Centering and Shifting of Centrosomes in Cells
Abstract
:1. Introduction
2. Localization of Centrosomes in the Cells
2.1. Centrosomes in Substrate-Spread Cells
2.2. Centrosomes in Cells In Situ and in Organ Cultures
2.3. Why Is the Determination of the Centrosome Position in the Cell Required?
3. Molecular Mechanisms That Determine the Location of Centrosomes in Cells
3.1. Central Location of the Centrosomes
3.2. Special Attention to the Role of Actin and Nuclei in Centrosome Positioning
3.3. Mechanisms of Off-Center Centrosome Positioning in Cells
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, E.B. The Cell in Development and Heredity, 3rd ed.; The Macmillan Co.: New York, NY, USA, 1925. [Google Scholar]
- Fokin, A.I.; Zhapparova, O.N.; Burakov, A.V.; Nadezhdina, E.S. Centrosome-derived microtubule radial array, PCM-1 protein, and primary cilia formation. Protoplasma 2019, 256, 1361–1373. [Google Scholar] [CrossRef]
- Hale, C.M.; Chen, W.C.; Khatau, S.B.; Daniels, B.R.; Lee, J.S.; Wirtz, D. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 2011, 124, 4267–4285. [Google Scholar] [CrossRef] [Green Version]
- Luxton, G.W.; Gundersen, G.G. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 2011, 23, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, A.R.; McIntosh, K.V.; Dawe, H.R. Centrosome positioning in non-dividing cells. Protoplasma 2016, 253, 1007–1021. [Google Scholar] [PubMed]
- Pouthas, F.; Girard, P.; Lecaudey, V.; Ly, T.B.; Gilmour, D.; Boulin, C.; Pepperkok, R.; Reynaud, E.G. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J. Cell Sci. 2008, 121, 2406–2414. [Google Scholar] [PubMed] [Green Version]
- Doyle, A.D.; Wang, F.W.; Matsumoto, K.; Yamada, K.M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 2009, 184, 481–490. [Google Scholar]
- Zhang, J.; Wang, Y.L. Centrosome defines the rear of cells during mesenchymal migration. Mol. Biol. Cell 2017, 28, 3240–3251. [Google Scholar] [CrossRef]
- Jimenez, A.J.; de Pascalis, C.; Letort, G.; Vianay, B.; Goldman, R.D.; Bornens, M.; Piel, M.; Blanchoin, L.; Théry, M. Acto-myosin network geometry defines centrosome position. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Burakov, A.V.; Nadezhdina, E.S. Association of nucleus and centrosome: Magnet or velcro? Cell Biol. Int. 2013, 37, 95–104. [Google Scholar] [CrossRef]
- Feldman, J.L.; Geimer, S.; Marshall, W.F. The mother centriole plays an instructive role in defining cell geometry. PLoS Biol. 2007, 5, e149. [Google Scholar] [CrossRef]
- Goldspink, D.A.; Matthews, Z.J.; Lund, E.K.; Wileman, T.; Mogensen, M.M. Immuno-fluorescent Labeling of Microtubules and Centrosomal Proteins in Ex Vivo Intestinal Tissue and 3D In Vitro Intestinal Organoids. J. Vis. Exp. 2017, 130, 56662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldspink, D.A.; Rookyard, C.; Tyrrell, B.J.; Gadsby, J.; Perkins, J.; Lund, E.K.; Galjart, N.; Thomas, P.; Wileman, T.; Mogensen, M.M. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol. 2017, 7, 160274. [Google Scholar] [PubMed] [Green Version]
- Komarova, I.A.; Vorob’ev, I.A. Ultrastructural changes in the cell center during enterocyte differentiation in the mouse. Tsitologiia 1993, 35, 36–43. [Google Scholar] [PubMed]
- Komarova, I.A.; Vorob’ev, I.A. The ultrastructure of the cell center in the enterocytes of mouse embryos and newborn mice. Ontogenez Russ. J. Dev. Biol. 1994, 25, 76–88. [Google Scholar]
- Komarova, I.A.; Vorob’ev, I.A. The centrosome structure in enterocytes in the histogenesis of the mouse intestine. Ontogenez Russ. J. Dev. Biol. 1995, 26, 390–399. [Google Scholar]
