Stem Cell Repair of the Microvascular Damage in Stroke
Abstract
:1. Introduction
2. Acute Pathological Changes in Post-Ischemic Stroke
2.1. Parenchymal Extravasation
2.2. Autophagosome Accumulation
2.3. Microglial and Astrocyte Changes
2.4. Neuronal Pyknosis
2.5. Demyelination
3. Chronic Pathological Changes in Post-Ischemic Stroke
3.1. Endothelial Cell amd Pericyte Impairment
3.2. Parenchymal Extravasation
3.3. Autophagosome Accumulation
3.4. Astrocyte and Microglial Changes
4. Stem Cell Repair of Microvascular Damage
4.1. BBB Repair in MCAO-Induced Rodent Models
4.2. Astrocytes and Microglia Analyses
4.3. Pinocyctic Vesicles Analysis
4.4. Limitations and Future Directions of Cell Therapy-Induced BBB Repair in Stroke
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laditka, J.N.; Laditka, S.B. Stroke and active life expectancy in the United States, 1999–2009. Disabil Health J. 2014, 7, 472–477. [Google Scholar] [CrossRef]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.D.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 421–426. [Google Scholar]
- Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis. 2003, 12, 119–126. [Google Scholar] [CrossRef]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Dietrich, W.D. Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. J. Cereb. Blood Flow Metab. 2004, 24, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Garbuzova-Davis, S.; Rodrigues, M.C.O.; Hernandez-Ontiveros, D.G.; Tajiri, N.; Frisina-Deyo, A.; Boffeli, S.M.; Abraham, J.V.; Pabon, M.; Wagner, A.; Ishikawa, H.; et al. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS ONE 2013, 8, e63553. [Google Scholar] [CrossRef]
- VanGilder, R.L.; Huber, J.D.; Rosen, C.L.; Barr, T.L. The transcriptome of cerebral ischemia. Brain Res. Bull. 2012, 88, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Del Zoppo, G.J.; Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab. 2003, 23, 879–894. [Google Scholar] [CrossRef]
- Belayev, L.; Busto, R.; Zhao, W.; Ginsberg, M.D. 1. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996, 739, 88–96. [Google Scholar] [CrossRef]
- Kahles, T.; Luedike, P.; Endres, M.; Hans-Joachim, G.; Steinmetz, H.; Busse, R.; Neumann-Haefelin, T.; Brandes, R.P. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007, 38, 3000–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, G.A.; Estrada, E.Y.; Dencoff, J.E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998, 29, 2189–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Dee, C.M.; Shen, J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front. Biosci. (Sch. Ed.) 2011, 3, 1216–1231. [Google Scholar] [CrossRef]
- Dankbaar, J.W.; Hom, J.; Schneider, T.; Cheng, S.-C.; Lau, B.C.; Schaaf, I.; Virmani, S.; Pohlman, S.; Dillon, W.P.; Wintermark, M. Dynamic perfusion-CT assessment of early changes in blood brain barrier permeability of acute ischaemic stroke patients. J. Nueroradiol. 2011, 38, 161–166. [Google Scholar] [CrossRef]
- Yang, G.Y.; Betz, A.L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 1994, 25, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.L.; Coester, H.C. Effect of steroids on edema and sodium uptake of the brain during focal ischemia in rats. Stroke 1990, 21, 1199–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobbin, J.; Crockard, H.A.; Ross-Russell, R. Transient blood-brain barrier permeability following profound temporary global ischemia: An experimental study using 14C-AIB. J. Cereb. Blood Flow Metab. 1989, 9, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, E.; Sutherland, G.; Finsten, A. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat. Neurosci. Lett. 1993, 149, 75–78. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Ting, P.; Martinez, H.; Klatzo, I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 1985, 68, 122–129. [Google Scholar] [CrossRef]
- Strbian, D.; Durukan, A.; Pitkonen, M.; Marinkovic, I.; Tatlisumak, E.; Pedrono, E.; Abo-Ramadan, U.; Tatlismuka, T. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 2008, 153, 175–181. [Google Scholar] [CrossRef]
- Abo-Ramadan, U.; Durukan, A.; Pitkonen, M.; Marinkovic, I.; Tatlisumak, E.; Pedrono, E.; Soinne, L.; Strbian, D.; Tatlisumak, T. Post-ischemic leakiness of the blood-brain barrier: A quantitative and systematic assessment by Patlak plots. Exp. Neurol. 2009, 219, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Denes, A.; Ferenczi, S.; Kovacs, K.J. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood-brain barrier damage and brain edema independently of infarct size. J. Neuroinflamm. 2011, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerriets, T.; Walberer, M.; Ritschel, N.; Tschernatsch, M.; Mueller, C.; Bachmann, G.; Schoenburg, M.; Kaps, M.; Nedelmann, M. Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J. Neurosurg. 2009, 111, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Shuaib, A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog. Neurobiol. 2007, 83, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.J. Transhemispheric diaschisis. A review and comment. Stroke 1991, 22, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Witte, O.W.; Bidmon, H.J.; Schiene, K.; Redecker, C.; Hagemann, G. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2000, 20, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- González-Aguado, E.; Martí-Fábregas, J.; Martí-Vilalta, J.L. The phenomenon of diaschisis in cerebral vascular disease. Rev. Neurol. 2000, 30, 941–945. [Google Scholar]
