The Value of Reference Genomes in the Conservation of Threatened Species
Abstract
:1. Introduction
2. The Tasmanian Devil and Its Genome
3. Conservation Applications as a Result of a Reference Genome
3.1. Basic Conservation Management
3.1.1. Microsatellite Analysis
3.1.2. Reduced Representation Sequencing
3.2. Further Species-Specific Applications
3.2.1. Reference Gene Characterization
3.2.2. Targeted SNP Panels
3.2.3. Whole-Genome Resequencing
4. Reference Genome Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2019-1. Available online: http://www.iucnredlist.org (accessed on 2 July 2019).
- Johnson, C.N.; Isaac, J.L. Body mass and extinction risk in Australian marsupials: The ‘Critical Weight Range’ revisited. Austral. Ecol. 2009, 34, 35–40. [Google Scholar] [CrossRef]
- Johnson, C.N.; Isaac, J.L.; Fisher, D.O. Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia. Proc. R. Soc. Biol. Sci. Ser. B 2006, 274, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Short, J.; Smith, A. Mammal decline and recovery in Australia. J. Mammal. 1994, 75, 288–297. [Google Scholar] [CrossRef]
- Mittermeier, R.A. Megadiversity: Earth’s Biologically Wealthiest Nations; Agrupacion Sierra Madre: Mexico City, Mexico, 1997. [Google Scholar]
- Chapman, A.D. Numbers of Living Species in Australia and the World, 2nd ed.; Australian Government, Department of the Environment and Energy: Canberra, Australia, 2009.
- Department of the Environment and Energy. Recovery Plans. Available online: https://www.environment.gov.au/biodiversity/threatened/recovery-plans (accessed on 8 August 2019).
- Ballou, J.D.; Lees, C.; Faust, L.J.; Long, S.; Lynch, C.; Bingaman Lackey, L.; Foose, T.J. Demographic and genetic management of captive populations. In Wild Mammals in Captivity: Principles and Techniques for Zoo Management, 2nd ed.; The University of Chicago Press: Chicago, IL, USA, 2010; pp. 219–252. [Google Scholar]
- Lacy, R.C. Importance of Genetic Variation to the Viability of Mammalian Populations. J. Mammal. 1997, 78, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Johnson, W.E.; Koepfli, K. The role of genomics in conservation and reproductive sciences. In Reproductive Sciences in Animal Conservation; Springer: Berlin, Germany, 2014; pp. 71–96. [Google Scholar]
- Supple, M.A.; Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 2018, 19, 131. [Google Scholar] [CrossRef]
- Allendorf, F.W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 2017, 26, 420–430. [Google Scholar] [CrossRef]
- Fuentes-Pardo, A.P.; Ruzzante, D.E. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Mol. Ecol. 2017, 26, 5369–5406. [Google Scholar] [CrossRef]
- Larsen, P.A.; Matocq, M.D. Emerging genomic applications in mammalian ecology, evolution, and conservation. J. Mammal. 2019, 100, 786–801. [Google Scholar] [CrossRef]
- McMahon, B.J.; Teeling, E.C.; Höglund, J. How and why should we implement genomics into conservation? Evol. Appl. 2014, 7, 999–1007. [Google Scholar] [CrossRef]
- Khan, S.; Nabi, G.; Ullah, M.W.; Yousaf, M.; Manan, S.; Siddique, R.; Hou, H. Overview on the role of advance genomics in conservation biology of endangered species. Int. J. Genomics 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kitts, P.A.; Church, D.M.; Thibaud-Nissen, F.; Choi, J.; Hem, V.; Sapojnikov, V.; Smith, R.G.; Tatusova, T.; Xiang, C.; Zherikov, A. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2015, 44, D73–D80. [Google Scholar] [CrossRef] [PubMed]
- Lewin, H.A.; Robinson, G.E.; Kress, W.J.; Baker, W.J.; Coddington, J.; Crandall, K.A.; Durbin, R.; Edwards, S.V.; Forest, F.; Gilbert, M.T.P. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl. Acad. Sci. USA 2018, 115, 4325–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Xuan, Z.; Li, Y.; Zheng, H.; Bai, Y.; Li, B.; Hu, Y.; Liu, X.; Zhang, Z.; Li, D.; et al. The sequence and de novo assembly of the giant panda genome. Nature 2010, 463, 311–317. [Google Scholar] [CrossRef]
- Groenen, M.A.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.-J. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Johnson, R.N.; O’Meally, D.; Chen, Z.; Etherington, G.J.; Ho, S.Y.W.; Nash, W.J.; Grueber, C.E.; Cheng, Y.; Whittington, C.M.; Dennison, S.; et al. Adaptation and conservation insights from the koala genome. Nat. Genet. 2018, 50, 1102–1111. [Google Scholar] [CrossRef]
- Koepfli, K.-P.; Paten, B. Genome 10K Community of Scientists; O’Brien, S.J. The Genome 10K Project: A way forward. Annu. Rev. Anim. Biosci. 2015, 3, 57–111. [Google Scholar] [CrossRef]
- Genome 10K Community of Scientists. Genome 10K: A proposal to obtain whole-genome sequence for 10 000 vertebrate species. J. Hered. 2009, 100, 659–674. [Google Scholar] [CrossRef]
- Genome 10K Community of Scientists. Vertebrate Genomes Project. Available online: https://vertebrategenomesproject.org (accessed on 16 August 2019).
