Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Irradiation Setup
2.3. Clonogenic Assay
2.4. Generational Development
2.5. Statistical Analysis and Modelling
3. Results
3.1. Comparison of Survival Fractions between HPV Groups
3.2. Changes in Radiosensitivity Following Repeated 4 Gy Fractions
3.3. Linear Quadratic Modelling; α/β Ratios
3.4. Comparison of Parameters by HPV Status
4. Discussion
5. Conclusions
- All cell lines displayed increasing radiosensitivity with repeated 4 Gy radiation dose fractions except the 2nd generations of UM-SCC-17a and UM-SCC-22a which showed a transient increase in radioresistance.
- Comparison of SF as a function of dose between cells of the 2 HPV groups found that HPV positive cells were significantly more radiosensitive across all generations.
- Broad heterogeneity was found for the α and β parameters from LQ modelling across all 6 cell lines without any distinct association found according to HPV status.
- The inherent α/β for each of the 6 cell lines, and the changes in this ratio with 4 Gy radiation dose fractions, did not describe any fractional sensitivity among HNSCC cell lines according to HPV status.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Gen vs. Gen/Gy | 0.5 Gy | 1 Gy | 2 Gy | 4 Gy | 6 Gy |
---|---|---|---|---|---|
UM-SCC-17a 1st v 2nd gen | 0.4782 | 0.1412 | 0.0280429 | 0.00001124 | 0.6694 |
UM-SCC-17a 2nd v 3rd gen | 0.2387 | 0.01622 | 0.00000004 | 0.00000001 | 0.00000002 |
UM-SCC-17a 3rd v 4th gen | 0.8392 | 0.8392 | 0.4003 | 0.020931 | 0.02073604 |
UM-SCC-22a 1st v 2nd gen | 0.7873 | 0.017954 | 0.3044 | 0.7873 | 0.3748 |
UM-SCC-22a 2nd v 3rd gen | 0.1184 | 0.000013 | 0.1184 | 0.2689 | 0.2689 |
UM-SCC-22a 3rd v 4th gen | 0.8940 | 0.5588 | 0.0013 | ||
UM-SCC-1 1st v 2nd gen | 0.9432 | 0.0845 | 0.3980 | 0.9432 | |
UM-SCC-1 2nd v 3rd gen | 0.4782 | 0.0583 | 0.0266 | 0.0179 | |
UM-SCC-1 3rd v 4th gen | 0.9688 | 0.9688 | 0.9688 | ||
UM-SCC-47 1st v 2nd gen | 0.6547 | 0.2562 | 0.1635 | 0.0030 | |
UM-SCC-47 2nd v 3rd gen | 0.8018 | 0.8018 | 0.0897 | ||
UM-SCC-47 3rd v 4th gen | 0.9749 | 0.4743 | 0.7982 | ||
UPCI-SCC-154 1st v 2nd gen | 0.9744 | 0.9744 | 0.5995 | 0.9744 | 0.0001 |
UPCI-SCC-154 2nd v 3rd gen | 0.9973 | 0.9973 | 0.9973 | 0.7699 | 0.8380 |
UPCI-SCC-154 3rd v 4th gen | 0.6816 | 0.6929 | 0.6246 | 0.0000010 | 0.0634 |
UPCI-SCC-090 1st v 2nd gen | 0.9565 | 0.0004 | 0.0000009 | 0.0000197 | 0.0000009 |
UPCI-SCC-090 2nd v 3rd gen | |||||
UPCI-SCC-090 3rd v 4th gen |
Appendix B
Cell Line and Generation | α | 95% Confidence | β | 95% Confidence | R2 | α/β |
---|---|---|---|---|---|---|
SCC-17a 1st | 0.23 | (0.1542, 0.3131) | 0.007 | (−0.012, 0.026) | 0.956 | 34.19 |
SCC-17a 2nd | 0.18 | (0.053, 0.298) | 0.004 | (−0.024, 0.033) | 0.969 | 40.68 |
SCC-17a 3rd | 0.69 | (0.6048, 0.7655) | 0.026 | (−0.0222, 0.07431) | 0.996 | 26.30 |
SCC-17a 4th | 0.82 | (0.6869, 0.9523) | 0.035 | (−0.061, 0.1304) | 0.999 | 23.61 |
SCC22A-1st | 0.82 | (0.4963, 1.142) | 0.368 | (−0.05686, 0.7924) | 0.962 | 2.23 |
SCC22A-2nd | 0.46 | (0.3241, 0.5897) | 0.387 | (0.2351, 0.5396) | 0.995 | 1.18 |
SCC22A-3rd | 1.55 | (1.372, 1.688) | 0.306 | (0.237, 0.3755) | 1.000 | 5.06 |
SCC22A-4th | 1.58 | (1.513,1.644) | 0.245 | (0.1502, 0.3396) | 1.000 | 6.44 |
SCC1-1st | 0.32 | (0.0093, 0.428) | 0.220 | (0.0319, 0.4226) | 0.977 | 1.45 |