- Meyer, J.S.; Obara, K.; Muramatsu, K. Diaschisis. Neurol. Res. 1993, 15, 362–366. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Botez, M.I. Diaschisis and neurobehavior. Can. J. Neurol. Sci. 1998, 25, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Seitz, R.J.; Azara, N.P.; Knorr, U.; Binkofski, F.; Herzog, H.; Freund, H.J. The role of diaschisis in stroke recovery. Stroke J. Cereb. Circ. 1999, 30, 1844–1850. [Google Scholar] [CrossRef] [Green Version]
- Takasawa, M.; Watanabe, M.; Yamamoto, S.; Hoshi, T.; Sasaki, T.; Hashikawa, K.; Matsumoto, M.; Kinoshita, N. Prognostic value of subacute crossed cerebellar diaschisis, single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am. J. Neuroradiol. 2002, 23, 189–193. [Google Scholar] [PubMed]
- Liu, Y.; Karonen, J.O.; Nuutinen, J.; Vanninen, E.; Kuikka, J.T.; Vannien, R.L. Crossed cerebellar diaschisis in acute ischemic stroke, a study with serial SPECT and MRI. J. Cereb. Blood Flow Metab. 2007, 27, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Ryu, Y.H.; Kim, B.M.; Lee, J.D. Crossed cerebellar diaschisis due to intracranial hematoma in basal ganglia or thalamus. J. Nucl. Med. 1998, 39, 2044–2047. [Google Scholar] [PubMed]
- Dobkin, J.A.; Levine, R.L.; Lagreze, H.L. Evidence for transhemispheric diaschisis in unilateral stroke. Arch. Neurol. 1989, 46, 1333–1336. [Google Scholar] [CrossRef]
- Baron, J.C. Pathophysiology of Acute Cerebral Ischemia, PET Studies in Humans. Cerebrovasc. Dis. 1991, 1, 22–31. [Google Scholar] [CrossRef]
- Neumann-Haefelin, T.; Witte, O.W. Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 2000, 20, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, S.; Lutzenberg, M.; Hagemann, G.; Bruehl, C.; Neumann-Haefelin, T.; Witte, O.W. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci. Lett. 1999, 261, 85–88. [Google Scholar] [CrossRef]
- Terruso, V.; D’Amelio, M.; Di Benedetto, N.; Lupo, I.; Saia, V.; Famoso, G.; Mazzola, M.A.; Aridon, P.; Sarno, C.; Ragonese, P.; et al. Frequency and determinants for hemorrhagic transformation of cerebral infarction. Neuroepidemiology 2009, 33, 261–265. [Google Scholar] [CrossRef]
- Wang, X.; Lo, E.H. Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol. Neurobiol. 2003, 28, 229–244. [Google Scholar] [CrossRef]
- Pillai, D.R.; Dittmar, M.S.; Baldaranov, D.; Heidemann, R.M.; Henning, E.C.; Schuierer, G.; Bogdahn, U.; Schlachetzki, F. Cerebral ischemia-reperfusion injury in rats—A 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J. Cereb. Blood Flow Metab. 2009, 29, 1846–1855. [Google Scholar] [CrossRef]
- Guo, P.; Jin, Z.; Wu, H.; Li, X.; Ke, J.; Zhang, Z.; Zhao, Q. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav. 2019, 9, e01425. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, N.; Nagai, N.; Kawao, N.; Niwa, A.; Yoshioka, Y.; Mori, Y.; Shigeta, H.; Kashiwagi, N.; Miyazawa, M.; Satou, T.; et al. In vivo diagnostic imaging using micro-CT, sequential and comparative evaluation of rodent models for hepatic/brain ischemia and stroke. PLoS ONE 2012, 7, e32342. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ishii, Y.; Xu, G.; Dang, T.C.; Hamashima, T.; Matsushima, T.; Yamamoto, S.; Hattori, Y.; Takatsuru, Y.; Nabekura, J.; et al. PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2012, 32, 353–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Leng, Y.; Tsai, L.-K.; Leeds, P.; Chuang, D.-M. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia, the roles of HDAC and MMP-9 inhibition. J. Cereb. Blood Flow Metab. 2011, 31, 52–57. [Google Scholar] [CrossRef]
- Kuntz, M.; Mysiorek, C.; Pétrault, O.; Pétrault, M.; Uzbekov, R.; Bordet, R.; Fenart, L.; Cecchelli, R.; Bérézowski, V. Stroke-induced brain parenchymal injury drives blood-brain barrier early leakage kinetics, a combined in vivo/in vitro study. J. Cereb. Blood Flow Metab. 2014, 34, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, K.E.; Witt, K.A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 2008, 32, 200–219. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Shibata, M.; Koike, M.; Yoshimura, K.; Sasaki, M. Autophagy-physiology and pathophysiology. Histochem. Cell Biol. 2008, 129, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Reggiori, F.; Klionsky, D.J. Autophagy in the eukaryotic cell. Eukaryot. Cell 2002, 1, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Sadoshima, J. The role of autophagy during ischemia/reperfusion. Autophagy 2008, 4, 402–403. [Google Scholar] [CrossRef] [Green Version]
