A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions
Abstract
:1. Introduction
2. Candidate Genes in PTSD
3. Overview of Epigenetic Markers in PTSD
3.1. Methylomics
3.2. Histone Modifications
3.3. RNA-Associated Silencing
3.4. Environmental Contributors of Epigenetic Modification
4. Psychiatric Comorbidities
4.1. Depression
4.2. Anxiety Disorders
4.3. Psychotic Disorders (Schizophrenia and Bipolar Disorder)
4.4. Substance Use Disorder
4.5. Suicide Phenotypes
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Chiu, W.T.; Demler, O.; Merikangas, K.R.; Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 617–627. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; 947p. [Google Scholar]
- National Center for Post-Traumatic Stress Disorder. PTSD Research Quarterly; National Center for Post-Traumatic Stress Disorder: White River Junction, VT, USA, 2008; Volume 19, pp. 1–8.
- Kulis, M.; Merkel, A.; Heath, S.; Queirós, A.C.; Schuyler, R.P.; Castellano, G.; Beekman, R.; Raineri, E.; Esteve, A.; Clot, G.; et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 2015, 47, 746. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.; Joseph, N.F.; Horn, M.E.; Samiei, A.; Meng, J.; Seo, J.; Rei, D.; Bero, A.W.; Phan, T.X.; Wagner, F.; et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 2014, 156, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Knox, D.; Nault, T.; Henderson, C.; Liberzon, I. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience 2012, 223, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Pape, J.C.; Binder, E.B. Psychological trauma as risk for delayed psychiatric disorders: epigenetic mechanisms. Nervenarzt 2014, 85, 1382–1389. [Google Scholar] [CrossRef]
- Rampp, C.; Binder, E.B.; Provençal, N. Chapter two—Epigenetics in posttraumatic stress disorder. In Progress in Molecular Biology and Translational Science; Akbarian, S., Lubin, F., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 128, pp. 29–50. [Google Scholar]
- Sheerin, C.M.; Lind, M.J.; Bountress, K.; Nugent, N.R.; Amstadter, A.B. The genetics and epigenetics of PTSD: Overview, recent advances, and future directions. Curr. Opin. Psychol. 2017, 14, 5–11. [Google Scholar] [CrossRef]
- Bachmann, A.W.; Sedgley, T.L.; Jackson, R.V.; Gibson, J.N.; Young, R.M.; Torpy, D.J. Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 2005, 30, 297–306. [Google Scholar] [CrossRef]
- Bryant, R.A.; Felmingham, K.L.; Falconer, E.M.; Pe Benito, L.; Dobson-Stone, C.; Pierce, K.D.; Schofield, P.R. Preliminary evidence of the short allele of the serotonin transporter gene predicting poor response to cognitive behavior therapy in posttraumatic stress disorder. Biol. Psychiatry 2010, 67, 1217–1219. [Google Scholar] [CrossRef]
- Comings, D.E.; Muhleman, D.; Gysin, R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol. Psychiatry 1996, 40, 368–372. [Google Scholar] [CrossRef]
- Kilpatrick, D.G.; Koenen, K.C.; Ruggiero, K.J.; Acierno, R.; Galea, S.; Resnick, H.S.; Roitzsch, J.; Boyle, J.; Gelernter, J. The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. Am. J. Psychiatry 2007, 164, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.B.; Chen, C.; Ursano, R.J.; et al. Genome-wide association studies of posttraumatic stress disorder in 2 cohorts of us army soldiers. JAMA Psychiatry 2016, 73, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Koch, A.E.; Garrett, M.E.; Gibson, J.; Liu, Y.; Dennis, M.F.; Kimbrel, N.A.; Beckham, J.C.; Hauser, M.A. Genome-wide association study of posttraumatic stress disorder in a cohort of Iraq–Afghanistan era veterans. J. Affect. Disord. 2015, 184, 225–234. [Google Scholar] [CrossRef]
