyces cerevisiae Cdc42p Localizes to Cellular Membranes and Clusters at Sites of Polarized Growth. Eukaryot. Cell 2002, 1, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.G.; Balasubramanian, M.K.; Lew, D.J. Cell Polarity in Yeast. Annu. Rev. Cell Dev. Biol. 2017, 33, 77–101. [Google Scholar] [CrossRef]
- Wedlich-Soldner, R.; Altschuler, S.; Wu, L.; Li, R. Spontaneous Cell Polarization Through Actomyosin-Based Delivery of the Cdc42 GTPase. Science 2003, 299, 1231–1235. [Google Scholar] [CrossRef]
- Marco, E.; Wedlich-Söldner, R.; Li, R.; Altschuler, S.J.; Wu, L.F. Endocytosis Optimizes the Dynamic Localization of Membrane Proteins that Regulate Cortical Polarity. Cell 2007, 129, 411–422. [Google Scholar] [CrossRef]
- Layton, A.T.; Savage, N.S.; Howell, A.S.; Carroll, S.Y.; Drubin, D.G.; Lew, D.J. Modeling Vesicle Traffic Reveals Unexpected Consequences for Cdc42p-Mediated Polarity Establishment. Curr. Biol. 2011, 21, 184–194. [Google Scholar] [CrossRef]
- Savage, N.S.; Layton, A.T.; Lew, D.J. Mechanistic Mathematical Model of Polarity in Yeast. Mol. Biol. Cell 2012, 23, 1998–2013. [Google Scholar] [CrossRef]
- Orlando, K.; Sun, X.; Zhang, J.; Lu, T.; Yokomizo, L.; Wang, P.; Guo, W. Exo-Endocytic Trafficking and the Septin-Based Diffusion Barrier Are Required for the Maintenance of Cdc42p Polarization During Budding Yeast Asymmetric Growth. Mol. Biol. Cell 2011, 22, 624–633. [Google Scholar] [CrossRef]
- Kozubowski, L.; Saito, K.; Johnson, J.M.; Howell, A.S.; Zyla, T.R.; Lew, D.J. Symmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Complex. Curr. Biol. 2008, 18, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mata, R.; Boulter, E.; Burridge, K. The ’Invisible Hand’: Regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 2011, 12, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Woods, B.; Lai, H.; Wu, C.F.; Zyla, T.R.; Savage, N.S.; Lew, D.J. Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast. Curr. Biol. 2016, 26, 2114–2126. [Google Scholar] [CrossRef] [PubMed]
- Goryachev, A.B.; Pokhilko, A.V. Dynamics of Cdc42 Network Embodies a Turing-Type Mechanism of Yeast Cell Polarity. FEBS Lett. 2008, 582, 1437–1443. [Google Scholar] [CrossRef]
- Johnson, J.M.; Jin, M.; Lew, D.J. Symmetry Breaking and the Establishment of Cell Polarity in Budding Yeast. Curr. Opin. Genet. Dev. 2011, 21, 740–746. [Google Scholar] [CrossRef]
- Woods, B.; Lew, D.J. Polarity Establishment by Cdc42: Key Roles for Positive Feedback and Differential Mobility. Small GTPases 2019, 10, 130–137. [Google Scholar] [CrossRef]
- Slaughter, B.D.; Unruh, J.R.; Das, A.; Smith, S.E.; Rubinstein, B.; Li, R. Non-Uniform Membrane Diffusion Enables Steady-State Cell Polarization Via Vesicular Trafficking. Nat. Commun. 2013, 4, 1380. [Google Scholar] [CrossRef]
- Sartorel, E.; Ünlü, C.; Jose, M.; Massoni-Laporte, A.; Meca, J.; Sibarita, J.B.; McCusker, D. Phosphatidylserine and GTPase Activation Control Cdc42 Nanoclustering to Counter Dissipative Diffusion. Mol. Biol. Cell 2018, 29, 1299–1310. [Google Scholar] [CrossRef]
- Martinière, A.; Lavagi, I.; Nageswaran, G.; Rolfe, D.J.; Maneta-Peyret, L.; Luu, D.T.; Botchway, S.W.; Webb, S.E.; Mongrand, S.; Maurel, C.; et al. Cell Wall Constrains Lateral Diffusion of Plant Plasma-Membrane Proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 12805–12810. [Google Scholar] [CrossRef]
- Moseley, J.B. Eisosomes. Curr. Biol. 2018, 28, R376–R378. [Google Scholar] [CrossRef]
- Malínská, K.; Malinsky, J.; Opekarova, M.; Tanner, W. Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Mol. Biol. Cell 2003, 14, 4427–4436. [Google Scholar] [CrossRef] [PubMed]
- Spira, F.; Mueller, N.S.; Beck, G.; von Olshausen, P.; Beig, J.; Wedlich-Söldner, R. Patchwork Organization of the Yeast Plasma Membrane into Numerous Coexisting Domains. Nat. Cell Biol. 2012, 14, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Kusumi, A.; Suzuki, K.G.; Kasai, R.S.; Ritchie, K.; Fujiwara, T.K. Hierarchical Mesoscale Domain Organization of the Plasma Membrane. Trends Biochem. Sci. 2011, 36, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Feltham, J.L.; Dötsch, V.; Raza, S.; Manor, D.; Cerione, R.A.; Sutcliffe, M.J.; Wagner, G.; Oswald, R.E. Definition of the Switch Surface in the Solution Structure of Cdc42Hs. Biochemistry 1997, 36, 8755–8766. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Yin, T.; Yang, Q.; Zhang, J.; Wu, Y.I.; Yu, J. Single-Molecule Tracking of Small GTPase Rac1 Uncovers Spatial Regulation of Membrane Translocation and Mechanism for Polarized Signaling. Proc. Natl. Acad. Sci. USA 2015, 112, E267–E276. [Google Scholar] [CrossRef] [PubMed]
- Remorino, A.; De Beco, S.; Cayrac, F.; Di Federico, F.; Cornilleau, G.; Gautreau, A.; Parrini, M.C.; Masson, J.B.; Dahan, M.; Coppey, M. Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling. Cell Rep. 2017, 21, 1922–1935. [Google Scholar] [CrossRef] [PubMed]
- Platre, M.P.; Bayle, V.; Armengot, L.; Bareille, J.; Marquès-Bueno, M.D.M.; Creff, A.; Maneta-Peyret, L.; Fiche, J.B.; Nollmann, M.; Miège, C.; et al. Developmental Control of Plant Rho GTPase Nano-Organization by the Lipid Phosphatidylserine. Science 2019, 364, 57–62. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moran, K.D.; Lew, D.J. How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells 2020, 9, 1113. https://doi.org/10.3390/cells9051113
Moran KD, Lew DJ. How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells. 2020; 9(5):1113. https://doi.org/10.3390/cells9051113
Chicago/Turabian StyleMoran, Kyle D., and Daniel J. Lew. 2020. "How Diffusion Impacts Cortical Protein Distribution in Yeasts" Cells 9, no. 5: 1113. https://doi.org/10.3390/cells9051113
APA StyleMoran, K. D., & Lew, D. J. (2020). How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells, 9(5), 1113. https://doi.org/10.3390/cells9051113