- Balduini, W.; Carloni, S.; Buonocore, G. Autophagy in hypoxia-ischemia induced brain injury, evidence and speculations. Autophagy 2009, 5, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Håberg, A.K.; Qu, H.; Sonnewald, U. Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J. Neurochem. 2009, 109, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Upadhyay, U.M.; Tamargo, R.J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006, 66, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke, role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Zoppo, G.; Ginis, I.; Hallenbeck, J.M.; Iadecola, C.; Wang, X.; Feuerstein, G.Z. Inflammation and stroke, putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000, 10, 95–112. [Google Scholar] [CrossRef]
- Petty, M.A.; Lo, E.H. Junctional complexes of the blood-brain barrier, permeability changes in neuroinflammation. Prog. Neurobiol. 2002, 68, 311–323. [Google Scholar] [CrossRef]
- Fisher, M. Injuries to the vascular endothelium, vascular wall and endothelial dysfunction. Rev. Neurol. Dis. 2008, 5 (Suppl. 1), S4–S11. [Google Scholar]
- Abbott, N.J. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol. 2000, 20, 131–147. [Google Scholar] [CrossRef]
- Young, C.C.; Van der Harg, J.M.; Lewis, N.J.; Brooks, K.J.; Buchan, A.M.; Szele, F.G. Ependymal ciliary dysfunction and reactive astrocytosis in a reorganized subventricular zone after stroke. Cereb. Cortex 2013, 23, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Dihné, M.; Grommes, C.; Lutzenburg, M.; Witte, O.W.; Block, F. Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 2002, 33, 3006–3011. [Google Scholar]
- Dewar, D.; Underhill, S.M.; Goldberg, M.P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metab. 2003, 23, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Kalaria, R.N. Risk factors and neurodegenerative mechanisms in stroke related dementia. Panminerva Med. 2012, 54, 139–148. [Google Scholar] [PubMed]
- De Deyn, P.P.; Goeman, J.; Engelborghs, S.; Hauben, U.; D’Hooge, R.; Baro, F.; Pickut, B.A. From neuronal and vascular impairment to dementia. Pharmacopsychiatry 1999, 32 (Suppl. 1), 117–124. [Google Scholar] [CrossRef] [PubMed]
- Cumming, T.B.; Brodtmann, A. Can stroke cause neurodegenerative dementia? Int. J. Stroke 2011, 6, 416–424. [Google Scholar]
- Pinkston, J.B.; Alekseeva, N.; González Toledo, E. Stroke and dementia. Neurol. Res. 2009, 31, 824–831. [Google Scholar] [CrossRef]
- Erkinjuntti, T. Vascular cognitive deterioration and stroke. Cerebrovasc. Dis. 2007, 24 (Suppl. 1), 1189–1194. [Google Scholar] [CrossRef]
- Chen, C.L.; Tang, F.T.; Chen, H.C.; Chung, C.Y.; Wong, M.K. Brain lesion size and location: Effects on motor recovery and functional outcome in stroke patients. Arch. Phys. Med. Rehabil. 2000, 81, 447–452. [Google Scholar] [CrossRef]
- Carmichael, S.T.; Tatsukawa, K.; Katsman, D.; Tsuyuguchi, N.; Kornblum, H.I. Evolution of diaschisis in a focal stroke model. Stroke 2004, 35, 758–763. [Google Scholar] [CrossRef] [Green Version]
- Del Zoppo, G.D.; Hallenbeck, J.M. Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res. 2000, 98, 73–81. [Google Scholar] [CrossRef]
- Brown, R.C.; Davis, T.P. Calcium modulation of adherens and tight junction function: A potential mechanism for blood-brain barrier disruption after stroke. Stroke 2002, 33, 1706–1711. [Google Scholar] [CrossRef]
- Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol. 2006, 1, 223–236. [Google Scholar] [CrossRef]
- Jin, R.; Yang, G.; Li, G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol. Dis. 2010, 38, 376–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhan, S.E.; Kirchgessner, A.; Tepper, D.; Leonard, A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front. Neurol. 2013, 4, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbuzova-Davis, S.; Haller, E.; Williams, S.N.; Haim, E.D.; Tajiri, N.; Hernandez-Ontiveros, D.G.; Frisina-Deyo, A.; Boffeli, S.M.; Sanberg, P.R.; Borlongan, C.V. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J. Comp. Neurol. 2014, 522, 3120–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbuzova-Davis, S.; Haller, E.; Tajiri, N.; Thompson, A.; Barretta, J.; Williams, S.N.; Haim, E.D.; Qin, H.; Frisina-Deyo, A.; Abraham, J.V.; et al. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia. J. Neuropathol. Exp. Neurol. 2016, 75, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Mark, K.S.; Davis, T.P. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Hear Circ. Physiol. 2002, 282, H1485–H1494. [Google Scholar] [CrossRef] [Green Version]