- Mehta, D.; Bruenig, D.; Carrillo-Roa, T.; Lawford, B.; Harvey, W.; Morris, C.P.; Smith, A.K.; Binder, E.B.; Young, R.M.; Voisey, J. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr. Scand. 2017, 136, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.B.; Bradley, R.G.; Liu, W.; Epstein, M.P.; Deveau, T.C.; Mercer, K.B.; Tang, Y.; Gillespie, C.F.; Heim, C.M.; Nemeroff, C.B.; et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008, 299, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Kobayashi, I.; Tsao, D.; Mellman, T.A. Expression and methylation in posttraumatic stress disorder and resilience; evidence of a role for odorant receptors. Psychiatry Res. 2016, 245, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Maddox, S.A.; Kilaru, V.; Shin, J.; Jovanovic, T.; Almli, L.M.; Dias, B.G.; Norrholm, S.D.; Fani, N.; Michopoulos, V.; Ding, Z.; et al. Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol. Psychiatry 2018, 23, 658–665. [Google Scholar] [CrossRef]
- Uddin, M.; Aiello, A.E.; Wildman, D.E.; Koenen, K.C.; Pawelec, G.; de Los Santos, R.; Goldmann, E.; Galea, S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA 2010, 107, 9470–9475. [Google Scholar] [CrossRef]
- Almli, L.M.; Fani, N.; Smith, A.K.; Ressler, K.J. Genetic approaches to understanding post-traumatic stress disorder. Int. J. Neuropsychopharmacol. 2014, 17, 355–370. [Google Scholar] [CrossRef]
- Daskalakis, N.P.; Rijal, C.M.; King, C.; Huckins, L.M.; Ressler, K.J. Recent genetics and epigenetics approaches to PTSD. Curr. Psychiatry Rep. 2018, 20, 30. [Google Scholar] [CrossRef]
- Rady, A.; Elsheshai, A.; Elkholy, O.; el Wafa, H.A. Psychogenetics of post-traumatic stress disorder: A short review. Appl. Clin. Genet. 2010, 3, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Rasmusson, A.; Mitchell, K.; Logue, M.; Baldwin, C.; Miller, M. A Genome-Wide Association study of clinical symptoms of dissociation in a trauma-exposed sample. Depress. Anxiety 2014, 31, 352–360. [Google Scholar] [CrossRef]
- Ressler, K.J.; Mercer, K.B.; Bradley, B.; Jovanovic, T.; Mahan, A.; Kerley, K.; Norrholm, S.D.; Kilaru, V.; Smith, A.K.; Myers, A.J.; et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 2011, 470, 492. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Ogdie, M.N.; Järvelin, M.-R.; Moilanen, I.K.; Loo, S.K.; McCracken, J.T.; McGough, J.J.; Yang, M.H.; Peltonen, L.; Nelson, S.F.; et al. Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder. Am. J Med. Genet. B. Neuropsychiatr. Genet. 2008, 147B, 1488–1494. [Google Scholar] [CrossRef]
- Chang, S.-C.; Koenen, K.C.; Galea, S.; Aiello, A.E.; Soliven, R.; Wildman, D.E.; Uddin, M. Molecular variation at the SLC6A3 locus predicts lifetime risk of PTSD in the Detroit neighborhood health study. PLOS ONE 2012, 7, e39184. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Southwick, S.; Goodson, S.; Morgan, A.; Nagy, L.; Charney, D.S. No association between D2 dopamine receptor (DRD2) "A" system alleles, or DRD2 haplotypes, and posttraumatic stress disorder. Biol. Psychiatry 1999, 45, 620–625. [Google Scholar] [CrossRef]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.E.; Ratanatharathorn, A.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.; et al. Largest GWAS of PTSD (N = 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatr. 2018, 23, 666–673. [Google Scholar] [CrossRef]
- Melroy-Greif, W.E.; Wilhelmsen, K.C.; Yehuda, R.; Ehlers, C.L. Genome-wide association study of post-traumatic stress disorder in two high-risk populations. Twin Res. Hum. Genet. 2017, 20, 197–207. [Google Scholar] [CrossRef]
- Nievergelt, C.M.; Maihofer, A.X.; Mustapic, M.; Yurgil, K.A.; Schork, N.J.; Miller, M.W.; Logue, M.W.; Geyer, M.A.; Risbrough, V.B.; O’Connor, D.T.; et al. Genomic predictors of combat stress vulnerability and resilience in U.S. Marines: A genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene. Psychoneuroendocrinology 2015, 51, 459–471. [Google Scholar] [CrossRef]
