How Does Protein Zero Assemble Compact Myelin?
Abstract
:1. Introduction
2. The Molecular Structure of P0
3. P0 is the Executive PNS Membrane Stacker
4. The Expression and Trafficking of P0
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMT | Charcot-Marie-Tooth disease |
CNS | central nervous system |
DSS | Dejerine-Sottas syndrome |
EM | electron microscopy |
ER | endoplasmic reticulum |
ERAD | ER-associated protein degradation |
HNK-1 | human natural killer-1 |
Ig | immunoglobulin |
IPL | intraperiod line |
MBP | myelin basic protein |
MDL | major dense line |
NRG1 | neuregulin 1 |
P0 | myelin protein zero |
P0ct | the cytoplasmic extension of P0 |
P2 | peripheral myelin protein 2 |
PLP | proteolipid protein |
PMP22 | peripheral myelin protein 22 |
PNS | peripheral nervous system |
PTM | post-translational modification |
SCP | Schwann cell progenitor |
SLI | Schmidt-Lanterman incisure |
UPR | unfolded protein response |
References
- Hartline, D.K. What is myelin? Neuron Glia Biol. 2008, 4, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nave, K. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 2010, 11, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Nave, K.A.; Werner, H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol. 2014, 30, 503–533. [Google Scholar] [CrossRef]
- Micu, I.; Plemel, J.R.; Caprariello, A.V.; Nave, K.; Stys, P.K. Axo-myelinic neurotransmission: A novel mode of cell signalling in the central nervous system. Nat. Rev. Neurosci. 2018, 19, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Bouçanova, F.; Chrast, R. Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions. Front. Cell. Neurosci. 2020, 14, 148. [Google Scholar] [CrossRef]
- Zuchero, J.B.; Fu, M.; Sloan, S.A.; Ibrahim, A.; Olson, A.; Zaremba, A.; Dugas, J.C.; Wienbar, S.; Caprariello, A.V.; Kantor, C.; et al. CNS myelin wrapping is driven by actin disassembly. Dev. Cell 2015, 34, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, F.O.; Bear, R.S.; Palmer, K.J. X-ray diffraction studies on the structure of the nerve myelin sheath. J. Cell. Physiol. 1941, 18, 31–42. [Google Scholar] [CrossRef]
- Finean, J.B. The Role of Water in the Structure of Peripheral Nerve Myelin. J. Biophys. Biochem. Cytol. 1957, 3, 95–102. [Google Scholar] [CrossRef]
- Caspar, D.L.D.; Kirschner, D.A. Myelin Membrane Structure at 10 Å Resolution. Nat. New Biol. 1971, 231, 46–52. [Google Scholar] [CrossRef]
- Kidd, G.J.; Ohno, N.; Trapp, B.D. Biology of Schwann cells. Handb. Clin. Neurol. 2013, 115, 55–79. [Google Scholar]
- Simons, M.; Trotter, J. Wrapping it up: The cell biology of myelination. Curr. Opin. Neurobiol. 2007, 17, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Raasakka, A.; Kursula, P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020, 9, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Monasterio-Schrader, P.; Jahn, O.; Tenzer, S.; Wichert, S.P.; Patzig, J.; Werner, H.B. Systematic approaches to central nervous system myelin. Cell. Mol. Life Sci. 2012, 69, 2879–2894. [Google Scholar] [CrossRef] [PubMed]
- Siems, S.B.; Jahn, O.; Eichel, M.A.; Kannaiyan, N.; Wu, L.M.N.; Sherman, D.L.; Kusch, K.; Hesse, D.; Jung, R.B.; Fledrich, R.; et al. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020, 9, e51406. [Google Scholar] [CrossRef] [PubMed]
- Majava, V.; Polverini, E.; Mazzini, A.; Nanekar, R.; Knoll, W.; Peters, J.; Natali, F.; Baumgärtel, P.; Kursula, I.; Kursula, P. Structural and Functional Characterization of Human Peripheral Nervous System Myelin Protein P2. PLoS ONE 2010, 5, e10300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raasakka, A.; Kursula, P. The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: On a highway to structure and function. Neurosci. Bull. 2014, 30, 956–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassall, K.A.; Bamm, V.V.; Harauz, G. MyelStones: The executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem. J. 2015, 472, 17–32. [Google Scholar] [CrossRef]
- Myllykoski, M.; Seidel, L.; Muruganandam, G.; Raasakka, A.; Torda, A.E.; Kursula, P. Structural and functional evolution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Brain Res. 2016, 1641, 64–78. [Google Scholar] [CrossRef]
- Baburina, Y.; Odinokova, I.; Azarashvili, T.; Akatov, V.; Sotnikova, L.; Krestinina, O. Possible Involvement of 2′,3′-Cyclic Nucleotide-3′-Phosphodiesterase in the Protein Phosphorylation-Mediated Regulation of the Permeability Transition Pore. Int. J. Mol. Sci. 2018, 19, 3499. [Google Scholar] [CrossRef] [Green Version]
- Myllykoski, M.; Eichel, M.A.; Jung, R.B.; Kelm, S.; Werner, H.B.; Kursula, P. High-affinity heterotetramer formation between the large myelin-associated glycoprotein and the dynein light chain DYNLL1. J. Neurochem. 2018, 147, 764–783. [Google Scholar] [CrossRef] [Green Version]