- China National GeneBank. B10K. Available online: https://b10k.genomics.cn/ (accessed on 16 August 2019).
- Teeling, E.C.; Vernes, S.C.; Dávalos, L.M.; Ray, D.A.; Gilbert, M.T.P.; Myers, E. Bat1K Consortium. Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 2018, 6, 23–46. [Google Scholar] [CrossRef]
- GIGA Community of Scientists. The Global Invertebrate Genomics Alliance (GIGA): Developing community resources to study diverse invertebrate genomes. J. Hered. 2013, 105, 1–18. [Google Scholar]
- Voolstra, C.R.; Wörheide, G.; Lopez, J.V. Corrigendum to: Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebr. Syst. 2017, 31, 231. [Google Scholar] [CrossRef]
- Potter, S.; Eldridge, M. Oz Mammal Genomics. Australas. Sci. 2017, 38, 19–21. [Google Scholar]
- Ralls, K.; Ballou, J.D.; Dudash, M.R.; Eldridge, M.D.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P.; Frankham, R. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 2018, 11, e12412. [Google Scholar] [CrossRef]
- Taylor, H.R.; Dussex, N.; van Heezik, Y. Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Glob. Ecol. Conserv. 2017, 10, 231–242. [Google Scholar] [CrossRef]
- Holderegger, R.; Balkenhol, N.; Bolliger, J.; Engler, J.O.; Gugerli, F.; Hochkirch, A.; Nowak, C.; Segelbacher, G.; Widmer, A.; Zachos, F.E. Conservation genetics: Linking science with practice. Mol. Ecol. 2019, 28, 3848–3856. [Google Scholar] [CrossRef] [Green Version]
- Hogg, C.J.; Grueber, C.E.; Pemberton, D.; Fox, S.; Lee, A.V.; Ivy, J.A.; Belov, K. “Devil Tools & Tech”: A Synergy of Conservation Research and Management Practice. Conserv. Lett. 2017, 10, 133–138. [Google Scholar]
- Grueber, C.E. Comparative genomics for biodiversity conservation. Comput. Struct. Biotechnol. J. 2015, 13, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Lazenby, B.T.; Tobler, M.W.; Brown, W.E.; Hawkins, C.E.; Hocking, G.J.; Hume, F.; Huxtable, S.; Iles, P.; Jones, M.E.; Lawrence, C. Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J. Appl. Ecol. 2018, 55, 1368–1379. [Google Scholar] [CrossRef]
- Hogg, C.J.; Fox, S.; Pemberton, D.; Belov, K. Saving the Tasmanian Devil; Hogg, C.J., Fox, S., Pemberton, D., Belov, K., Eds.; CSIRO Publishing: Clayton South, VIC, Australia, 2019. [Google Scholar]
- Jones, M.E.; Paetkau, D.; Geffen, E.; Moritz, C. Microsatellites for the Tasmanian devil (Sarcophilus laniarius). Mol. Ecol. Notes 2003, 3, 277–279. [Google Scholar] [CrossRef]
- Siddle, H.V.; Marzec, J.; Cheng, Y.; Jones, M.; Belov, K. MHC gene copy number variation in Tasmanian devils: Implications for the spread of a contagious cancer. Proc. R. Soc. Biol. Sci. Ser. B 2010, 277, 2001–2006. [Google Scholar] [CrossRef]