SCC1-2nd | 0.37 | (0.0151, 0.729) | 0.250 | (0.0012, 0.6339) | 0.995 | 1.49 |
SCC1-3rd | 0.48 | (0.2855, 0.6666) | 0.456 | (0.2487, 0.6633) | 0.996 | 1.04 |
SCC1-4th | 0.48 | (0.2314, 0.7225) | 0.470 | (0.197, 0.7439) | 0.986 | 1.01 |
SCC154-1st | 1.45 | (1.205, 1.693) | 0.177 | (−0.1226, 0.4765) | 0.992 | 8.19 |
SCC154-2nd | 1.42 | (1.194, 1.643) | 0.328 | (0.03136, 0.6241) | 0.995 | 4.33 |
SCC154-3rd | 1.53 | (1.313, 1.754) | 0.152 | (−0.1562, 0.4609) | 0.996 | 10.07 |
SCC154-4th | 1.80 | (1.582,1.913) | 0.211 | (−0.0408, 0.4624) | 0.998 | 8.54 |
SCC090-1st | 0.76 | (0.2703, 1.254) | 0.046 | (−0.5512, 0.6425) | 0.851 | 16.69 |
SCC090-2nd | 0.07 | (−0.3983, 0.5297) | 1.023 | (0.2293, 1.816) | 0.992 | 0.06 |
SCC47-1st | 0.98 | (0.859, 1.091) | 0.180 | (0.0919,0.3315) | 0.998 | 5.42 |
SCC47-2nd | 1.08 | (1,1.156) | 0.300 | (0.2388,0.4188) | 0.999 | 3.59 |
SCC47-3rd | 1.14 | (1.075,1.201) | 0.410 | (0.3481,0.5017) | 1.000 | 2.78 |
SCC47-4th | 1.05 | (0.924,1.116) | 0.650 | (0.5143,0.8034) | 0.999 | 1.62 |
References
- Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. Response to correspondence on the molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Syrjänen, S. Human papillomavirus (HPV) in head and neck cancer. J. Clin. Virol. 2005, 32, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Issaeva, N.; Yarbrough, W.G. HPV-driven oropharyngeal cancer: Current knowledge of molecular biology and mechanisms of carcinogenesis. Cancers Head Neck 2018, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, A.K.; Anderson, W.F.; Lortet-Tieulent, J.; Curado, M.P.; Ferlay, J.; Franceschi, S.; Rosenberg, P.S.; Bray, F.; Gillison, M.L. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J. Clin. Oncol. 2013, 31, 4550–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, M.H.; Haidar, Y.M.; Bitner, B.; Trent, M.; Tjoa, T. Practice patterns and knowledge among California pediatricians regarding human papillomavirus and its relation to head and neck cancer. Am. J. Otolaryngol. 2019, 40, 525–529. [Google Scholar] [CrossRef]
- A Ratko, T.; Douglas, G.; De Souza, J.A.; E Belinson, S.; Aronson, N. Radiotherapy Treatments for Head and Neck Cancer Update; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2014. [Google Scholar]
- Lassen, P.; Eriksen, J.G.; Krogdahl, A.; Therkildsen, M.H.; Ulhøi, B.P.; Overgaard, M.; Specht, L.; Andersen, E.; Johansen, J.; Andersen, L.J.; et al. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: Evaluation of the randomised DAHANCA 6&7 trial. Radiother. Oncol. 2011, 100, 49–55. [Google Scholar] [CrossRef]
- Fakhry, C.; Zhang, Q.; Nguyen-Tan, P.F.; Rosenthal, D.I.; El-Naggar, A.; Garden, A.S.; Soulieres, D.; Trotti, A.; Avizonis, V.; Ridge, J.A.; et al. Human Papillomavirus and Overall Survival After Progression of Oropharyngeal Squamous Cell Carcinoma. J. Clin. Oncol. 2014, 32, 3365–3373. [Google Scholar] [CrossRef]