- Logue, M.W.; Baldwin, C.; Guffanti, G.; Melista, E.; Wolf, E.J.; Reardon, A.F.; Uddin, M.; Wildman, D.; Galea, S.; Koenen, K.C.; et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol. Psychiatry 2012, 18, 937. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, N.; Wolf, E.J.; Logue, M.W.; Hayes, J.P.; Stone, A.; Griffin, L.M.; Schichman, S.A.; Miller, M.W. Epigenetic variation at SKA2 predicts suicide phenotypes and internalizing psychopathology. Depress. Anxiety 2016, 33, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, Z.; Wilcox, H.C.; Eaton, W.W.; Van Eck, K.; Kilaru, V.; Jovanovic, T.; Klengel, T.; Bradley, B.; Binder, E.B.; Ressler, K.J.; et al. Epigenetic and genetic variation at SKA2 predict suicidal behavior and post-traumatic stress disorder. Transl. Psychiatry 2015, 5, e627. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Kranzler, H.R.; Yang, C.; Zhao, H.; Farrer, L.A.; Gelernter, J. Genome-wide association study identifies new susceptibility loci for posttraumatic stress disorder. Biol. Psychiatry 2013, 74, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.; Galea, S.; Chang, S.C.; Aiello, A.E.; Wildman, D.E.; de los Santos, R.; Koenen, K.C. Gene expression and methylation signatures of MAN2C1 are associated with PTSD. Dis Markers 2011, 30, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Paciotti, S.; Persichetti, E.; Klein, K.; Tasegian, A.; Duvet, S.; Hartmann, D.; Gieselmann, V.; Beccari, T. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice. J. Biol. Chem. 2014, 289, 9611–9622. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, N.; Wada, I.; Hasegawa, K.; Yorihuzi, T.; Tremblay, L.O.; Herscovics, A.; Nagata, K. A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2001, 5, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Yan, S.; Shi, Y. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS ONE 2013, 8, e69340. [Google Scholar] [CrossRef]
- Smith, A.K.; Conneely, K.N.; Kilaru, V.; Mercer, K.B.; Weiss, T.E.; Bradley, B.; Tang, Y.; Gillespie, C.F.; Cubells, J.F.; Ressler, K.J. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2011, 156, 700–708. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Singh, S.; Ranjan, V.; Ugale, R.; Saha, S.; Prakash, A. Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cell. Mol. Neurobiol. 2017, 37, 1287–1301. [Google Scholar] [CrossRef]
- Singh, S.; Siddiqui, S.A.; Tripathy, S.; Kumar, S.; Saha, S.; Ugale, R.; Modi, D.R.; Prakash, A. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res. Bull. 2018, 140, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon γ, in peripheral blood mononuclear cells from PTSD patients. J Neuroimmune Pharmacol. 2016, 11, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, U.; Herrmann, L.; Hagl, K.; Novak, B.; Huber, C.; Holsboer, F.; Wotjak, C.T.; Buell, D.R. Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Front. Psychiatr. 2013, 4, 66. [Google Scholar] [CrossRef] [PubMed]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Brockie, T.N.; Dana-Sacco, G.; Wallen, G.R.; Wilcox, H.C.; Campbell, J.C. The Relationship of Adverse Childhood Experiences to PTSD, depression, poly-drug use and suicide attempt in reservation-based native American adolescents and young adults. Am. J. Community Psychol. 2015, 55, 411–421. [Google Scholar] [CrossRef] [PubMed]
- LeardMann, C.A.; Smith, B.; Ryan, M.A. Do adverse childhood experiences increase the risk of postdeployment posttraumatic stress disorder in US Marines? BMC Public Health 2010, 10, 437. [Google Scholar] [CrossRef] [PubMed]