- Ruskamo, S.; Krokengen, O.C.; Kowal, J.; Nieminen, T.; Lehtimaki, M.; Raasakka, A.; Dandey, V.P.; Vattulainen, I.; Stahlberg, H.; Kursula, P. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. J. Biol. Chem. 2020, 295, 8692–8705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kursula, P. Structural properties of proteins specific to the myelin sheath. Amino Acids 2008, 34, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Toyama, B.; Savas, J.; Park, S.; Harris, M.; Ingolia, N.; Yates, J., III; Hetzer, M. Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures. Cell 2013, 154, 971–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Myllykoski, M.; Ruskamo, S.; Wang, C.; Kursula, P. Myelin-specific proteins: A structurally diverse group of membrane-interacting molecules. Biofactors 2013, 39, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Garbay, B.; Heape, A.; Sargueil, F.; Cassagne, C. Myelin synthesis in the peripheral nervous system. Prog. Neurobiol. 2000, 61, 267–304. [Google Scholar] [CrossRef]
- Kirschner, D.A.; Blaurock, A.E. Organization, phylogenetic variations and dynamic transitions of myelin structure. In Myelin: Biology and Chemistry; Marteson, R.E., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 3–78. [Google Scholar]
- Kirschner, D.A.; Laurence, W.; Feltri, M.L. The P0 gene. In Myelin Biology and Disorders; Lazzarini, R.A., Griffin, J.W., Lassmann, H., Nave, K.A., Trapp, B.D., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2004; pp. 523–545. [Google Scholar]
- Inouye, H.; Kirschner, D.A. Evolution of myelin ultrastructure and the major structural myelin proteins. Brain Res. 2016, 1641, 43–63. [Google Scholar] [CrossRef]
- Barreto, L.C.L.S.; Oliveira, F.S.; Nunes, P.S.; De França Costa, I.M.P.; Garcez, C.A.; Goes, G.M.; Neves, E.L.A.; De Souza Siqueira Quintans, J.; De Souza Araújo, A.A. Epidemiologic Study of Charcot-Marie-Tooth Disease: A Systematic Review. Neuroepidemiology 2016, 45, 157–165. [Google Scholar] [CrossRef]
- Ramchandren, S. Charcot-Marie-Tooth Disease and Other Genetic Polyneuropathies. Continuum 2017, 23, 1360–1377. [Google Scholar] [CrossRef]
- Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 2005, 23, 683–747. [Google Scholar] [CrossRef] [Green Version]
- Callegari, I.; Gemelli, C.; Geroldi, A.; Veneri, F.; Mandich, P.; D’Antonio, M.; Pareyson, D.; Shy, M.E.; Schenone, A.; Prada, V.; et al. Mutation update for myelin protein zero-related neuropathies and the increasing role of variants causing a late-onset phenotype. J. Neurol. 2019, 266, 2629–2645. [Google Scholar] [CrossRef]
- Wrabetz, L.; D’Antonio, M.; Pennuto, M.; Dati, G.; Tinelli, E.; Fratta, P.; Previtali, S.; Imperiale, D.; Zielasek, J.; Toyka, K.; et al. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J. Neurosci. 2006, 26, 2358–2368. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wu, X.; Brennan, K.M.; Wang, D.S.; D’Antonio, M.; Moran, J.; Svaren, J.; Shy, M.E. Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth disease type 1B. Ann. Clin. Transl. Neurol. 2018, 5, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Stone, S. Unfolded protein response in myelin disorders. Neural Regen. Res. 2020, 15, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Volpi, V.G.; Ferri, C.; Fregno, I.; Del Carro, U.; Bianchi, F.; Scapin, C.; Pettinato, E.; Solda, T.; Feltri, M.L.; Molinari, M.; et al. Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genet. 2019, 15, e1008069. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.; Doyle, J.P.; Hensley, P.; Colman, D.R.; Hendrickson, W.A. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 1996, 17, 435–449. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, D.A.; Inouye, H.; Saavedra, R.A. Membrane adhesion in peripheral myelin: Good and bad wraps with protein P0. Structure 1996, 4, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Cronin, M.S.; Kirschner, D.A. Myelin protein zero exists as dimers and tetramers in native membranes of Xenopus laevis peripheral nerve. J. Neurosci. Res. 2002, 67, 766–771. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Yedidi, R.S.; Brunzelle, J.S.; Kovari, I.A.; Sohi, J.; Kamholz, J.; Kovari, L.C. Crystal structure of the extracellular domain of human myelin protein zero. Proteins 2012, 80, 307–313. [Google Scholar] [CrossRef]
- Raasakka, A.; Ruskamo, S.; Kowal, J.; Han, H.; Baumann, A.; Myllykoski, M.; Fasano, A.; Rossano, R.; Riccio, P.; Bürck, J.; et al. Molecular structure and function of myelin protein P0 in membrane stacking. Sci. Rep. 2019, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, D.A.; Ganser, A.L. Compact Myelin Exists in the Absence of Basic-Protein in the Shiverer Mutant Mouse. Nature 1980, 283, 207–210. [Google Scholar] [CrossRef]