- Cheng, Y.; Belov, K. Isolation and characterisation of 11 MHC-linked microsatellite loci in the Tasmanian devil (Sarcophilus harrisii). Conserv. Genet. Resour. 2012, 4, 463–465. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Hogg, C.J.; Ivy, J.A.; Srb, C.; Hockley, J.; Lees, C.; Hibbard, C.; Jones, M. Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv. Genet. 2015, 16, 1465–1473. [Google Scholar] [CrossRef]
- Hogg, C.J.; Wright, B.; Morris, K.M.; Lee, A.V.; Ivy, J.A.; Grueber, C.E.; Belov, K. Founder relationships and conservation management: Empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 2019, 22, 348–361. [Google Scholar] [CrossRef]
- Miller, W.; Hayes, V.M.; Ratan, A.; Petersen, D.C.; Wittekindt, N.E.; Miller, J.; Walenz, B.; Knight, J.; Qi, J.; Zhao, F.; et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc. Natl. Acad. Sci. USA 2011, 108, 12348–12353. [Google Scholar] [CrossRef] [PubMed]
- Murchison, E.P.; Schulz-Trieglaff, O.B.; Ning, Z.; Alexandrov, L.B.; Bauer, M.J.; Fu, B.; Hims, M.; Ding, Z.; Ivakhno, S.; Stewart, C. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 2012, 148, 780–791. [Google Scholar] [CrossRef]
- Patton, A.H.; Margres, M.J.; Stahlke, A.R.; Hendricks, S.; Lewallen, K.; Hamede, R.K.; Ruiz-Aravena, M.; Ryder, O.; McCallum, H.I.; Jones, M.E.; et al. Contemporary demographic reconstruction methods are robust to genome assembly quality: A case study in Tasmanian Devils. Mol. Biol. Evol. 2019, msz191. [Google Scholar] [CrossRef]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef]
- Abdul-Muneer, P.M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Gooley, R.; Hogg, C.J.; Belov, K.; Grueber, C.E. No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Sci. Rep. 2017, 7, 1830. [Google Scholar] [CrossRef] [Green Version]
- Abdelkrim, J.; Robertson, B.C.; Stanton, J.-A.L.; Gemmell, N.J. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 2009, 46, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Gooley, R.M.; Hogg, C.J.; Belov, K.; Grueber, C.E. The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zool. 2018, 3, 2. [Google Scholar] [CrossRef]
- McLennan, E.A.; Gooley, R.M.; Wise, P.; Belov, K.; Hogg, C.J.; Grueber, C.E. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. 2018, 19, 439–450. [Google Scholar] [CrossRef]
- Farquharson, K.A.; Hogg, C.J.; Grueber, C.E. A case for genetic parentage assignment in captive group housing. Conserv. Genet. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Day, J.; Gooley, R.M.; Hogg, C.J.; Belov, K.; Whittington, C.M.; Grueber, C.E. MHC-associated mate choice under competitive conditions in captive versus wild Tasmanian devils. Behav. Ecol. 2019, 30, 1196–1204. [Google Scholar] [CrossRef]
- Grueber, C.E.; Chong, R.; Gooley, R.M.; McLennan, E.A.; Barrs, V.R.; Belov, K.; Hogg, C.J. Genetic analysis of scat samples to inform conservation of Tasmanian devil. Aust. Zool. (In press).