- Koto, T.; Takubo, K.; Ishida, S.; Shinoda, H.; Inoue, M.; Tsubota, K.; Okada, Y.; Ikeda, E. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol. 2007, 170, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Kago, T.; Takaga, N.; Date, I.; Takenaga, Y.; Takagi, K.; Takeo, S. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem. Biophys. Res. Commun. 2006, 339, 1197–1203. [Google Scholar] [CrossRef]
- Marti, H.J.; Bernaudin, M.; Bellail, A.; Schoch, H.; Euler, M.; Petit, E.; Risau, W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 2000, 156, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Hai, J.; Li, S.; Lin, Q.; Pan, Q.; Gao, F.; Ding, M. Vascular endothelial growth factor expression and angiogenesis induced by chronic cerebral hypoperfusion in rat brain. Neurosurgery 2003, 53, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Krupinski, J.; Kaluza, J.; Kumar, P.; Kumar, S.; Wang, J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 1994, 25, 1794–1798. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.K. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 2003, 23, 166–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risau, W. Molecular biology of blood-brain barrier ontogenesis and function. In Brain Edema IX; Acta Neurochirurgica Book Series; Springer: Vienna, Austria, 1994; Volume 60, pp. 109–112. [Google Scholar]
- Zhang, Z.G.; Chopp, M. Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic. Lancet Neurol. 2009, 8, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Borlongan, C.V.; Cahill, D.W.; Sanberg, P.R. Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol. Behav. 1995, 58, 909–917. [Google Scholar] [CrossRef]
- Yasuhara, T.; Matsukawa, N.; Hara, K.; Maki, M.; Ali, M.M.; Yu, S.J.; Bae, E.; Yu, G.; Xu, L.; McGrogan, M.; et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009, 18, 1501–1514. [Google Scholar] [CrossRef] [Green Version]
- Peeling, J. Rat middle cerebral artery occlusion: Correlations between histopathology, T2-weighted magnetic resonance imaging, and behavioral indices. J. Stroke Cerebrovasc. Dis. 2001, 10, 166–177. [Google Scholar] [CrossRef]
- Sicard, K.M.; Henninger, N.; Fisher, M.; Duong, T.Q.; Ferris, C.F. Long-term changes of functional MRI-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats. Stroke 2006, 37, 2593–2600. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Murikinati, S.R.; Wang, D.; Zhang, X.; Duan, W.; Zhao, L. Reestablishing neuronal networks in the aged brain by stem cell factor and granulocyte-colony stimulating factor in a mouse model of chronic stroke. PLoS ONE 2013, 8, e64684. [Google Scholar] [CrossRef] [Green Version]
- Rami, A.; Langhagen, A.; Steiger, S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis. 2008, 29, 132–141. [Google Scholar] [CrossRef]
- Alheid, G.F.; Shammah-Lagnado, S.J.; Beltramino, C.A. The interstitial nucleus of the posterior limb of the anterior commissure: A novel layer of the central division of extended amygdala. Ann. N. Y. Acad. Sci. 1999, 877, 645–654. [Google Scholar] [CrossRef]
- Shammah-Lagnado, S.J.; Alheid, G.F.; Heimer, L. Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. Neuroscience 1999, 94, 1097–1123. [Google Scholar] [CrossRef]
- Gärtner, U.; Hartig, W.; Riedel, A.; Brauer, K.; Arendt, T. Immunocytochemical evidence for the striatal nature of the rat lateral part of interstitial nucleus of the posterior limb of the anterior commissure (IPAC). J. Chem. Neuroanat. 2002, 24, 117–125. [Google Scholar] [CrossRef]
- Shammah-Lagnado, S.J.; Alheid, G.F.; Heimer, L. Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: Evidence from tract-tracing techniques in the rat. J. Comp. Neurol. 2001, 439, 104–126. [Google Scholar] [CrossRef]
- Otake, K.; Nakamura, Y. Forebrain neurons with collateral projections to both the interstitial nucleus of the posterior limb of the anterior commissure and the nucleus of the solitary tract in the rat. Neuroscience 2003, 119, 623–628. [Google Scholar] [CrossRef]
- Iizuka, H.; Sakatani, K.; Young, W. Corticofugal axonal degeneration in rats after middle cerebral artery occlusion. Stroke 1989, 20, 1396–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizuka, H.; Sakatani, K.; Young, W. Neural damage in the rat thalamus after cortical infarcts. Stroke 1990, 21, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.P.; Ling, E.A. Transsynaptic changes of neurons and associated microglial reaction in the spinal cord of rats following middle cerebral artery occlusion. Neurosci. Lett. 1998, 256, 414. [Google Scholar] [CrossRef]