- Jonassen, J.A.; San Augustin, J.; Follit, J.A.; Pazour, G.J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 2008, 183, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Dionne, L.K.; Shim, K.; Hoshi, M.; Cheng, T.; Wang, J.; Marthiens, V.; Knoten, A.; Basto, R.; Jain, S.; Mahjoub, M.R. Centrosome amplification disrupts renal development and causes cystogenesis. J. Cell Biol. 2018, 217, 2485–2501. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Alvarez, S.; Maeso-Alonso, L.; Villoch-Fernandez, J.; Wildung, M.; Martin-Lopez, M.; Marshall, C.; Villena-Cortes, A.J.; Diez-Prieto, I.; Pietenpol, J.A.; Tissir, F.; et al. p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton. Cell Death Dis. 2018, 9, 1183. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.A.; McKee, N.H.; Kalnins, V.I. Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc. Natl. Acad. Sci. USA 1985, 82, 3272–3276. [Google Scholar] [CrossRef] [Green Version]
- Henderson, C.G.; Tucker, J.B.; Chaplin, M.A.; Mackie, J.B.; Maidment, S.N.; Mogensen, M.M.; Paton, C.C. Reorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell. J. Cell Sci. 1994, 107, 589–600. [Google Scholar]
- Tang, N.; Marshall, W.F. Centrosome positioning in vertebrate development. J. Cell Sci. 2012, 125, 51–61. [Google Scholar]
- Burute, M.; Prioux, M.; Blin, G.; Truchet, S.; Letort, G.; Tseng, Q.; Bessy, T.; Lowell, S.; Young, J.; Filhol, O.; et al. Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial-to-Mesenchymal Transition. Dev. Cell 2017, 40, 168–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.K.; Zhang, S.; Werner, M.E.; Brotslaw, E.J.; Mitchell, J.W.; Altabbaa, M.M.; Mitchell, B.J. CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia. J. Cell Biol. 2018, 217, 1633–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, C.L.; Lázaro-Diéguez, F.; Bijlard, M.; Toussaint, M.J.M.; de Bruin, A.; Du, Q.; Müsch, A.; van Ijzendoorn, S.C.D. Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes. PLoS Biol. 2013, 11, e1001739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellett, G.; Carter, J.M.; Keynton, J.; Goldspink, D.; James, C.; Moss, D.K.; Mogensen, M.M. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells. Cell Motil. Cytoskelet. 2009, 66, 893–908. [Google Scholar] [CrossRef]
- Pitaval, A.; Senger, F.; Letort, G.; Gidro, X.; Guyon, L.; Sillibourne, J.; Théry, M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 2017, 216, 3713–3728. [Google Scholar]
- Jones, C.; Chen, P. Planar cell polarity signaling in vertebrates. Bioessays 2007, 29, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, L.V.; Strutt, D. Principles of planar polarity in animal development. Development 2011, 138, 1877–1892. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-Gonzalez, J.M.; Mulero-Navarro, S.; Mlodzik, M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016, 38, 1234–1245. [Google Scholar]
- Roman, A.C.; Garrido-Jimenez, S.; Diaz-Chamorro, S.; Centeno, F.; Carvajal-Gonzalez, J.M. Centriole Positioning: Not Just a Little Dot in the Cell. Results Probl. Cell Differ. 2019, 67, 201–221. [Google Scholar] [PubMed]
- Chiplonkar, J.M.; Vandré, D.D.; Robinson, J.M. Stimulus-dependent relocation of the microtubule organizing center in human polymorphonuclear leukocytes. J. Cell Sci. 1992, 102, 723–728. [Google Scholar] [PubMed]