- Taberlet, P.; Waits, L.P.; Luikart, G. Noninvasive genetic sampling: Look before you leap. Trends Ecol. Evol. 1999, 14, 323–327. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Dudgeon, C.L.; Bustamante, C.; Bennett, M.B.; Ovenden, J.R. Development and characterization of 17 polymorphic microsatellite markers for the reef manta ray (Mobula alfredi). BMC Res. Notes 2019, 12, 233. [Google Scholar] [CrossRef]
- Faria, J.; Pita, A.; Rivas, M.; Martins, G.M.; Hawkins, S.J.; Ribeiro, P.; Neto, A.I.; Presa, P. A multiplex microsatellite tool for conservation genetics of the endemic limpet Patella candei in the Macaronesian archipelagos. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 775–781. [Google Scholar] [CrossRef]
- Shaney, K.J.; Adams, R.; Kurniawan, N.; Hamidy, A.; Smith, E.N.; Castoe, T.A. A suite of potentially amplifiable microsatellite loci for ten reptiles of conservation concern from Africa and Asia. Conserv. Genet. Resour. 2016, 8, 307–311. [Google Scholar] [CrossRef]
- Storfer, A.; Epstein, B.; Jones, M.; Micheletti, S.; Spear, S.F.; Lachish, S.; Fox, S. Landscape genetics of the Tasmanian devil: Implications for spread of an infectious cancer. Conserv. Genet. 2017, 18, 1287–1297. [Google Scholar] [CrossRef]
- Grueber, C.E.; Fox, S.; McLennan, E.A.; Gooley, R.M.; Weiser, E.L.; Pemberton, D.; Hogg, C.J.; Belov, K. Complex problems need detailed solutions: Harnessing multiple data types to inform genetic rescue in the wild. Evol. Appl. 2019, 12, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Hogg, C.J.; McLennan, E.A.; Wise, P.; Lee, A.; Pemberton, D.; Fox, S.; Belov, K.; Grueber, C.E. Preserving the integrity of a single source population during multiple translocations. Biol. Conserv. (In press).
- Pye, R.J.; Pemberton, D.; Tovar, C.; Tubio, J.M.; Dun, K.A.; Fox, S.; Darby, J.; Hayes, D.; Knowles, G.W.; Kreiss, A. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 2016, 113, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Hogg, C.; Lee, A.; Srb, C.; Hibbard, C. Metapopulation management of an endangered species with limited genetic diversity in the presence of disease: The Tasmanian devil Sarcophilus harrisii. Int. Zoo Yearb. 2017, 51, 137–153. [Google Scholar] [CrossRef]
- Pye, R.; Patchett, A.; McLennan, E.; Thomson, R.; Carver, S.; Fox, S.; Pemberton, D.; Kreiss, A.; Baz Morelli, A.; Silva, A. Immunization strategies producing a humoral IgG immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release. Front. Immunol. 2018, 9, 259. [Google Scholar] [CrossRef]
- Grueber, C.; Peel, E.; Wright, B.; Hogg, C.; Belov, K. A Tasmanian devil breeding program to support wild recovery. Reprod. Fertil. Dev. 2019, 31, 1296–1304. [Google Scholar] [CrossRef]
- McLennan, E.A.; Grueber, C.E.; Wise, P.; Belov, K.; Hogg, C.J. Mixing genetic lineages sucessfully boosts diversity of an endangered carnivore. Anim. Conserv. (under review).
- Morris, K.M.; Cheng, Y.; Warren, W.; Papenfuss, A.T.; Belov, K. Identification and analysis of divergent immune gene families within the Tasmanian devil genome. BMC Genomics 2015, 16, 1017. [Google Scholar] [CrossRef]
- Morris, K.M.; Wright, B.; Grueber, C.E.; Hogg, C.; Belov, K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol. Ecol. 2015, 24, 3860–3872. [Google Scholar] [CrossRef]
- Wright, B.; Morris, K.; Grueber, C.E.; Willet, C.E.; Gooley, R.; Hogg, C.J.; O’Meally, D.; Hamede, R.; Jones, M.; Wade, C. Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 2015, 16, 791. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Belov, K. Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2014, 66, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Heasman, K.; Peck, S.; Peel, E.; Gooley, R.M.; Papenfuss, A.T.; Hogg, C.J.; Belov, K. Significant decline in anticancer immune capacity during puberty in the Tasmanian devil. Sci. Rep. 2017, 7, 44716. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Makara, M.; Peel, E.; Fox, S.; Papenfuss, A.T.; Belov, K. Tasmanian devils with contagious cancer exhibit a constricted T-cell repertoire diversity. Commun. Biol. 2019, 2, 99. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Cheng, Y.; Belov, K. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2015, 67, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, B.; Jones, M.; Hamede, R.; Hendricks, S.; McCallum, H.; Murchison, E.P.; Schönfeld, B.; Wiench, C.; Hohenlohe, P.; Storfer, A. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 2016, 7, 12684. [Google Scholar] [CrossRef]