- Inouye, H.; Tsuruta, H.; Sedzik, J.; Uyemura, K.; Kirschner, D.A. Tetrameric Assembly of Full-Sequence Protein Zero Myelin Glycoprotein by Synchrotron X-Ray Scattering. Biophys. J. 1999, 76, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Raasakka, A.; Ruskamo, S.; Barker, R.; Krokengen, O.C.; Vatne, G.H.; Kristiansen, C.K.; Hallin, E.I.; Skoda, M.W.A.; Bergmann, U.; Wacklin-Knecht, H.; et al. Neuropathy-related mutations alter the membrane binding properties of the human myelin protein P0 cytoplasmic tail. PLoS ONE 2019, 14, e0216833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbluth, J. Peripheral Myelin in the Mouse Mutant Shiverer. J. Comp. Neurol. 1980, 193, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Zenker, J.; Stettner, M.; Ruskamo, S.; Domenech-Estevez, E.; Baloui, H.; Medard, J.; Verheijen, M.H.G.; Brouwers, J.F.; Kursula, P.; Kieseier, B.C.; et al. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia 2014, 62, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.L.; Mudge, A.W. Cultured Schwann cells constitutively express the myelin protein P0. Neuron 1996, 16, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Smith-Slatas, C.; Barbarese, E. Myelin basic protein gene dosage effects in the PNS. Mol. Cell. Neurosci. 2000, 15, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Hayashi, A.; Campagnoni, C.W.; Kimura, A.; Inuzuka, T.; Baba, H. L-MPZ, a Novel Isoform of Myelin P0, Is Produced by Stop Codon Readthrough. J. Biol. Chem. 2012, 287, 17765–17776. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Baba, H. Phylogenetically Conserved Sequences Around Myelin P0 Stop Codon are Essential for Translational Readthrough to Produce L-MPZ. Neurochem. Res. 2018, 43, 227–237. [Google Scholar] [CrossRef]
- Lemke, G.; Axel, R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 1985, 40, 501–508. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, R. Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2. J. Biol. Chem. 1998, 273, 29367–29372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Guerrah, A.; Tang, H.; Zhao, Z. Cell surface glycoprotein PZR is a major mediator of concanavalin A-induced cell signaling. J. Biol. Chem. 2002, 277, 7882–7888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannettino, A.; Roubelakis, M.; Welldon, K.; Jackson, D.; Simmons, P.; Bendall, L.; Henniker, A.; Harrison, K.; Niutta, S.; Bradstock, K.; et al. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: Identification, molecular cloning and effects on cell migration. Biochem. J. 2003, 370, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.J.; Filbin, M.T. Formation of a Disulfide Bond in the Immunoglobulin Domain of the Myelin P0 Protein is Essential for its Adhesion. J. Neurochem. 1994, 63, 367–370. [Google Scholar] [CrossRef]
- Yu, T.; Liang, L.; Zhao, X.; Yin, Y. Structural and biochemical studies of the extracellular domain of Myelin protein zero-like protein 1. Biochem. Biophys. Res. Commun. 2018, 506, 883–890. [Google Scholar] [CrossRef] [PubMed]
- van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; et al. Classification of Intrinsically Disordered Regions and Proteins. Chem. Rev. 2014, 114, 6589–6631. [Google Scholar] [CrossRef]
- Ding, Y.; Brunden, K. The Cytoplasmic Domain of Myelin Glycoprotein P0 Interacts with Negatively Charged Phospholipid-Bilayers. J. Biol. Chem. 1994, 269, 10764–10770. [Google Scholar]
- Luo, X.; Sharma, D.; Inouye, H.; Lee, D.; Avila, R.L.; Salmona, M.; Kirschner, D.A. Cytoplasmic domain of human myelin protein zero likely folded as beta-structure in compact myelin. Biophys. J. 2007, 92, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Inouye, H.; Gross, A.A.R.; Hidalgo, M.M.; Sharma, D.; Lee, D.; Avila, R.L.; Salmona, M.; Kirschner, D.A. Cytoplasmic domain of zebrafish myelin protein zero: Adhesive role depends on beta-conformation. Biophys. J. 2007, 93, 3515–3528. [Google Scholar] [CrossRef] [Green Version]
- Myllykoski, M.; Baumgärtel, P.; Kursula, P. Conformations of peptides derived from myelin-specific proteins in membrane-mimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids 2012, 42, 1467–1474. [Google Scholar] [CrossRef]
- Raasakka, A.; Jones, N.; Hoffmann, S.V.; Kursula, P. Ionic strength and calcium regulate the membrane interactions of myelin basic protein and the cytoplasmic domain of myelin protein zero. Biochem. Biophys. Res. Commun. 2019, 511, 7–12. [Google Scholar] [CrossRef]
- Raasakka, A.; Ruskamo, S.; Kowal, J.; Barker, R.; Baumann, A.; Martel, A.; Tuusa, J.; Myllykoski, M.; Bürck, J.; Ulrich, A.S.; et al. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci. Rep. 2017, 7, 4974. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Filbin, M. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain. J. Cell Biol. 1996, 134, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Plotkowski, M.L.; Kim, S.; Phillips, M.L.; Partridge, A.W.; Deber, C.M.; Bowie, J.U. Transmembrane domain of myelin protein zero can form dimers: Possible implications for myelin construction. Biochemistry 2007, 46, 12164–12173. [Google Scholar] [CrossRef]