- Kupfer, A.; Swain, S.L.; Janeway, C.A., Jr.; Singer, S.J. The specific direct interaction of helper T cells and antigen-presenting B cells. Proc. Natl. Acad. Sci. USA 1986, 83, 6080–6083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancho, D.; Vicente-Manzanares, M.; Mittelbrunn, M.; Montoya, M.C.; Gordón-Alonso, M.; Serrador, J.M.; Sánchez-Madrid, F. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev. 2002, 189, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cófreces, N.B.; Robles-Valero, J.; Cabrero, J.R.; Mittelbrunn, M.; Gordón-Alonso, M.; Sung, C.H.; Alarcón, B.; Vázquez, J.; Sánchez-Madrid, F. MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 2008, 182, 951–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Cófreces, N.B.; Alarcón, B.; Sánchez-Madrid, F. Tubulin and actin interplay at the T cell and antigen-presenting cell interface. Front. Immunol. 2011, 2, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloc, M.; Kubiak, J.Z.; Ghobrial, R.M. The newly found functions of MTOC in immunological response. J. Leukoc. Biol. 2014, 95, 417–430. [Google Scholar] [CrossRef]
- Cassioli, C.; Baldari, C.T. A Ciliary View of the Immunological Synapse. Cells 2019, 8, 789. [Google Scholar] [CrossRef] [Green Version]
- Distel, M.; Hocking, J.C.; Volkmann, K.; Köster, R.W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J. Cell Biol. 2010, 191, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.; Horvath, P.; Rothballer, A.; Kutay, U.; Csucs, G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE 2014, 9, e93431. [Google Scholar] [CrossRef]
- Fischer, E.; Legue, E.; Doyen, A.; Nato, F.; Nicolas, J.F.; Torres, V.; Yaniv, M.; Pontoglio, M. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 2006, 38, 21–23. [Google Scholar] [CrossRef]
- Di Pietro, F.; Echard, A.; Morin, X. Regulation of mitotic spindle orientation: An integrated view. EMBO Rep. 2016, 17, 1106–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cheng, L.; Jiang, H. Cell shape and intercellular adhesion regulate mitotic spindle orientation. Mol. Biol. Cell 2019, 30, 2458–2468. [Google Scholar] [CrossRef] [PubMed]
- Letort, G.; Nedelec, F.; Blanchoin, L.; Théry, M. Centrosome centering and decentering by microtubule network rearrangement. Mol. Biol. Cell 2016, 27, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, R. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 1986, 105, 245–281. [Google Scholar]
- Chatterjee, A.; Chinnappa, K.; Ramanan, N.; Mani, S. Centrosome Inheritance Does Not Regulate Cell Fate in Granule Neuron Progenitors of the Developing Cerebellum. Cerebellum 2018, 17, 685–691. [Google Scholar] [CrossRef]
- Mitchison, T.; Wühr, M.; Nguyen, P.; Ishihara, K.; Groen, A.; Field, C.M. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken) 2012, 69, 738–750. [Google Scholar]
- Li, J.; Jiang, H. Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size. Biophys. J. 2017, 112, 1503–1516. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.F.; Young, K.D.; Swaffer, M.; Wood, E.; Nurse, P.; Kimura, A.; Frankel, J.; Wallingford, J.; Walbot, V.; Qu, X.; et al. What determines cell size? BMC Biol. 2012, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, T.; Miller, P.M.; Kaverina, I. Microtubule network asymmetry in motile cells: Role of Golgi-derived array. Cell Cycle 2009, 8, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Infante, E.; Chavrier, P. Nucleus-Invadopodia Duo During Cancer Invasion. Trends Cell Biol. 2019, 29, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Veloso, A.; Wu, J.; Katrukha, E.A.; Akhmanova, A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. Elife 2018, 7, e33864. [Google Scholar] [CrossRef] [PubMed]
- Kushner, E.J.; Ferro, L.S.; Yu, Z.; Bautch, V.L. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol. Biol. Cell 2016, 27, 1911–1920. [Google Scholar] [PubMed]