- Ferrer, I.; Planas, A.M. Signaling of cell death and cell survival following focal cerebral ischemia: Life and death struggle in the penumbra. J. Neuropathol. Exp. Neurol. 2003, 62, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.E.; Tittgemeyer, M.; Imperati, D.; Diekhoff, S.; Ameli, M.; Fink, G.R.; Grefkes, C. Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study. Hum. Brain Mapp. 2012, 33, 2941–2956. [Google Scholar] [CrossRef] [PubMed]
- Wojtkowiak, J.W.; Rothberg, J.M.; Kumar, V.; Schramm, K.J.; Haller, E.; Proemsey, J.B.; Lloyd, M.C.; Sloane, B.F.; Gillies, R.J. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res. 2012, 72, 3938–3947. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.L.; Kassed, C.A.; Sanberg, P.R.; Willing, A.E.; Pennypacker, K.R. Neurodegeneration in the rat hippocampus and striatum after middle cerebral artery occlusion. Brain Res. 2002, 929, 252–260. [Google Scholar] [CrossRef]
- Kwon, I.; Kim, E.H.; del Zoppo, G.J.; Heo, J.H. Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J. Neurosci. Res. 2009, 87, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Gleichman, A.J.; Carmichael, S.T. Astrocytic therapies for neuronal repair in stroke. Neurosci. Lett. 2014, 565, 47–52. [Google Scholar] [CrossRef]
- Saver, J.L.; Fonarow, G.C.; Smith, E.E.; Reeves, M.J.; Grau-Sepulveda, M.V.; Pan, W.; Olson, D.M.; Hernandez, A.F.; Peterson, E.D.; Schwamm, L.E. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA 2013, 309, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.; Guzman, R.; Daadi, M.; Steinberg, G.K. Cell transplantation therapy for stroke. Stroke 2007, 38 (Suppl. 2), 817–826. [Google Scholar] [CrossRef]
- Zacharek, A.; Chen, J.; Cui, X.; Li, A.; Li, Y.; Roberts, C.; Feng, Y.; Gao, Q.; Chopp, M. Angiopoietin1//Tie2 and VEGF//Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow Metab. 2007, 27, 1684–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vendrame, M.; Cassady, J.; Newcomb, J.; Butler, T.; Pennypacker, K.R.; Zigova, T.; Sanberg, C.D.; Sanberg, P.R.; Willing, A.E. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004, 35, 2390–2395. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Y.; Jeong, C.H.; Jun, J.A.; Kim, S.M.; Ryu, C.H.; Hou, Y.; Oh, W.; Chang, J.W.; Jeun, S. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res. Ther. 2011, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Borlongan, C.V.; Lind, J.G.; Dillon-Carter, O.; Yu, G.; Hadman, M.; Cheng, C.; Carroll, J.; Hess, D.C. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004, 1010, 108–116. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Wang, L.; Lu, M.; Chopp, M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001, 56, 1666–1672. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Migliati, E.; Parsha, K.; Schaar, K.; Xi, X.; Aronowski, J.; Savitz, S.I. Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 2013, 44, 3463–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Sanberg, P.R.; Li, Y.; Wang, L.; Lu, M.; Willing, A.E.; Sanchez-Ramos, J.; Chopp, M. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001, 32, 2682–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, O.Y.; Lee, J.S.; Lee, P.H.; Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005, 57, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hong, J.M.; Moon, G.J.; Lee, P.H.; Ahn, Y.H.; Bang, O.H. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28, 1099–1106. [Google Scholar] [CrossRef]
- Moniche, F.; Gonzalez, A.; Gonzalez-Marcos, J.-R.; Carmona, M.; Piñero, P.; Espigado, I.; Garcia-Solis, D.; Cayuela, A.; Montaner, J.; Boada, C.; et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: A pilot clinical trial. Stroke 2012, 43, 2242–2244. [Google Scholar] [CrossRef]
- Prasad, K.; Sharma, A.; Garg, A.; Mohanty, S.; Bhatnagar, S.; Johri, S.; Singh, K.K.; Nair, V.; Sarkar, R.S.; Gorthi, S.P.; et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke 2014, 45, 3618–3624. [Google Scholar] [CrossRef] [Green Version]
- Borlongan, C.V. Age of PISCES: Stem cell clinical trials in stroke. Lancet 2016, 388, 736–738. [Google Scholar] [CrossRef]
- Moubarik, C.; Guillet, B.; Youssef, B. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011, 7, 208–220. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Haller, E.; Lin, R.; Borlongan, C.V. Intravenously Transplanted Human Bone Marrow Endothelial Progenitor Cells Engraft Within Brain Capillaries, Preserve Mitochondrial Morphology, and Display Pinocytotic Activity Toward Blood-Brain Barrier Repair in Ischemic Stroke Rats. Stem Cells 2017, 35, 1246–1258. [Google Scholar] [CrossRef] [Green Version]
- Ito, U.; Kuroiwa, T.; Hanyu, S.; Hakamata, Y.; Kawakami, E.; Nakano, I.; Oyanagi, K. Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction--ultrastructure, gravimetry and Evans’ blue extravasation. Acta Neurochir. Suppl. 2003, 86, 131–135. [Google Scholar]