- Hilmi, S.; Fournier, M.; Valeins, H.; Gandar, J.C.; Bonnet, J. Myelin P0 Glycoprotein—Identification of the Site Phosphorylated In-Vitro and In-Vivo by Endogenous Protein-Kinases. J. Neurochem. 1995, 64, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Voshol, H.; Van Zuylen, W.; Orberger, G.; Vliegenthart, J.; Schachner, M. Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J. Biol. Chem. 1996, 271, 22957–22960. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.A.; Saavedra, R.A.; Inouye, H.; Kirschner, D.A. Myelin P0-Glycoprotein—Predicted Structure and Interactions of Extracellular Domain. J. Neurochem. 1993, 61, 1987–1995. [Google Scholar] [CrossRef]
- Bizzozero, O.A.; Fridal, K.; Pastuszyn, A. Identification of the Palmitoylation Site in Rat Myelin P0 Glycoprotein. J. Neurochem. 1994, 62, 1163–1171. [Google Scholar] [CrossRef]
- Bharadwaj, M.; Bizzozero, O.A. Myelin P0 Glycoprotein and a Synthetic Peptide-Containing the Palmitoylation Site are both Autoacylated. J. Neurochem. 1995, 65, 1805–1815. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.; Filbin, M. Acylation of myelin Po protein is required for adhesion. J. Neurosci. Res. 2000, 60, 704–713. [Google Scholar] [CrossRef]
- Xu, W.; Shy, M.; Kamholz, J.; Elferink, L.; Xu, G.; Lilien, J.; Balsamo, J. Mutations in the cytoplasmic domain of P0 reveal a role for PKC-mediated phosphorylation in adhesion and myelination. J. Cell Biol. 2001, 155, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Gaboreanu, A.; Hrstka, R.; Xu, W.; Shy, M.; Kamholz, J.; Lilien, J.; Balsamo, J. Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha. J. Cell Biol. 2007, 177, 707–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Sakamoto, Y.; Kitamura, K.; Fukunaga, K.; Yamamoto, H.; Miyamoto, E.; Uyemura, K. Phosphorylation of P0 Glycoprotein in Peripheral-Nerve Myelin. J. Neurochem. 1990, 55, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhao, R.; Sui, X.; Xu, F.; Zhao, Z. Tyrosine phosphorylation of myelin P0 and its implication in signal transduction. Biochem. Biophys. Res. Commun. 2000, 267, 820–825. [Google Scholar] [CrossRef] [PubMed]
- De Seze, J.; Kremer, L.; do Rego, C.A.; Taleb, O.; Lam, D.; Beiano, W.; Mensah-Nyagan, G.; Trifilieff, E.; Brun, S. Chronic inflammatory demyelinating polyradiculoneuropathy: A new animal model for new therapeutic targets. Rev. Neurol. 2016, 172, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Inouye, H.; Ganser, A.L.; Kirschner, D.A. Shiverer and Normal Peripheral Myelin Compared—Basic-Protein Localization, Membrane Interactions, and Lipid-Composition. J. Neurochem. 1985, 45, 1911–1922. [Google Scholar] [CrossRef]
- Filbin, M.T.; Walsh, F.S.; Trapp, B.D.; Pizzey, J.A.; Tennekoon, G.I. Role of Myelin Po Protein as a Homophilic Adhesion Molecule. Nature 1990, 344, 871–872. [Google Scholar] [CrossRef]
- Webster, H.D. The Geometry of Peripheral Myelin Sheaths During Their Formation and Growth in Rat Sciatic Nerves. J. Cell Biol. 1971, 48, 348–387. [Google Scholar] [CrossRef]
- Peters, A.; Palay, S.; Webster, H.D. The cellular sheaths of neurons. In The Fine Structure of the Nervous System; Peters, A., Palay, S., Webster, H.D., Eds.; W.B. Saunders Company: Philadelphia, PA, USA, 1976; pp. 181–230. [Google Scholar]
- Landon, D.N.; Hall, S. The myelinated nerve fibre. In The Peripheral Nerve; Landon, D.N., Ed.; Chapman and Hall Ltd.: London, UK, 1976; pp. 1–105. [Google Scholar]
- Trapp, B.D. Distribution of the Myelin-Associated Glycoprotein and Po Protein during Myelin Compaction in Quaking Mouse Peripheral-Nerve. J. Cell Biol. 1988, 107, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, N.; Pascua-Maestro, R.; Perez-Castellanos, A.; Lillo, C.; Sanchez, D.; Ganfornina, M.D. Myelin extracellular leaflet compaction requires apolipoprotein D membrane management to optimize lysosomal-dependent recycling and glycocalyx removal. Glia 2018, 66, 670–687. [Google Scholar] [CrossRef]
- Meller, K. Cryoelectron Microscopy of Vitrified Nerve Myelin. Cell Tissue Res. 1990, 262, 59–66. [Google Scholar] [CrossRef]
- Schmitt, F.O.; Bear, R.S.; Clark, G.L. The Role of Lipoids in the X-Ray Diffraction Patterns of Nerve. Science 1935, 82, 44–45. [Google Scholar] [CrossRef]
- Bischoff, A.; Moor, H. Ultrastructural Differences between Myelin Sheaths of Peripheral Nerve Fibres and CNS White Matter. Z. Zellforsch. Mikrosk. Anat. 1967, 81, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Inouye, H.; Kirschner, D.A. Membrane interactions in nerve myelin. I. Determination of surface-charge from effects of pH and ionic strength on period. Biophys. J. 1988, 53, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Inouye, H.; Kirschner, D.A. Membrane interactions in nerve myelin. II. Determination of surface charge from biochemical data. Biophys J. 1988, 53, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Quarles, R.H.; Morell, P. Myelin formation, structure, and biochemistry. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999; pp. 70–92. [Google Scholar]