- Rosenthal, D.I.; Harari, P.M.; Giralt, J.; Bell, D.; Raben, D.; Liu, J.; Schulten, J.; Ang, K.K.; Bonner, J.A. Association of Human Papillomavirus and p16 Status with Outcomes in the IMCL-9815 Phase III Registration Trial for Patients with Locoregionally Advanced Oropharyngeal Squamous Cell Carcinoma of the Head and Neck Treated With Radiotherapy With or Without Cetuximab. J. Clin. Oncol. 2016, 34, 1300–1308. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- Masterson, L.; Moualed, D.; Liu, Z.-W.; Howard, J.E.; Dwivedi, R.C.; Tysome, J.R.; Benson, R.; Sterling, J.C.; Sudhoff, H.; Jani, P.; et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: A systematic review and meta-analysis of current clinical trials. Eur. J. Cancer 2014, 50, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Ihloff, A.; Petersen, C.; Hoffmann, M.; Knecht, R.; Tribius, S. Human papilloma virus in locally advanced stage III/IV squamous cell cancer of the oropharynx and impact on choice of therapy. Oral Oncol. 2010, 46, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, É.; Bourhis, J.; Borghi, E.; Lévy, L. Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur. Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; Kemp, S.M.-D.; Buijze, M.; Jacobs, G.; Braakhuis, B.J.; Brakenhoff, R.H. Treatment response of HPV-positive and HPV-negative head and neck squamous cell carcinoma cell lines. Oral Oncol. 2013, 49, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joiner, M.C.; van Der Kogel, A. Basic Clinical Radiobiology, 5th ed.; Joiner, M.C., van Der Kogel, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; Volume 1, pp. 1–546. [Google Scholar]
- Van Leeuwen, C.M.; Oei, A.L.; Crezee, J.; Bel, A.; Franken, N.; Stalpers, L.J.A.; Kok, H.P. The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat. Oncol. 2018, 13, 96. [Google Scholar] [CrossRef]
- Murray, D.; McBride, W.H.; Schwartz, J.L. Radiation Biology in the Context of Changing Patterns of Radiotherapy. Radiat. Res. 2014, 182, 259–272. [Google Scholar] [CrossRef]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef]
- Arenz, A.; Ziemann, F.; Mayer, C.; Wittig, A.; Dreffke, K.; Preising, S.; Wagner, S.; Klussmann, J.-P.; Engenhart-Cabillic, R.; Wittekindt, C. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlenther. Onkol. 2014, 190, 839–846. [Google Scholar] [CrossRef]
- Dok, R.; Kalev, P.; Van Limbergen, E.J.; Asbagh, L.A.; Hauben, E.; Sablina, A.A.; Nuyts, S.; Vazquez, I. p16INK4a Impairs Homologous Recombination-Mediated DNA Repair in Human Papillomavirus-Positive Head and Neck Tumors. Cancer Res. 2014, 74, 1739–1751. [Google Scholar] [CrossRef] [Green Version]
- Rieckmann, T.; Tribius, S.; Grob, T.; Meyer, F.; Busch, C.-J.; Petersen, C.; Dikomey, E.; Kriegs, M. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother. Oncol. 2013, 107, 242–246. [Google Scholar] [CrossRef]
- Geh, J.I.; Bond, S.; Bentzen, S.M.; Glynne-Jones, R. Systematic overview of preoperative (neoadjuvant) chemoradiotherapy trials in oesophageal cancer: Evidence of a radiation and chemotherapy dose response. Radiother. Oncol. 2006, 78, 236–244. [Google Scholar] [CrossRef]
- Sano, D.; Xie, T.-X.; Ow, T.J.; Zhao, M.; Pickering, C.R.; Zhou, G.; Sandulache, V.C.; Wheeler, D.A.; Gibbs, R.A.; Caulin, C.; et al. Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin. Cancer Res. 2011, 17, 6658–6670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, J.C.; Graham, M.P.; Kumar, B.; Bs, L.M.S.; Kupfer, R.; Lyons, R.H.; Bradford, C.R.; Carey, T.E.; Bs, M.P.G. Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines. Head Neck 2009, 32, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.S.; Weissfeld, J.L.; Ragin, C.C.R.; Rossie, K.M.; Martin, C.L.; Shuster, M.; Ishwad, C.S.; Law, J.C.; Myers, E.N.; Johnson, J.T.; et al. The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines. Oral Oncol. 2007, 43, 701–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.S.; Wood, T.J.; Cawthorne, C.; Hilton, K.L.; Maher, S.; Saunderson, J.R.; Archibald, S.J.; Beavis, A.W. A method to calibrate the RS 2000 X-ray biological irradiator for radiobiological flank irradiation of mice. Biomed. Phys. Eng. Express 2016, 2, 037001. [Google Scholar] [CrossRef]