- Adembri, C.; Venturi, L.; Tani, A.; Chiarugi, A.; Gramigni, E.; Cozzi, A.; Pancani, T.; De Gaudio, R.A.; Pellegrini-Giampietro, D.E. Neuroprotective effects of propofol in models of cerebral ischemia: Inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 2006, 104, 80–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanika, R.I.; Pivovarova, N.B.; Brantner, C.A.; Watts, C.A.; Winters, C.A.; Andrews, S.B. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 9854–9859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, U.; Hakamata, Y.; Kawakami, E.; Oyanagi, K. Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: Heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury. Stroke 2009, 40, 2173–2181. [Google Scholar] [PubMed] [Green Version]
- Liu, H.; Zhang, X.; Du, Y.; Ji, H.; Li, S.; Li, L.; Xing, Y.; Zhang, X.; Dong, L.; Wang, C.; et al. Leonurine protects brain injury by increased activities of UCP4, SOD, CAT and Bcl-2, decreased levels of MDA and Bax, and ameliorated ultrastructure of mitochondria in experimental stroke. Brain Res. 2012, 1474, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta 2009, 1788, 842–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelhardt, B.; Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin. Immunopathol. 2009, 31, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, J.D. Blood brain barrier and infection. Med. Sci. Monit. 2000, 6, 1213–1222. [Google Scholar]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Borlongan, C.V.; Glover, L.E.; Tajiri, N.; Kaneko, Y.; Freeman, T.B. The great migration of bone marrow-derived stem cells toward the ischemic brain: Therapeutic implications for stroke and other neurological disorders. Prog. Neurobiol. 2011, 95, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, H.; Tajiri, N.; Shinozuka, K.; Vasconcnellos, J.; Kaneko, Y.; Lee, H.J.; Mimura, O.; Dezawa, M.; Kim, S.U.; Borlongan, C.V. Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke 2013, 44, 3473–3481. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.-Y.; Peng, X.-G.; Wang, L.-S.; Li, Z.; Wang, Y.; Lu, C.; Ding, J.; Li, P.; Zhao, Z.; Ju, S. Bone Marrow Endothelial Progenitor Cell Transplantation After Ischemic Stroke: An Investigation Into Its Possible Mechanism. CNS Neurosci. Ther. 2015, 21, 877–886. [Google Scholar] [CrossRef]
- Hamann, G.F.; Schröck, H.; Burggraf, D.; Wunderlich, N.; Liebetrau, M.; Kuschinsky, W. Microvascular Basal lamina damage after embolic stroke in the rat: Relationship to cerebral blood flow. J. Cereb. Blood Flow Metab. 2003, 23, 1293–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosko, M.R.; Busch, E.; Burggraf, D.; Bültemeier, G.; Hamann, G.F. Microvascular basal lamina damage in thromboembolic stroke in a rat model. Neurosci. Lett. 2003, 353, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Vosko, M.R.; Burggraf, D.; Liebetrau, M.; Wunderlich, N.; Jäger, G.; Gröger, M.; Plesnila, N.; Hamann, G.F. Influence of the duration of ischemia and reperfusion on infarct volume and microvascular damage in mice. Neurol. Res. 2006, 28, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, Z.; Wu, T.; Ding, S. Role of rho kinase in microvascular damage following cerebral ischemia reperfusion in rats. Int. J. Mol. Sci. 2011, 12, 1222–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisan, A.; Favre, I.M.; Rome, C.; Grillon, E.; Naegele, B.; Barbieux, M.; De Fraipont, F.; Richard, M.J.; Barbier, E.L.; Rémy, C.; et al. Microvascular plasticity after experimental stroke: A molecular and MRI study. Cerebrovasc. Dis. 2014, 38, 344–353. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.; Liu, K.; Hamblin, M.H.; Yin, K.J. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J. Neurosci. 2017, 37, 1797–1806. [Google Scholar] [CrossRef]
- Koizumi, K.; Hattori, Y.; Ahn, S.J.; Buendia, I.; Ciacciarelli, A.; Uekawa, K.; Wang, G.; Hiller, A.; Zhao, L.; Voss, H.U.; et al. Apoε4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat. Commun. 2018, 9, 3816. [Google Scholar] [CrossRef] [Green Version]
- Shyu, W.C.; Lin, S.Z.; Chiang, M.F.; Su, C.Y.; Li, H. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J. Neurosci. 2006, 26, 3444–3453. [Google Scholar] [CrossRef] [Green Version]
- Thored, P.; Wood, J.; Arvidsson, A.; Cammenga, J.; Kokaia, Z.; Lindvall, O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 2007, 38, 3032–3039. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.; Zhang, Z.G.; Wang, L.; Zhang, R.L.; Zhang, L.; Morris, D.; Gregg, S.R.; Wu, Z.; Jiang, A.; Lu, M.; et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J. Cereb. Blood Flow Metab. 2008, 28, 764–771. [Google Scholar] [CrossRef]