- Sorour, E.; MacMillan, J.; Upadhyaya, M. Novel mutation of the myelin P0 gene in a CMT1B family. Hum. Mutat. 1997, 9, 74–77. [Google Scholar] [CrossRef]
- Hattori, N.; Yamamoto, M.; Yoshihara, T.; Koike, H.; Nakagawa, M.; Yoshikawa, H.; Ohnishi, A.; Hayasaka, K.; Onodera, O.; Baba, M.; et al. Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): A clinicopathological study of 205 Japanese patients. Brain 2003, 126, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Grandis, M.; Vigo, T.; Passalacqua, M.; Jain, M.; Scazzola, S.; La Padula, V.; Brucal, M.; Benvenuto, F.; Nobbio, L.; Cadoni, A.; et al. Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations. Hum. Mol. Genet. 2008, 17, 1877–1889. [Google Scholar] [CrossRef]
- Filbin, M.T.; Tennekoon, G.I. Homophilic Adhesion of the Myelin Po Protein Requires Glycosylation of both Molecules in the Homophilic Pair. J. Cell Biol. 1993, 122, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Filbin, M.T.; Zhang, K.; Li, W.; Gao, Y. Characterization of the Effect on Adhesion of Different Mutations in Myelin P0 Protein. Ann. N. Y. Acad. Sci. 1999, 883, 160–167. [Google Scholar] [CrossRef]
- Prada, V.; Passalacqua, M.; Bono, M.; Luzzi, P.; Scazzola, S.; Nobbio, L.A.; Capponi, S.; Bellone, E.; Mandich, P.; Mancardi, G.; et al. Gain of Glycosylation: A New Pathomechanism of Myelin Protein Zero Mutations. Ann. Neurol. 2012, 71, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Favereaux, A.; Lagueny, A.; Vital, A.; Schmitter, J.; Chaignepain, S.; Ferrer, X.; Labatut-Cazabat, I.; Vital, C.; Petry, K. Serum IgG antibodies to P0 dimer and 35 kDa P0 related protein in neuropathy associated with monoclonal gammopathy. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1262–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.H.; Filbin, M.T. The Cytoplasmic Domain of the Myelin P0 Protein Influences the Adhesive Interactions of its Extracellular Domain. J. Cell Biol. 1994, 126, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giese, K.P.; Martini, R.; Lemke, G.; Soriano, P.; Schachner, M. Mouse P0 Gene Disruption Leads to Hypomyelination, Abnormal Expression of Recognition Molecules, and Degeneration of Myelin and Axons. Cell 1992, 71, 565–576. [Google Scholar] [CrossRef]
- Menichella, D.; Xu, W.; Jiang, H.; Sohi, J.; Vallat, J.; Baron, P.; Kamholz, J.; Shy, M. The absence of myelin P0 protein produces a novel molecular phenotype in Schwann cells. Ann. N. Y. Acad. Sci. 1999, 883, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Manichella, D.; Jiang, H.; Vallat, J.; Lilien, J.; Baron, P.; Scarlato, G.; Kamholz, S.; Shy, M. Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J. Neurosci. Res. 2000, 60, 714–724. [Google Scholar] [CrossRef]
- Yin, X.; Baek, R.; Kirschner, D.; Peterson, A.; Fujii, Y.; Nave, K.; Macklin, W.; Trapp, B. Evolution of a neuroprotective function of central nervous system myelin. J. Cell Biol. 2006, 172, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Kidd, G.J.; Nave, K.; Trapp, B.D. P0 protein is required for and can induce formation of Schmidt-Lantermann incisures in myelin internodes. J. Neurosci. 2008, 28, 7068–7073. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Colman, D. Parallel evolution and coexpression of the proteolipid proteins and protein zero in vertebrate myelin. Neuron 1996, 16, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- De Bellard, M.E. Myelin in cartilaginous fish. Brain Res. 2016, 1641, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Yurlova, L.; Simons, M. Central nervous system myelin: Structure, synthesis and assembly. Trends Cell Biol. 2011, 21, 585–593. [Google Scholar] [CrossRef]
- Velumian, A.A.; Samoilova, M.; Fehlings, M.G. Visualization of Cytoplasmic Diffusion Within Living Myelin Sheaths of CNS White Matter Axons Using Microinjection of the Fluorescent Dye Lucifer Yellow. Neuroimage 2011, 56, 27–34. [Google Scholar] [CrossRef]
- Snaidero, N.; Velte, C.; Myllykoski, M.; Raasakka, A.; Ignatev, A.; Werner, H.B.; Erwig, M.S.; Möbius, W.; Kursula, P.; Nave, K.; et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep. 2017, 18, 314–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Urso, D.; Ehrhardt, P.; Müller, H.W. Peripheral myelin protein 22 and protein zero: A novel association in peripheral nervous system myelin. J. Neurosci. 1999, 19, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Hasse, B.; Bosse, F.; Hanenberg, H.; Müller, H.W. Peripheral myelin protein 22 kDa and protein zero: Domain specific trans-interactions. Mol. Cell Neurosci. 2004, 27, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Wrabetz, L.; Feltri, M.; Quattrini, A.; Imperiale, D.; Previtali, S.; D’Antonio, M.; Martini, R.; Yin, X.; Trapp, B.; Zhou, L.; et al. P0 glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J. Cell Biol. 2000, 148, 1021–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittendorf, K.F.; Kroncke, B.M.; Meiler, J.; Sanders, C.R. The Homology Model of PMP22 Suggests Mutations Resulting in Peripheral Neuropathy Disrupt Transmembrane Helix Packing. Biochemistry 2014, 53, 6139–6141. [Google Scholar]