- Margres, M.J.; Jones, M.E.; Epstein, B.; Kerlin, D.H.; Comte, S.; Fox, S.; Fraik, A.K.; Hendricks, S.A.; Huxtable, S.; Lachish, S. Large-effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer. Mol. Ecol. 2018, 27, 4189–4199. [Google Scholar] [CrossRef]
- Wright, B.; Willet, C.E.; Hamede, R.; Jones, M.; Belov, K.; Wade, C.M. Variants in the host genome may inhibit tumour growth in devil facial tumours: Evidence from genome-wide association. Sci. Rep. 2017, 7, 423. [Google Scholar] [CrossRef]
- Hohenlohe, P.A.; McCallum, H.I.; Jones, M.E.; Lawrance, M.F.; Hamede, R.K.; Storfer, A. Conserving adaptive potential: Lessons from Tasmanian devils and their transmissible cancer. Conserv. Genet. 2019, 20, 81–87. [Google Scholar] [CrossRef]
- Fernández, M.E.; Goszczynski, D.E.; Lirón, J.P.; Villegas-Castagnasso, E.E.; Carino, M.H.; Ripoli, M.V.; Rogberg-Muñoz, A.; Posik, D.M.; Peral-García, P.; Giovambattista, G. Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genet. Mol. Biol. 2013, 36, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Tokarska, M.; Marshall, T.; Kowalczyk, R.; Wójcik, J.; Pertoldi, C.; Kristensen, T.; Loeschcke, V.; Gregersen, V.; Bendixen, C. Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: The case of European bison. Heredity 2009, 103, 326. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.A.; Li, L.M.; Ward, R.; Pritchard, J.K. Informativeness of genetic markers for inference of ancestry. Am. J. Hum. Genet. 2003, 73, 1402–1422. [Google Scholar] [CrossRef] [PubMed]
- Schopen, G.; Bovenhuis, H.; Visker, M.; Van Arendonk, J. Comparison of information content for microsatellites and SNPs in poultry and cattle. Anim. Genet. 2008, 39, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.; Farquharson, K.A.; McLennan, E.A.; Belov, K.; Hogg, C.J.; Grueber, C.E. From reference genomes to population genomics: Comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC Genomics 2019, 20, 453. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.W.; Blaxter, M.L. RADSeq: Next-generation population genetics. Briefings Funct. Genomics 2010, 9, 416–423. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Von Mark, V.C.; Kilian, A.; Dierig, D.A. Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS ONE 2013, 8, e64062. [Google Scholar]
- Hendricks, S.; Epstein, B.; Schönfeld, B.; Wiench, C.; Hamede, R.; Jones, M.; Storfer, A.; Hohenlohe, P. Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. 2017, 18, 977–982. [Google Scholar] [CrossRef]
- McLennan, E.A.; Wright, B.R.; Belov, K.; Hogg, C.J.; Grueber, C.E. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol. Ecol. Resour. 2019, 19, 659–671. [Google Scholar] [CrossRef]
- Torkamaneh, D.; Laroche, J.; Belzile, F. Genome-wide SNP calling from genotyping by sequencing (GBS) data: A comparison of seven pipelines and two sequencing technologies. PLoS ONE 2016, 11, e0161333. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Shafer, A.B.; Peart, C.R.; Tusso, S.; Maayan, I.; Brelsford, A.; Wheat, C.W.; Wolf, J.B. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 2017, 8, 907–917. [Google Scholar] [CrossRef]
- Gurgul, A.; Miksza-Cybulska, A.; Szmatoła, T.; Jasielczuk, I.; Piestrzyńska-Kajtoch, A.; Fornal, A.; Semik-Gurgul, E.; Bugno-Poniewierska, M. Genotyping-by-sequencing performance in selected livestock species. Genomics 2019, 111, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Hoelzel, A.R.; Bruford, M.W.; Fleischer, R.C. Conservation of Adaptive Potential and Functional Diversity; Springer: Berlin, Germany, 2019. [Google Scholar]
- Galla, S.J.; Forsdick, N.J.; Brown, L.; Hoeppner, M.; Knapp, M.; Maloney, R.F.; Moraga, R.; Santure, A.W.; Steeves, T.E. Reference genomes from distantly related species can be used for discovery of single nucleotide polymorphisms to inform conservation management. Genes 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Wolf, J.B. A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. 2014, 7, 1026–1042. [Google Scholar] [CrossRef] [PubMed]