- Yang, M.; Wei, X.; Li, J.; Heine, L.A.; Rosenwasser, R.; Iacovitti, L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010, 19, 1073–1084. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Gu, X.; Ferdinand, A.; Lee, J.H.; Ji, X.; Ji, X.M.; Yu, S.P.; Wei, L. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015, 24, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Yao, X.; Feng, G.; Yang, X.; Mao, L.; Wang, X.; Ke, T.; Che, Y.; Kong, D. Skin-derived precursor cells promote angiogenesis and stimulate proliferation of endogenous neural stem cells after cerebral infarction. Biomed. Res. Int. 2015, 2015, 945846. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, S.H.; Kim, S.U.; Yoon, B.W. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res. 2016, 11, 298–304. [Google Scholar] [CrossRef]
- Park, H.W.; Kim, Y.; Chang, J.W.; Yang, Y.S.; Oh, W.; Lee, J.M.; Park, H.R.; Kim, D.G.; Paek, S.H. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats. Exp. Neurobiol. 2017, 26, 55–65. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Lu, J.; Cerqueira, B.; Misra, V.; Duong, T.Q. Intraarterial transplantation of human umbilical cord blood mononuclear cells in hyperacute stroke improves vascular function. Stem Cell Res. Ther. 2017, 8, 74. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Y.; Zhang, Y.; Liu, J.; Xu, Z. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis. J. Mol. Neurosci. 2018, 65, 83. [Google Scholar] [CrossRef]
Study | Discovery |
---|---|
Hamann et al., 2003 [133] | Microvascular damage manifests in the brain just three hours after intracarotid clot injection. Compared to the non-ischemic control side, a 16% decrease in microvasculature density and a 10% decrease in stained microvessels was observed after a short amount of time. Damage was also seen in areas where regional cerebral blood flow levels had returned to normal (Hamann et al., 2003). |
Vosko et al., 2003 [134] | Microvascular basal lamina damage is limited to areas with apparent diffusion coefficient reduction (ADC-R) in magnetic resonance imagining (MRI) in rat thromboembolic occlusion of middle cerebral artery. ADC-R positive basal ganglia (cortical) areas exhibited decreased microvascular density and stained microvascular areas compared to the non-ischemic hemisphere (Vosko et al., 2003). |
Vosko et al., 2006 [135] | Increased duration of ischemia and reperfusion exacerbate microvascular damage and infarct volume in a mouse focal cerebral ischemia and reperfusion model. Infarct volume increases directly as duration of ischemia and reperfusion increases. A sharp decrease in collagen type IV positive vessels was also observed in ischemia-afflicted areas (Vosko et al., 2006). |
Liu et al., 2011 [136] | Rho kinase (ROCK) propels microvascular damage via increasing matrix metalloproteinase 9 (MMP9) in a rat middle cerebral artery occlusion model. A linear relationship between ROCK and microvascular damage progression was observed in the brain. ROCK inhibitor, fasudil, increased Laminan expression and was found to inhibit MMP9 ischemia-induced expression. Taken together, data indicate that ROCK plays a role in the manifestation of microvascular damage (Liu et al., 2011). |
Moisan et al., 2014 [137] | MRI of microvasculature can provide valuable information of states of vessels and indicates post-stroke plasticity. An acute stage was observed from days 1–3 and displayed increased concentrations of angiopoietin-2 (Ang2), vascular endothelial growth factor receptor-2, and endothelial NO synthase. The transition stage, days 3–7, was characterized by the presence growth factors Ang1, TGFβ1 and tyrosine kinase with endothelial growth factor-like domains and immunoglobulin-like domains, stromal-derived factor-1 and chemokine receptor types 4 and 3. The subacute phase, days 7–25, presented with augmented Ang1, Ang2, TGFβ1, VEGF and VEGFR-1 levels. Together, these phases indicate the apparent microvascular plasticity present after stroke and bolster its potential as a target for therapy (Moisan et al., 2014). |
Zhang et al., 2017 [138] | Mestastasis-associated lung adenocarcinoma transcript 1 (Malat1) provides neuroprotection in ischemic stroke. In vitro, increased levels of Malat1 were seen in culture post-oxygen glucose deprivation. Similarly, increased levels were found in cerebral microvessels in a mouse in vivo study. Inhibition of Malat1 resulted in increased cell death and expression of pro-apoptotic genes. Furthermore, Malat1 KO mice exhibited increased infarct volume, poor sensorimotor function, and low neurological scores (Zhang et al., 2017). |
Koizumi et al., 2018 [139] | Transgenic mice with human ApoE4 gene, known to predispose humans to small vessel disease, display decreased neocortical cerebral blood flow in a cerebral hypoperfusion model. This is caused by lowered vascular density and impaired homeostatic mechanisms. Post-hypoxia, mice experienced damage to the white matter of the corpus callosum and aggravated cognitive impairments. These changes may be behind the hypoxic-ischemic lesions observed in the subcortical white matter of humans with ApoE4 allele (Koizumi et al., 2018). |