- Suzuki, H.; Nishizawa, T.; Tani, K.; Yamazaki, Y.; Tamura, A.; Ishitani, R.; Dohmae, N.; Tsukita, S.; Nureki, O.; Fujiyoshi, Y. Crystal Structure of a Claudin Provides Insight into the Architecture of Tight Junctions. Science 2014, 344, 304–307. [Google Scholar] [CrossRef]
- Mittendorf, K.F.; Marinko, J.T.; Hampton, C.M.; Ke, Z.; Hadziselimovic, A.; Schlebach, J.P.; Law, C.L.; Li, J.; Wright, E.R.; Sanders, C.R.; et al. Peripheral myelin protein 22 alters membrane architecture. Sci. Adv. 2017, 3, e1700220. [Google Scholar] [CrossRef] [Green Version]
- Carenini, S.; Neuberg, D.; Schachner, M.; Suter, U.; Martini, R. Localization and functional roles of PMP22 in peripheral nerves of P0-deficient mice. Glia 1999, 28, 256–264. [Google Scholar] [CrossRef]
- Worthington, C.R. An X-ray study of the pH property of frog sciatic nerve. Int. J. Biolog. Macromol. 1979, 1, 157–164. [Google Scholar] [CrossRef]
- Di Gioacchino, M.; Bianconi, A.; Burghammer, M.; Ciasca, G.; Bruni, F.; Campi, G. Myelin basic protein dynamics from out-of-equilibrium functional state to degraded state in myelin. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183256. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Amici, S.; Tavori, H.; Zeng, W.M.; Freeland, S.; Fazio, S.; Notterpek, L. PMP22 Is Critical for Actin-Mediated Cellular Functions and for Establishing Lipid Rafts. J. Neurosci. 2014, 34, 16140–16152. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Amoresano, A.; Rossano, R.; Carlone, G.; Carpentieri, A.; Liuzzi, G.M.; Pucci, P.; Riccio, P. The different forms of PNS myelin P0 protein within and outside lipid rafts. J. Neurochem. 2008, 107, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Saher, G.; Quintes, S.; Möbius, W.; Wehr, M.C.; Krämer-Albers, E.; Brügger, B.; Nave, K. Cholesterol Regulates the Endoplasmic Reticulum Exit of the Major Membrane Protein P0 Required for Peripheral Myelin Compaction. J. Neurosci. 2009, 29, 6094–6104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedzik, J.; Blaurock, A.; Hochli, M. Lipid Myelin Basic-Protein Multilayers—A Model for the Cytoplasmic Space in Central Nervous-System Myelin. J. Mol. Biol. 1984, 174, 385–409. [Google Scholar]
- MacNaughtan, W.; Snook, K.A.; Caspi, E.; Franks, N.P. An X-Ray-Diffraction Analysis of Oriented Lipid Multilayers Containing Basic-Proteins. Biochim. Biophys. Acta 1985, 818, 132–148. [Google Scholar] [CrossRef]
- Boggs, J.M.; Stamp, D.; Moscarello, M.A. Interaction of Myelin Basic-Protein with Dipalmitoylphosphatidylglycerol—Dependence on the Lipid Phase and Investigation of a Metastable State. Biochemistry 1981, 20, 6066–6072. [Google Scholar] [CrossRef]
- Boggs, J.M.; Stamp, D.; Moscarello, M.A. Effect of pH and Fatty-Acid Chain-Length on the Interaction of Myelin Basic Protein with Phosphatidylglycerol. Biochemistry 1982, 21, 1208–1214. [Google Scholar] [CrossRef]
- Natali, F.; Gliozzi, A.; Rolandi, R.; Relini, A.; Cavatorta, P.; Deriu, A.; Fasano, A.; Ricci, P. Changes in the anisotropy of oriented membrane dynamics induced by myelin basic protein. Appl. Phys. A Mater. Sci. Process. 2002, 74, S1582–S1584. [Google Scholar] [CrossRef]
- Bates, I.; Boggs, J.; Feix, J.; Harauz, G. Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling. J. Biol. Chem. 2003, 278, 29041–29047. [Google Scholar] [CrossRef] [Green Version]
- Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P. The influence of the lipid-protein interaction on the membrane dynamics. Physica B 2004, 350, E623–E626. [Google Scholar] [CrossRef]
- Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime. J. Chem. Phys. 2014, 141, 205101. [Google Scholar] [CrossRef] [PubMed]
- Franks, N.P.; Melchior, V.; Kirschner, D.A.; Caspar, D.L.D. Structure of Myelin Lipid Bilayers—Changes during Maturation. J. Mol. Biol. 1982, 155, 133–153. [Google Scholar] [CrossRef]
- Suresh, S.; Wang, C.; Nanekar, R.; Kursula, P.; Edwardson, J.M. Myelin basic protein and myelin protein 2 act synergistically to cause stacking of lipid bilayers. Biochemistry 2010, 49, 3456–3463. [Google Scholar] [CrossRef]
- Ruskamo, S.; Yadav, R.P.; Sharma, S.; Lehtimaki, M.; Laulumaa, S.; Aggarwal, S.; Simons, M.; Bürck, J.; Ulrich, A.S.; Juffer, A.H.; et al. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. Acta Cryst. 2014, D70, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, A.; Horrocks, L. Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 2001, 7, 232–245. [Google Scholar] [CrossRef]
- Marcus, J.; Honigbaum, S.; Shroff, S.; Honke, K.; Rosenbluth, J.; Dupree, J. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 2006, 53, 372–381. [Google Scholar] [CrossRef]