- Garrido-Jimenez, S.; Roman, A.C.; Alvarez-Barrientos, A.; Carvajal-Gonzalez, J.M. Centriole planar polarity assessment in Drosophila wings. Development 2018, 145. [Google Scholar] [CrossRef] [Green Version]
- Mitchison, T.; Kirschner, M.W. Microtubule assembly nucleated by isolated centrosomes. Nature 1984, 12, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Farina, F.; Gaillard, J.; Guérin, C.; Couté, Y.; Sillibourne, J.; Blanchoin, L.; Théry, M. The centrosome is an actin-organizing centre. Nat. Cell Biol. 2016, 18, 65–75. [Google Scholar]
- Palazzo, A.F.; Joseph, H.L.; Chen, Y.J.; Dujardin, D.L.; Alberts, A.S.; Pfister, K.K.; Vallee, R.B.; Gundersen, G.G. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 2001, 11, 1536–1541. [Google Scholar]
- Burakov, A.; Nadezhdina, E.; Slepchenko, B.; Rodionov, V. Centrosome positioning in interphase cells. J. Cell Biol. 2003, 162, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Brito, D.A.; Strauss, J.; Magidson, V.; Tikhonenko, I.; Khodjakov, A.; Koonce, M.P. Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium. Mol. Biol. Cell 2005, 16, 3334–3340. [Google Scholar]
- Wu, J.; Misra, G.; Russell, R.J.; Ladd, A.J.; Lele, T.P.; Dickinson, R.B. Effects of dynein on microtubule mechanics and centrosome positioning. Mol. Biol. Cell 2011, 22, 4834–4841. [Google Scholar] [CrossRef]
- Mazel, T.; Biesemann, A.; Krejczy, M.; Nowald, J.; Müller, O.; Dehmelt, L. Direct observation of microtubule pushing by cortical dynein in living cells. Mol. Biol. Cell 2014, 25, 95–106. [Google Scholar]
- Odell, J.; Sikirzhytski, V.; Tikhonenko, I.; Cobani, S.; Khodjakov, A.; Koonce, M. Force balances between interphase centrosomes as revealed by laser ablation. Mol. Biol. Cell 2019, 30, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Burakov, A.; Rodionov, V.; Mogilner, A. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: A computational study. Mol. Biol. Cell 2010, 21, 4418–4427. [Google Scholar] [PubMed] [Green Version]
- Laan, L.; Pavin, N.; Husson, J.; Romet-Lemonne, G.; van Duijn, M.; López, M.P.; Vale, R.D.; Jülicher, F.; Reck-Peterson, S.L.; Dogterom, M. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012, 148, 502–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laan, L.; Roth, S.; Dogterom, M. End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle 2012, 11, 3750–3757. [Google Scholar] [PubMed] [Green Version]
- Wühr, M.; Dumont, S.; Groen, A.C.; Needleman, D.J.; Mitchison, T.J. How does a millimeter-sized cell find its center? Cell Cycle 2009, 8, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Shinar, T.; Mana, M.; Piano, F.; Shelley, M.J. A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo. Proc. Natl. Acad. Sci. USA 2011, 108, 10508–10513. [Google Scholar]
- Longoria, R.A.; Shubeita, G.T. Cargo transport by cytoplasmic Dynein can center embryonic centrosomes. PLoS ONE 2013, 8, e67710. [Google Scholar]
- Tanimoto, H.; Kimura, A.; Minc, N. Shape-motion relationships of centering microtubule asters. J. Cell Biol. 2016, 212, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, H.; Sallé, J.; Dodin, L.; Minc, N. Physical Forces Determining the Persistency and Centering Precision of Microtubule Asters. Nat. Phys. 2018, 14, 848–854. [Google Scholar] [CrossRef]
- Kimura, K.; Kimura, A. A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center. Bioarchitecture 2011, 1, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl. Acad. Sci. USA 2011, 108, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simone, A.; Spahr, A.; Busso, C.; Gönczy, P. Uncovering the balance of forces driving microtubule aster migration in C. elegans zygotes. Nat. Commun. 2018, 9, 938. [Google Scholar] [PubMed]