- Yandell, M.; Ence, D. A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012, 13, 329. [Google Scholar] [CrossRef] [PubMed]
- Curwen, V.; Eyras, E.; Andrews, T.D.; Clarke, L.; Mongin, E.; Searle, S.M.; Clamp, M. The Ensembl automatic gene annotation system. Genome Res. 2004, 14, 942–950. [Google Scholar] [CrossRef]
- Potter, S.C.; Clarke, L.; Curwen, V.; Keenan, S.; Mongin, E.; Searle, S.M.; Stabenau, A.; Storey, R.; Clamp, M. The Ensembl analysis pipeline. Genome Res. 2004, 14, 934–941. [Google Scholar] [CrossRef]
- Margres, M.J.; Ruiz-Aravena, M.; Hamede, R.; Jones, M.E.; Lawrance, M.F.; Hendricks, S.A.; Patton, A.; Davis, B.W.; Ostrander, E.A.; McCallum, H. The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biol. Evol. 2018, 10, 3012–3025. [Google Scholar] [CrossRef] [Green Version]
- Peel, E.; Cheng, Y.; Djordjevic, J.; Fox, S.; Sorrell, T.; Belov, K. Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Sci. Rep. 2016, 6, 35019. [Google Scholar] [CrossRef] [Green Version]
- Van der Kraan, L.E.; Wong, E.S.; Lo, N.; Ujvari, B.; Belov, K. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2013, 65, 25–35. [Google Scholar] [CrossRef]
- Van Tienderen, P.H.; de Haan, A.A.; van der Linden, C.G.; Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol. 2002, 17, 577–582. [Google Scholar] [CrossRef]
- Russell, T.; Cullingham, C.; Kommadath, A.; Stothard, P.; Herbst, A.; Coltman, D. Development of a novel mule deer genomic assembly and species-diagnostic SNP panel for assessing introgression in mule deer, white-tailed deer, and their interspecific hybrids. G3 Genes Genomes Genet. 2019, 9, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fuller, A.; Thongda, W.; Mohammed, H.; Abernathy, J.; Beck, B.; Peatman, E. SNP panel development for genetic management of wild and domesticated white bass (Morone chrysops). Anim. Genet. 2019, 50, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Fang, X.; Yang, H.; Wang, J.; Kristiansen, K.; Wang, J. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009, 19, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.Y.; Teo, Y.-Y.; Ong, R.T.-H. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals. Bioinformatics 2014, 30, 1707–1713. [Google Scholar] [CrossRef] [Green Version]
- Kishikawa, T.; Momozawa, Y.; Ozeki, T.; Mushiroda, T.; Inohara, H.; Kamatani, Y.; Kubo, M.; Okada, Y. Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data. Sci. Rep. 2019, 9, 1784. [Google Scholar] [CrossRef]
- Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Antolin, M.F.; Bradburd, G.; Lowry, D.B.; Poss, M.L.; Reed, L.K.; Storfer, A.; Whitlock, M.C. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 2016, 188, 379–397. [Google Scholar] [CrossRef]
- Pye, R.; Hamede, R.; Siddle, H.V.; Caldwell, A.; Knowles, G.W.; Swift, K.; Kreiss, A.; Jones, M.E.; Lyons, A.B.; Woods, G.M. Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biol. Lett. 2016, 12, 20160553. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012, 10, 117. [Google Scholar] [CrossRef]
- Ceballos, F.C.; Hazelhurst, S.; Ramsay, M. Assessing runs of homozygosity: A comparison of SNP array and whole genome sequence low coverage data. BMC Genomics 2018, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, A.; Casals, F.; Idaghdour, Y.; Grenier, J.-C.; Hernandez, R.D.; Awadalla, P. Selective constraint, background selection, and mutation accumulation variability within and between human populations. BMC Genomics 2013, 14, 495. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, J.R.; Ivy, J.A.; Lacy, R.C.; Doyle, J.M.; DeWoody, J.A. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species. PloS ONE 2017, 12, e0175996. [Google Scholar] [CrossRef] [PubMed]
- Wajid, B.; Serpedin, E. Do it yourself guide to genome assembly. Brief. Funct. Genomics 2014, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedlazeck, F.J.; Lee, H.; Darby, C.A.; Schatz, M.C. Piercing the dark matter: Bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 2018, 19, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Gurtowski, J.; Yoo, S.; Nattestad, M.; Marcus, S.; Goodwin, S.; McCombie, W.R.; Schatz, M. Third-generation sequencing and the future of genomics. BioRxiv 2016, 048603. [Google Scholar] [Green Version]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genomics Proteomics Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [Green Version]