- Don, A.S.; Hsiao, J.T.; Bleasel, J.M.; Couttas, T.A.; Halliday, G.M.; Kim, W.S. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol. Commun. 2014, 2, 150. [Google Scholar] [CrossRef]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Imran, A.; Qasim, M.; Zafar, S.; Kamran, S.K.S.; Razzaq, A.; Aziz, N.; et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Gonzaga-Jauregui, C.; Harel, T.; Gambin, T.; Kousi, M.; Griffin, L.B.; Francescatto, L.; Ozes, B.; Karaca, E.; Jhangiani, S.N.; Bainbridge, M.N.; et al. Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep. 2015, 12, 1169–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.B.; Joo, J.; Hyun, Y.S.; Kwak, G.; Choi, Y.; Yeo, H.K.; Jwa, D.H.; Kim, E.J.; Mo, W.M.; Nam, S.H.; et al. A Mutation in PMP2 Causes Dominant Demyelinating Charcot-Marie-Tooth Neuropathy. PLoS Genet. 2016, 12, e1005829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motley, W.W.; Palaima, P.; Yum, S.W.; Gonzalez, M.A.; Tao, F.; Wanschitz, J.V.; Strickland, A.V.; Löscher, W.N.; De Vriendt, E.; Koppi, S.; et al. De novo PMP2 mutations in families with type 1 Charcot-Marie-Tooth disease. Brain 2016, 139, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palaima, P.; Chamova, T.; Jander, S.; Mitev, V.; Van Broeckhoven, C.; Tournev, I.; Peeters, K.; Jordanova, A. Peripheral myelin protein 2—a novel cluster of mutations causing Charcot-Marie-Tooth neuropathy. Orphanet J. Rare Dis. 2019, 14, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geroldi, A.; Prada, V.; Veneri, F.; Trevisan, L.; Origone, P.; Grandis, M.; Schenone, A.; Gemelli, C.; Lanteri, P.; Fossa, P.; et al. Early Onset Demyelinating Charcot-Marie-Tooth Disease Caused by a Novel In-frame Isoleucine Deletion in Peripheral Myelin Protein 2. J. Peripher. Nerv. Syst. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ruskamo, S.; Nieminen, T.; Kristiansen, C.K.; Vatne, G.H.; Baumann, A.; Hallin, E.I.; Raasakka, A.; Joensuu, P.; Bergmann, U.; Vattulainen, I.; et al. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci. Rep. 2017, 7, 6510. [Google Scholar] [CrossRef]
- Martini, R.; Mohajeri, M.H.; Kasper, S.; Giese, K.P.; Schachner, M. Mice Doubly Deficient in the Genes for P0 and Myelin Basic-Protein show that both Proteins Contribute to the Formation of the Major Dense Line in Peripheral-Nerve Myelin. J. Neurosci. 1995, 15, 4488–4495. [Google Scholar] [CrossRef] [Green Version]
- Schneider-Gold, C.; Kötting, J.; Epplen, J.T.; Gold, R.; Gerding, W.M. Unusual Charcot-Marie-Tooth Phenotype due to a Mutation within the Intracellular Domain of Myelin Protein Zero. Muscle Nerve 2010, 41, 550–554. [Google Scholar] [CrossRef]
- Fabrizi, G.; Pellegrini, M.; Angiari, C.; Cavallaro, T.; Morini, A.; Taioli, F.; Cabrini, I.; Orrico, D.; Rizzuto, N. Gene dosage sensitivity of a novel mutation in the intracellular domain of P0 associated with Charcot-Marie-Tooth disease type 1B. Neuromusc. Disord. 2006, 16, 183–187. [Google Scholar] [CrossRef]
- Jessen, K.; Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 2005, 6, 671–682. [Google Scholar] [CrossRef]
- Nave, K.; Salzer, J.L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 2006, 16, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Wolpowitz, D.; Mason, T.; Dietrich, P.; Mendelsohn, M.; Talmage, D.; Role, L. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 2000, 25, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Taveggia, C.; Zanazzi, G.; Petrylak, A.; Yano, H.; Rosenbluth, J.; Einheber, S.; Xu, X.; Esper, R.; Loeb, J.; Shrager, P.; et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005, 47, 681–694. [Google Scholar] [CrossRef] [Green Version]
- Halaby, D.; Poupon, A.; Mornon, J. The immunoglobulin fold family: Sequence analysis and 3D structure comparisons. Protein Eng. 1999, 12, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casares, D.; Escriba, P.V.; Ana Rossello, C. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019, 20, 2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, B.D.; Inoyama, Y.; Sternberger, N.H.; Quarles, R.H.; Webster, H.D. Immunochemical localization of P0 in Golgi complex membranes and myelin of developing rat Schwann cells. J. Cell Biol. 1981, 90, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Heath, J.W.; Inuzuka, T.; Quarles, R.H.; Trapp, B.D. Distribution of P0 Protein and the Myelin-Associated Glycoprotein in Peripheral-Nerves from Trembler Mice. J. Neurocytol. 1991, 20, 439–449. [Google Scholar] [CrossRef]
- Trapp, B.D.; Kidd, G.J.; Hauer, P.; Mulrenin, E.; Haney, C.A.; Andrews, S.B. Polarization of Myelinating Schwann-Cell Surface-Membranes - Role of Microtubules and the Trans-Golgi Network. J. Neurosci. 1995, 15, 1797–1807. [Google Scholar] [CrossRef] [Green Version]
- Kidd, G.J.; Yadav, V.K.; Huang, P.; Brand, S.L.; Low, S.H.; Weimbs, T.; Trapp, B.D. A dual tyrosine-leucine motif mediates myelin protein P0 targeting in MDCK cells. Glia 2006, 54, 135–145. [Google Scholar] [CrossRef]
- Eichberg, J.; Iyer, S. Phosphorylation of myelin proteins: Recent advances. Neurochem. Res. 1996, 21, 527–535. [Google Scholar] [CrossRef]