- Howard, J.; Garzon-Coral, C. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning. Bioessays 2017, 39, 1700122. [Google Scholar]
- Hasley, A.; Chavez, S.; Danilchik, M.; Wühr, M.; Pelegri, F. Vertebrate Embryonic Cleavage Pattern Determination. Adv. Exp. Med. Biol. 2017, 953, 117–171. [Google Scholar]
- Zulkipli, I.; Clark, J.; Hart, M.; Shrestha, R.L.; Gul, P.; Dang, D.; Kasichiwin, T.; Kujawiak, I.; Sastry, N.; Draviam, V.M. Spindle rotation in human cells is reliant on a MARK2-mediated equatorial spindle-centering mechanism. J. Cell Biol. 2018, 217, 3057–3070. [Google Scholar] [CrossRef] [Green Version]
- Uzbekov, R.; Kireyev, I.; Prigent, C. Centrosome separation: Respective role of microtubules and actin filaments. Biol. Cell 2002, 94, 275–288. [Google Scholar] [CrossRef]
- Cao, J.; Crest, J.; Fasulo, B.; Sullivan, W. Cortical actin dynamics facilitate early-stage centrosome separation. Curr. Biol. 2010, 20, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Hégarat, N.; Vesely, C.; Roseboom, I.; Larch, C.; Streicher, H.; Straatman, K.; Flynn, H.; Skehel, M.; Hirota, T.; et al. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J. 2011, 30, 2233–2245. [Google Scholar]
- Hebert, A.M.; DuBoff, B.; Casaletto, J.B.; Gladden, A.B.; McClatchev, A.I. Merlin/ERM proteins establish cortical asymmetry and centrosome position. Genes Dev. 2012, 26, 2709–2723. [Google Scholar] [CrossRef] [Green Version]
- St Johnston, D.; Sanson, B. Epithelial polarity and morphogenesis. Curr. Opin. Cell Biol. 2011, 23, 540–546. [Google Scholar]
- Nunes de Almeida, F.; Walther, R.F.; Pressé, M.T.; Vlassaks, E.; Pichaud, F. Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs. Development 2019, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, D.; Obino, D.; Pineau, J.; Farina, F.; Gaillard, J.; Guerin, C.; Blanchoin, L.; Lennon-Duménil, A.M.; Théry, M. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 2019, 38, e99630. [Google Scholar] [CrossRef] [PubMed]
- Uzbekov, R.E.; Vorob’ev, I.A.; Drachev, V.A. The effect of the laser microirradiation of the cell center on neutrophil motility. Tsitologiia 1989, 31, 874–881. [Google Scholar] [PubMed]
- Luxton, G.W.; Gomes, E.R.; Folker, E.S.; Vintinner, E.; Gundersen, G.G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 2010, 329, 956–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, R.; Antoku, S.; Gundersen, G.G. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr. Biol. 2017, 27, 3097–3110. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.; Nolasco, S.; Nascimento, R.; Lopez Fanarraga, M.; Zabala, J.C.; Soares, H. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep. 2010, 11, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Chan, G.; Zuo, J.; Rattner, J.B.; van der Hoorn, F.A. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration. J. Biol. Chem. 2016, 291, 15388–15403. [Google Scholar] [CrossRef] [Green Version]
- Théry, M.; Racine, V.; Piel, M.; Pépin, A.; Dimitrov, A.; Chen, Y.; Sibarita, J.B.; Bornens, M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 2006, 103, 19771. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Peglion, F.; Martin, J.; Hubatsch, L.; Reich, J.; Hirani, N.; Gubieda, A.G.; Roffey, J.; Fernandes, A.R.; St Johnston, D.; et al. aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev. Cell 2017, 42, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Peglion, F.; Goehring, N. Switching states: Dynamic remodelling of polarity complexes as a toolkit for cell polarization. Curr. Opin. Cell Biol. 2019, 60, 121–130. [Google Scholar] [CrossRef]