- Mersky, J.P.; Janczewski, C.E.; Nitkowski, J.C. Poor mental health among low-income women in the U.S.: The roles of adverse childhood and adult experiences. Soc. Sci. Med. 2018, 206, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Flory, J.D.; Pratchett, L.C.; Buxbaum, J.; Ising, M.; Holsboer, F. Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology (Berl) 2010, 212, 405–417. [Google Scholar] [CrossRef]
- Weder, N.; Zhang, H.; Jensen, K.; Yang, B.Z.; Simen, A.; Jackowski, A.; Lipschitz, D.; Douglas-Palumberi, H.; Ge, M.; Perepletchikova, F.; et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 417–424. [Google Scholar] [CrossRef]
- Silverstein, F.S.; Jensen, F.E. Neonatal seizures. Ann. Neurol. 2007, 62, 112–120. [Google Scholar] [CrossRef]
- Moser, D.A.; Paoloni-Giacobino, A.; Stenz, L.; Adouan, W.; Manini, A.; Suardi, F.; Cordero, M.I.; Vital, M.; Sancho Rossignol, A.; Rusconi-Serpa, S.; et al. BDNF methylation and maternal brain activity in a violence-related sample. PLoS ONE 2015, 10, e0143427. [Google Scholar] [CrossRef] [PubMed]
- Perroud, N.; Rutembesa, E.; Paoloni-Giacobino, A.; Mutabaruka, J.; Mutesa, L.; Stenz, L.; Malafosse, A.; Karege, F. The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J. Biol. Psychiatry 2014, 15, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Watkeys, O.J.; Kremerskothen, K.; Quide, Y.; Fullerton, J.M.; Green, M.J. Glucocorticoid receptor gene (NR3C1) DNA methylation in association with trauma, psychopathology, transcript expression, or genotypic variation: A systematic review. Neurosci. Biobehav. Rev. 2018, 95, 85–122. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Daskalakis, N.P.; Bierer, L.M.; Bader, H.N.; Klengel, T.; Holsboer, F.; Binder, E.B. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol. Psychiatry 2016, 80, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.S.; Tamashiro, K.L.K.; Yang, X.; Purcell, R.H.; Harvey, A.; Willour, V.L.; Huo, Y.; Rongione, M.; Wand, G.S.; Potash, J.B. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 2010, 151, 4332–4343. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ewald, E.R.; Huo, Y.; Tamashiro, K.L.; Salvatori, R.; Sawa, A.; Wand, G.S.; Lee, R.S. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem. Biophys. Res. Commun. 2012, 420, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Daskalakis, N.P.; Desarnaud, F.; Makotkine, I.; Lehrner, A.L.; Koch, E.; Flory, J.D.; Buxbaum, J.D.; Meaney, M.J.; Bierer, L.M. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front. Psychiatry 2013, 4, 118. [Google Scholar] [CrossRef]
- Kuan, P.F.; Waszczuk, M.A.; Kotov, R.; Marsit, C.J.; Guffanti, G.; Gonzalez, A.; Yang, X.; Koenen, K.; Bromet, E.; Luft, B.J. An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl. Psychiatry 2017, 7, e1158. [Google Scholar] [CrossRef]
- Olsson, C.A.; Foley, D.L.; Parkinson-Bates, M.; Byrnes, G.; McKenzie, M.; Patton, G.C.; Morley, R.; Anney, R.J.; Craig, J.M.; Saffery, R. Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol. Psychol. 2010, 83, 159–165. [Google Scholar] [CrossRef]
- Klein Gunnewiek, T.M.; Homberg, J.R.; Kozicz, T. Modulation of glucocorticoids by the serotonin transporter polymorphism: A narrative review. Neurosci. Biobehav. Rev. 2018, 92, 338–349. [Google Scholar] [CrossRef]