- Lee, M.J.; Brennan, A.; Blanchard, A.; Zoidl, G.; Dong, Z.; Tabernero, A.; Zoidl, C.; Dent, M.A.R.; Jessen, K.R.; Mirsky, R. P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol. Cell. Neurosci. 1997, 8, 336–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Kidd, G.; Wrabetz, L.; Feltri, M.; Messing, A.; Trapp, B. Schwann cell myelination requires timely and precise targeting of P0 protein. J. Cell Biol. 2000, 148, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Bauer, N.M.; Schaefer, I.; White, R. Making myelin basic protein—from mRNA transport to localized translation. Front. Cell. Neurosci. 2013, 7, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, B.D.; Moench, T.; Pulley, M.; Barbosa, E.; Tennekoon, G.; Griffin, J. Spatial segregation of mRNA encoding myelin-specific proteins. Proc. Natl. Acad. Sci. USA 1987, 84, 7773–7777. [Google Scholar] [CrossRef] [Green Version]
- Ainger, K.; Avossa, D.; Morgan, F.; Hill, S.J.; Barry, C.; Barbarese, E.; Carson, J.H. Transport and Localization of Exogenous Myelin Basic-Protein Messenger-RNA Microinjected into Oligodendrocytes. J. Cell Biol. 1993, 123, 431–441. [Google Scholar] [CrossRef]
- Carson, J.; Worboys, K.; Ainger, K.; Barbarese, E. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motil. Cytoskelet. 1997, 38, 318–328. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Li, D.; Feng, Y. Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J. Neurosci. 2000, 20, 4944–4953. [Google Scholar] [CrossRef] [Green Version]
- Torvund-Jensen, J.; Steengaard, J.; Reimer, L.; Fihl, L.B.; Laursen, L.S. Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins. J. Cell Sci. 2014, 127, 1550–1564. [Google Scholar] [CrossRef] [Green Version]
- Blanquet-Grossard, E.; Pham-Dinh, D.; Dautigny, A.; Latour, P.; Bonnebouche, C.; Diraison, P.; Chapon, F.; Chazot, G.; Vandenberghe, A. Charcot-Marie-Tooth type 1B neuropathy: A mutation at the single glycosylation site in the major peripheral myelin glycoprotein P0. Hum. Mutat. 1996, 8, 185–186. [Google Scholar] [CrossRef]
- Avila, R.L.; D’Antonio, M.; Bachi, A.; Inouye, H.; Feltri, M.L.; Wrabetz, L.; Kirschner, D.A. P0 (protein zero) mutation S34C underlies instability of internodal myelin in S63C mice. J. Biol. Chem. 2010, 285, 42001–42012. [Google Scholar] [CrossRef] [Green Version]
- Plante-Bordeneuve, V.; Parman, Y.; Guiochon-Mantel, A.; Alj, Y.; Deymeer, F.; Serdaroglu, P.; Eraksoy, M.; Said, G. The range of chronic demyelinating neuropathy of infancy: A clinico-pathological and genetic study of 15 unrelated cases. J. Neurol. 2001, 248, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Pennuto, M.; Tinelli, E.; Malaguti, M.; Del Carro, U.; D’Antonio, M.; Ron, D.; Quattrini, A.; Feltri, M.L.; Wrabetz, L. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1 B mice. Neuron 2008, 57, 393–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antonio, M.; Musner, N.; Scapin, C.; Ungaro, D.; Del Carro, U.; Ron, D.; Feltri, M.L.; Wrabetz, L. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 2013, 210, 821–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13, 89–102. [Google Scholar] [CrossRef]
- Olzmann, J.A.; Kopito, R.R.; Christianson, J.C. The Mammalian Endoplasmic Reticulum-Associated Degradation System. Cold Spring Harb. Perspect. Biol. 2013, 5, a013185. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, F.; Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 2009, 106, 3654–3658. [Google Scholar] [CrossRef] [Green Version]
- Saher, G.; Quintes, S.; Nave, K. Cholesterol: A novel regulatory role in myelin formation. Neuroscientist 2011, 17, 79–93. [Google Scholar] [CrossRef]
- García-Arribas, A.B.; Alonso, A.; Goñi, F.M. Cholesterol interactions with ceramide and sphingomyelin. Chem. Phys. Lipids 2016, 199, 26–34. [Google Scholar] [CrossRef]
- Saher, G.; Brugger, B.; Lappe-Siefke, C.; Mobius, W.; Tozawa, R.; Wehr, M.; Wieland, F.; Ishibashi, S.; Nave, K. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 2005, 8, 468–475. [Google Scholar] [CrossRef]
- Castello-Serrano, I.; Lorent, J.H.; Ippolito, R.; Levental, K.R.; Levental, I. Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. J. Phys. Chem. B 2020. [Google Scholar] [CrossRef]
- Marinko, J.T.; Kenworthy, A.K.; Sanders, C.R. Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains. Proc. Natl. Acad. Sci. USA 2020. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raasakka, A.; Kursula, P. How Does Protein Zero Assemble Compact Myelin? Cells 2020, 9, 1832. https://doi.org/10.3390/cells9081832
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells. 2020; 9(8):1832. https://doi.org/10.3390/cells9081832
Chicago/Turabian StyleRaasakka, Arne, and Petri Kursula. 2020. "How Does Protein Zero Assemble Compact Myelin?" Cells 9, no. 8: 1832. https://doi.org/10.3390/cells9081832
APA StyleRaasakka, A., & Kursula, P. (2020). How Does Protein Zero Assemble Compact Myelin? Cells, 9(8), 1832. https://doi.org/10.3390/cells9081832