- Dujardin, D.L.; Barnhart, L.E.; Stehman, S.A.; Gomes, E.R.; Gundersen, G.G.; Vallee, R.B. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 2003, 163, 1205–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fructuoso, M.; Legrand, M.; Mousson, A.; Steffan, T.; Vauchelles, R.; De Mey, J.; Sick, E.; Rondé, P.; Dujardin, D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol. Cell 2020, 112, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Manneville, J.B.; Jehanno, M.; Etienne-Manneville, S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J. Cell Biol. 2010, 191, 585–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmoranzer, J.; Fawcett, J.P.; Segura, M.; Tan, S.; Vallee, R.B.; Pawson, T.; Gundersen, G.G. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr. Biol. 2009, 19, 1065–1074. [Google Scholar] [PubMed] [Green Version]
- Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 2013, 29, 471–499. [Google Scholar] [PubMed]
- Benseddik, K.; Sen Nkwe, N.; Daou, P.; Verdier-Pinard, P.; Badache, A. ErbB2-dependent chemotaxis requires microtubule capture and stabilization coordinated by distinct signaling pathways. PLoS ONE 2013, 8, e55211. [Google Scholar] [CrossRef] [Green Version]
- Dubois, F.; Alpha, K.; Turner, C.E. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol. Biol. Cell 2017, 28, 3815–3831. [Google Scholar] [CrossRef]
- Fukuda, T.; Sugita, S.; Inatome, R.; Yanagi, S. CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J. Biol. Chem. 2010, 285, 40554–40561. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fraticelli, A.E.; Auzan, M.; Alonso, M.A.; Bornens, M.; Martín-Belmonte, F. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J. Cell Biol. 2012, 198, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Herrington, K.A.; Trinh, A.L.; Dang, C.; O’Shaughnessy, E.; Hahn, K.M.; Gratton, E.; Digman, M.A.; Sütterlin, C. Spatial analysis of Cdc42 activity reveals a role for plasma membrane-associated Cdc42 in centrosome regulation. Mol. Biol. Cell 2017, 28, 2135–2145. [Google Scholar] [CrossRef]
- Pichaud, F.; Walther, R.F.; Nunes de Almeida, F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carney, P.R.; Couve, E. Cell polarity changes and migration during early development of the avian peripheral auditory system. Anat. Rec. 1989, 225, 156–164. [Google Scholar] [PubMed]
- Liu, X.; Kapoor, T.M.; Chen, J.K.; Huse, M. Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc. Natl. Acad. Sci. USA 2013, 110, 11976–11981. [Google Scholar] [PubMed] [Green Version]
- Lomakin, A.J.; Semenova, I.; Zaliapin, I.; Kraikivski, P.; Nadezhdina, E.; Slepchenko, B.M.; Akhmanova, A.; Rodionov, V. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev. Cell 2009, 17, 323–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, J.; Wu, X.; Chung, A.H.; Chen, J.K.; Kapoor, T.M.; Hammer, J.A. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J. Cell Biol. 2013, 202, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Rieger, H.; Paul, R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys. J. 2019, 116, 2079–2091. [Google Scholar] [CrossRef] [Green Version]
- Zyss, D.; Ebrahimi, H.; Gergely, F. Casein kinase I delta controls centrosome positioning during T cell activation. J. Cell Biol. 2011, 195, 781–797. [Google Scholar]
- Baratt, A.; Arkhipov, S.N.; Maly, I.V. An experimental and computational study of effects of microtubule stabilization on T-cell polarity. PLoS ONE 2008, 3, e3861. [Google Scholar]
- Obino, D.; Farina, F.; Malbec, O.; Sáez, P.J.; Maurin, M.; Gaillard, J.; Dingli, F.; Loew, D.; Gautreau, A.; Yuseff, M.I.; et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat. Commun. 2016, 7, 10969. [Google Scholar] [CrossRef] [Green Version]