- Fuchikami, M.; Morinobu, S.; Segawa, M.; Okamoto, Y.; Yamawaki, S.; Ozaki, N.; Inoue, T.; Kusumi, I.; Koyama, T.; Tsuchiyama, K.; et al. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS ONE 2011, 6, e23881. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.L.; Zoladz, P.R.; Sweatt, J.D.; Diamond, D.M. Epigenetic modification of hippocampal BDNF DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatr. Res. 2011, 45, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Solanki, N.; Alkadhi, I.; Atrooz, F.; Patki, G.; Salim, S. Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutr. Res. 2015, 35, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, T.; Klengel, T.; Armario, A.; Jovanovic, T.; Norrholm, S.D.; Ressler, K.J.; Andero, R. Dexamethasone treatment leads to enhanced fear extinction and dynamic Fkbp5 regulation in amygdala. Neuropsychopharmacology 2016, 41, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, A.; Chandramohan, Y.; Collins, A.; Droste, S.K.; Nutt, D.J.; Reul, J.M. GABAergic control of novelty stress-responsive epigenetic and gene expression mechanisms in the rat dentate gyrus. Neuropsychopharmacology 2011, 21, 316–324. [Google Scholar] [CrossRef]
- Sillivan, S.E.; Vaissiere, T.; Miller, C.A. Neuroepigenetic regulation of pathogenic memories. Neuroepigenetics 2015, 1, 28–33. [Google Scholar] [CrossRef]
- Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004, 279, 40545–40559. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Qing, H.; Liu, M.; Yang, P. The extinction of morphine-induced conditioned place preference by histone deacetylase inhibition. Neurosci. Lett. 2010, 483, 137–142. [Google Scholar] [CrossRef]
- Krzyzewska, I.M.; Ensink, J.B.M.; Nawijn, L.; Mul, A.N.; Koch, S.B.; Venema, A.; Shankar, V.; Frijling, J.L.; Veltman, D.J.; Lindauer, R.J.L.; et al. Genetic variant in CACNA1C is associated with PTSD in traumatized police officers. Eur. J. Hum. Genet. 2018, 26, 247–257. [Google Scholar] [CrossRef]
- Pizzimenti, C.L.; Lattal, K.M. Epigenetics and memory: causes, consequences and treatments for post-traumatic stress disorder and addiction. Genes Brain Behav. 2015, 14, 73–84. [Google Scholar] [CrossRef]
- Sartor, C.E.; McCutcheon, V.V.; Pommer, N.E.; Nelson, E.C.; Grant, J.D.; Duncan, A.E.; Waldron, M.; Bucholz, K.K.; Madden, P.A.; Heath, A.C. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women. Psychol. Med. 2011, 41, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Inserra, A. Hypothesis: The psychedelic ayahuasca heals traumatic memories via a σ 1 receptor-mediated epigenetic-mnemonic process. Front. Pharmacol. 2018, 9, 330. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Chuang, J.Y.; Tsai, M.S.; Wang, X.F.; Xi, Z.X.; Hung, J.J.; Chang, W.C.; Bonci, A.; Su, T.P. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proc. Natl. Acad. Sci. USA 2015, 112, 6562–6570. [Google Scholar] [CrossRef] [PubMed]
- Labonte, B.; Yerko, V.; Gross, J.; Mechawar, N.; Meaney, M.J.; Szyf, M.; Turecki, G. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry 2012, 72, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Labonte, B.; Azoulay, N.; Yerko, V.; Turecki, G.; Brunet, A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl. Psychiatry 2014, 4, e368. [Google Scholar] [CrossRef] [PubMed]
- Ferdosi, H.; Schwab, K.A.; Metti, A.; Brenner, L.A.; Terrio, H.; Pazdan, R.M.; Cole, W.R.; Scher, A.I. Trajectory of postconcussive symptoms 12-months post-deployment in soldiers with and without mild traumatic brain injury—Warrior STRONG Study. Am. J. Epidemiol. 2018. [Google Scholar] [CrossRef]
- Nevarez, M.D.; Yee, H.M.; Waldinger, R.J. Friendship in war: Camaraderie and prevention of posttraumatic stress disorder prevention. J. Trauma. Stress 2017, 30, 512–520. [Google Scholar] [CrossRef]
- Albanese, B.J.; Macatee, R.J.; Stentz, L.A.; Schmidt, N.B.; Bryan, C.J. Interactive effects of cumulative lifetime traumatic brain injuries and combat exposure on posttraumatic stress among deployed military personnel. Cogn. Behav. Ther. 2018, 1–12. [Google Scholar] [CrossRef]