- McDonough, M.M.; Parker, L.D.; Rotzel McInerney, N.; Campana, M.G.; Maldonado, J.E. Performance of commonly requested destructive museum samples for mammalian genomic studies. J. Mammal. 2018, 99, 789–802. [Google Scholar] [CrossRef]
- Thorne, E.T.; Williams, E.S. Disease and endangered species: The black-footed ferret as a recent example. Conserv. Biol. 1988, 2, 66–74. [Google Scholar] [CrossRef]
- Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B.M.; Buckles, E.L.; Coleman, J.T.; Darling, S.R.; Gargas, A.; Niver, R. Bat white-nose syndrome: An emerging fungal pathogen? Science 2009, 323, 227. [Google Scholar] [CrossRef]
- Berger, L.; Speare, R.; Hyatt, A. Chytrid fungi and amphibian declines: Overview, implications and future directions. In Declines and Disappearances of Australian Frogs; Campbell, A., Ed.; Environment Australia: Canberra, Australia, 1999; pp. 23–33. [Google Scholar]
Reference Genome Use | Conservation Questions Addressed | Conservation Actions | Conservation Outcomes |
---|---|---|---|
• Microsatellite development • Genome-wide SNP analysis | • Were the founders related? • Does the metapopulation have equal founder representation to ensure the maintenance of gene diversity? • Is inbreeding accumulating in group housing and Maria island insurance populations? | • Resolved relatedness of founders [43] • Resolved parentage in group housing within the metapopulation [50,52,54] • Reconstructed pedigree of island population [53] • Informed translocation recommendations [63] |
• Tool for selecting individuals for translocations based on genetic complementation • Improved maintenance of genetic diversity across captive populations • Increased genetic diversity of hybrid individuals at wild release sites |
• The characterization of DFTD strains | • How many DFTD strains exist? | • Appropriate management of wild populations [46,64,65] | • Assisted in managing the spread of new DFTD strains |
• The characterization of immune genes • Primer design and SNP panel development • Targeted SNP analysis |
• Can we develop a vaccine for DFTD? • Can we improve Tasmanian devil immune diversity? | • Immunization development and deployment [66]. Immune gene diversity analysis for informed translocation recommendations [67,68,69,70,71,72,73,74,75] |
• Improved immune responses of devils released to the wild • Improved immunogenetic diversity of released Tasmanian devils and their resultant offspring |
• Development of blocking primer for metagenomics diet analysis | • What constitutes the complete diet of Tasmanian devils on Maria Island? | • Investigating the impact of an introduced carnivore to island wildlife | • Mitigation implemented to reduce the impact on highly consumed species |
• Alignment of resequenced genomes • SNP Analysis and Annotation • GWAS | • Are devils evolving host-parasite resistance to DFTD? | • Ongoing monitoring to ensure releases do not impact the evolution of potential resistance alleles [76,77,78,79] | • Assisted in understanding regions of the genome that are potentially involved in DFTD resistance |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandies, P.; Peel, E.; Hogg, C.J.; Belov, K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes 2019, 10, 846. https://doi.org/10.3390/genes10110846
Brandies P, Peel E, Hogg CJ, Belov K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes. 2019; 10(11):846. https://doi.org/10.3390/genes10110846
Chicago/Turabian StyleBrandies, Parice, Emma Peel, Carolyn J. Hogg, and Katherine Belov. 2019. "The Value of Reference Genomes in the Conservation of Threatened Species" Genes 10, no. 11: 846. https://doi.org/10.3390/genes10110846
APA StyleBrandies, P., Peel, E., Hogg, C. J., & Belov, K. (2019). The Value of Reference Genomes in the Conservation of Threatened Species. Genes, 10(11), 846. https://doi.org/10.3390/genes10110846