- Ma, C.-M.C.; Coffey, C.W.; DeWerd, L.A.; Liu, C.; Nath, R.; Seltzer, S.M.; Seuntjens, J. AAPM protocol for 40-300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med. Phys. 2001, 28, 868–893. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lassen, P. The role of Human papillomavirus in head and neck cancer and the impact on radiotherapy outcome. Radiother. Oncol. 2010, 95, 371–380. [Google Scholar] [CrossRef]
- Lewis, A.; Kang, R.S.; Levine, A.; Maghami, E. The New Face of Head and Neck Cancer: The HPV Epidemic. Oncology 2015, 29, 616–626. [Google Scholar]
- Kimple, R.J.; Smith, M.A.; Blitzer, G.C.; Torres, A.D.; Martin, J.A.; Yang, R.Z.; Peet, C.R.; Lorenz, L.D.; Nickel, K.P.; Klingelhutz, A.J.; et al. Enhanced Radiation Sensitivity in HPV-Positive Head and Neck Cancer. Cancer Res. 2013, 73, 4791–4800. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Navas, P.M.; Wojtkowiak, J.W.; Gatenby, R.A. Application of Evolutionary Principles to Cancer Therapy. Cancer Res. 2015, 75, 4675–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatenby, R.A.; Silva, A.S.; Gillies, R.J.; Frieden, B.R. Adaptive therapy. Cancer Res. 2009, 69, 4894–4903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-S.; Wang, H.-J.; Qian, H. Biological effects of radiation on cancer cells. Mil. Med. Res. 2018, 5, 20. [Google Scholar] [CrossRef]
Cell Line | Anatomy | HPV Status | TP53 Mutation | Gender | Age |
---|---|---|---|---|---|
UM-SCC-17a | Laryngeal | Negative | Missense | F | 48 |
UM-SCC-22a | Hypopharynx | Negative | Missense | F | |
UM-SCC-1 | Floor of mouth | Negative | Splice site | M | 73 |
UPCI-SCC-090 | Base of tongue | Positive | Wild type | M | 46 |
UPCI-SCC-154 | Tongue | Positive | Wild type | M | 54 |
UM-SCC-47 | Lateral tongue | Positive | Wild Type | M | 53 |
HPV Negative | HPV Positive | |
---|---|---|
α values | 0.18–1.58 Gy−1 | 0.07–1.80 Gy−1 |
β values | 0.007–0.470 Gy−2 | 0.046–1.023 Gy−2 |
α/β ratios | 1.01–40.68 Gy | 0.06–16.69 Gy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, P.; Staudacher, A.H.; Marcu, L.G.; Olver, I.; Moghaddasi, L.; Brown, M.P.; Li, Y.; Bezak, E. Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers. Cells 2020, 9, 1788. https://doi.org/10.3390/cells9081788
Reid P, Staudacher AH, Marcu LG, Olver I, Moghaddasi L, Brown MP, Li Y, Bezak E. Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers. Cells. 2020; 9(8):1788. https://doi.org/10.3390/cells9081788
Chicago/Turabian StyleReid, Paul, Alexander H. Staudacher, Loredana G. Marcu, Ian Olver, Leyla Moghaddasi, Michael P. Brown, Yanrui Li, and Eva Bezak. 2020. "Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers" Cells 9, no. 8: 1788. https://doi.org/10.3390/cells9081788
APA StyleReid, P., Staudacher, A. H., Marcu, L. G., Olver, I., Moghaddasi, L., Brown, M. P., Li, Y., & Bezak, E. (2020). Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers. Cells, 9(8), 1788. https://doi.org/10.3390/cells9081788