Study | Discovery |
---|---|
Shyu et al., 2006 [140] | Peripheral blood hematopoietic stem cells (CD34+) (PBSCs) were administered intracerebrally in chronic cerebral ischemia rat models. PBSCs differentiated into vascular ECs and spurred angiogenesis, improving local cortical blood circulation into the ischemic region. Importantly, macrophage and microglial cells generated by stem cells, along with the expression of beta1 integrin, may promote vascular repair in the brain (Shyu et al., 2006). |
Thored et al., 2007 [141] | Ischemic stroke spurs hypoxia, vessel density alterations, and angiogenesis in the ipsilateral subventricular zone and the striatum. Following MCAO, neuroblasts migrated to injured vasculature at 2, 6 and 16 weeks, indicating the involvement of neuroblasts in promoting vascular regeneration and fortifying vessel density post-stroke. Moreover, vascular repair serves as a significant therapeutic target in post-stroke recovery (Thored et al., 2007). |
Teng et al., 2008 [142] | In vitro, cerebral ECs derived from normal rats co-cultured with conditioned medium from stroke-affected neural progenitor cells spurred the development of a capillary tube. Their findings indicate that the phenomena of angiogenesis and neurogenesis post-stroke are synergistic and are potentially regulated by the vascular endothelial growth factor (Teng et al., 2008). |
Yang et al., 2010 [143] | Rat and human bone marrow stromal stem cells (MSCs) were delivered to MCAO rats intravenously. Neurological recovery with both forms of MSCs was observed and could be associated with newly formed vasculature in the infarct area (Yang et al., 2010). |
Wei et al., 2015 [144] | Hypoxic preconditioned BMSCs were administered intranasally to rat pup models of neonatal stroke. The BMSCs drastically alleviated BBB leakage, upregulated angiogenesis and neurogenesis, rehabilitated the cerebrovasculature, and ameliorated cerebral blood circulation into the ischemic cortex (Wei et al., 2015). |
Mao et al., 2015 [145] | t-MCAO rats were transplanted with skin-derived precursor cells (SKPs) in the cortex and the striatum. SKPs generated upregulated angiogenesis and neurogenesis, indicating their potential as a rehabilitator against stroke-induced vascular damage (Mao et al., 2015). |
Ryu et al., 2016 [146] | Human neural stem cells were administered to the subventricular zone of MCAO rats, displaying focal cerebral ischemia. The stem cells boosted the proliferation of ECs in the ischemic region, upregulated endogenous neural stem cell development into mature neuronal-like cells, and stimulated angiogenesis (Ryu et al., 2016). |
Park et al., 2017 [147] | MCAO experimental models received either one human umbilical cord-derived mesenchymal stem cell (hUCB-MSC) dose two days after the surgery or repeated hUCB-MSC therapy (two and nine days post-surgery). Both groups demonstrated higher rates of neurogenesis and angiogenesis, suggesting these cells’ therapeutic potential in acute ischemic stroke (Park et al., 2017). |
Huang et al., 2017 [148] | Human umbilical cord blood (hUCB) mononuclear cells (MNCs) were delivered intraarterially to rat stroke models. The HUCB MNCs drastically improved cerebral blood flow to the afflicted sector during the hyperacute stage of stroke. In addition, cerebrovascular reactivity and density were upregulated. Notably, a number of the engrafted hUCB MNCs evolved into ECs and interacted with ECs belonging to the host, indicating crosstalk between grafted cells and blood vessels (Huang et al., 2017). |
Yang et al., 2018 [149] | After OGD, ADSC-derived exosomes (ADSC-Exos) enhanced the migratory capabilities of brain microvascular ECs (BMECs) and augmented angiogenesis through the miR-181b-5p/TRPM7 pathway (Yang et al., 2018). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saft, M.; Gonzales-Portillo, B.; Park, Y.J.; Cozene, B.; Sadanandan, N.; Cho, J.; Garbuzova-Davis, S.; Borlongan, C.V. Stem Cell Repair of the Microvascular Damage in Stroke. Cells 2020, 9, 2075. https://doi.org/10.3390/cells9092075
Saft M, Gonzales-Portillo B, Park YJ, Cozene B, Sadanandan N, Cho J, Garbuzova-Davis S, Borlongan CV. Stem Cell Repair of the Microvascular Damage in Stroke. Cells. 2020; 9(9):2075. https://doi.org/10.3390/cells9092075
Chicago/Turabian StyleSaft, Madeline, Bella Gonzales-Portillo, You Jeong Park, Blaise Cozene, Nadia Sadanandan, Justin Cho, Svitlana Garbuzova-Davis, and Cesar V. Borlongan. 2020. "Stem Cell Repair of the Microvascular Damage in Stroke" Cells 9, no. 9: 2075. https://doi.org/10.3390/cells9092075
APA StyleSaft, M., Gonzales-Portillo, B., Park, Y. J., Cozene, B., Sadanandan, N., Cho, J., Garbuzova-Davis, S., & Borlongan, C. V. (2020). Stem Cell Repair of the Microvascular Damage in Stroke. Cells, 9(9), 2075. https://doi.org/10.3390/cells9092075