- Adler, P.N.; Wallingford, J.B. From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins. Trends Cell Biol. 2017, 27, 379–390. [Google Scholar]
- Shimada, Y.; Yonemura, S.; Ohkura, H.; Strutt, D.; Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 2006, 10, 209–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathewson, A.W.; Berman, D.G.; Moens, C.B. Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Dev. Biol. 2019, 452, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.J.; Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell 2007, 12, 727–738. [Google Scholar] [PubMed] [Green Version]
- Haag, N.; Schüler, S.; Nietzsche, S.; Hübner, C.A.; Strenzke, N.; Qualmann, B.; Kessels, M.M. The Actin Nucleator Cobl Is Critical for Centriolar Positioning, Postnatal Planar Cell Polarity Refinement, and Function of the Cochlea. Cell Rep. 2018, 24, 2418–2431. [Google Scholar]
- Yamashita, Y.M.; Jones, D.L.; Fuller, M.T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003, 301, 1547–1550. [Google Scholar]
- Chen, C.; Cummings, R.; Mordovanakis, A.; Hunt, A.J.; Mayer, M.; Sept, D.; Yamashita, Y.M. Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division. Elife 2018, 7, e33685. [Google Scholar] [CrossRef]
- Venkei, Z.G.; Yamashita, Y.M. The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development 2015, 142, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Uzbekov, R.; Garanina, A.; Burlaud-Gaillard, J.; Bressac, C. The Flagellum of the Shortest Spermatozoon in the Animal Kingdom: Elongation and Shortening of the Axoneme in the Process of Spermiogenesis of the Parasitic Wasp Cotesia Congregata. In Flagella and Cilia. Types, Structure and Functions; Uzbekov, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 83–108. [Google Scholar]
- Alieva, I.; Staub, C.; Uzbekova, S.; Uzbekov, R. A question of flagella origin for spermatids—Mother or daughter centriole. In Flagella and Cilia. Types, Structure and Functions; Uzbekov, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 109–126. [Google Scholar]
Experimental Conditions | Dynein Status | Myosin Status | Microtubule Dynamics | LMD | Centrosome Position |
---|---|---|---|---|---|
Control | active | active | intact | - | Centering |
Myosin inhibition | active | inhibited | intact | - | Centering |
Dynein inhibition | inhibited | no matter | intact | - | Severe decentering |
Dynein inhibition, microtubule stabilization | inhibited | no matter | microtubules stabilized | - | Centering |
Local nocodazole application | active | active | intact in the opposite side of the cell | + | Shift to LMD region |
Local nocodazole application, myosin inhibition | active | inhibited | intact in the opposite side of the cell | + | Shift away from LMD region |
Dynein and myosin inhibition | inhibited | inhibited | intact | - | Oscillations around cell center |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burakov, A.V.; Nadezhdina, E.S. Centering and Shifting of Centrosomes in Cells. Cells 2020, 9, 1351. https://doi.org/10.3390/cells9061351
Burakov AV, Nadezhdina ES. Centering and Shifting of Centrosomes in Cells. Cells. 2020; 9(6):1351. https://doi.org/10.3390/cells9061351
Chicago/Turabian StyleBurakov, Anton V., and Elena S. Nadezhdina. 2020. "Centering and Shifting of Centrosomes in Cells" Cells 9, no. 6: 1351. https://doi.org/10.3390/cells9061351
APA StyleBurakov, A. V., & Nadezhdina, E. S. (2020). Centering and Shifting of Centrosomes in Cells. Cells, 9(6), 1351. https://doi.org/10.3390/cells9061351