- Wolf, E.J.; Logue, M.W.; Stoop, T.B.; Schichman, S.A.; Stone, A.; Sadeh, N.; Hayes, J.P.; Miller, M.W. Accelerated DNA methylation age: Associations with posttraumatic stress disorder and mortality. Psychosom. Med. 2018, 80, 42–48. [Google Scholar] [CrossRef]
- Zhubi, A.; Veldic, M.; Puri, N.V.; Kadriu, B.; Caruncho, H.; Loza, I.; Sershen, H.; Lajtha, A.; Smith, R.C.; Guidotti, A.; et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr. Res. 2009, 111, 115–122. [Google Scholar] [CrossRef]
Gene Name (Chromosome, Homo sapiens) | Protein Name (Alternative name/s) | Presumptive Protein Role/s | Population Characteristics | Type of Study | Association with PTSD |
---|---|---|---|---|---|
ADCY8 Ch 8q24.22 | Adenylate cyclase 8 (ADCY8) | Catalyses cAMP formation from ATP | 484 White, non-Hispanic, trauma-exposed military veterans and their civilian partners | SNP genotype | SNP association: rs263232 in ADCY8 associated (not to genome-wide significance) with dissociative symptoms of PTSD [25]. |
ADCYAP1R1 Ch 7p14.3 | ADCYAP receptor type 1 (PAC1) | May regulate release of adrenocorticotropin, LH, GH, PRL, epinephrine | 798 subjects, various races, trauma-exposed civilians (36.9% male) | SNP genotype | SNP association: rs2267735 CC genotype predicts PTSD diagnosis and symptom severity in female humans [26]. |
ANKRD55 Ch 5q11.2 | Ankyrin repeat domain 55 (ANKRD55) | Role in juvenile arthritis | 10,834 subjects, various races, military personnel (80.7% male) | Genome-wide association study | SNP association: rs159572 in African-Americans was associated with PTSD diagnosis [15]. |
BRSK1 Ch 19q13.42 | BR Serine/threonine kinase 1 (BRSK1) | Neuron polarization, centrosome duplication | 211 subjects, 96 male Australian combat veterans, 115 male general population subjects | Genome-wide methylation analysis | Differential methylation: DNA hypomethylation of CpGs spanning the gene was associated with greater PTSD symptom severity [17]. |
CNR1 Ch 6q15 | Cannabinoid receptor 1 | G-protein coupled receptor, inhibits adenylate cyclase | 187 children with ADHD (69.5% male), 374 parents (50% male), various races | SNP genotype | SNP association: rs1049353 allele A showed significant association with PTSD diagnosis in Caucasian parents [27]. |
DAT1/SLC6A3 Ch 5p15.33 | Dopamine active transporter (DAT, SLC6A3) | Dopamine transport | 1547 adults (362 trauma exposed), various races | SNP genotype, DNA methylation microarray | SNP association: DAT1 39UTR VNTR 9R allele doubles lifetime risk of PTSD but only in conjunction with high methylation in the DAT1 promoter locus [28]. |
DDX60L Ch 4q32.3 | DExD/H-Box 60 Like (DEAD Box protein 60-like) | Helicase, mediates ATP binding/hydrolysis, nucleic acid binding, RNA unwinding | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: On meta-analysis, intronic rs10002308 significantly associated with increased risk for PTSD diagnosis [16]. |
DOCK2 Ch 5q35.1 | Dedicator of cytokinesis 2 (DOCK2) | Remodels actin cytoskeleton in hematopoietic cells | 211 subjects, 96 male Australian combat veterans, 115 male general population subjects | Genome-wide methylation analysis | Differential methylation: DNA hypomethylation of CpGs spanning the gene was associated with greater PTSD symptom severity [17]. |
DPP6 Ch 7q36.2 | Dipeptidyl-aminopeptidase-like protein 6 (DPP6) | Bind voltage gated K+ channels | 484 White, non-Hispanic, trauma-exposed military veterans and their civilian partners | SNP genotype | SNP association: rs71534169 in DPP6 associated (not to genome-wide significance) with dissociative symptoms of PTSD [25]. |
DRD2 Ch 11q23.2 | Dopamine receptor D2 (DRD2, D2R) | D2 subtype of dopamine neurotransmitter receptor, inhibits adenylyl cyclase | 56 combat veterans, mean age 43.6 years [13] 52 European-American combat veterans, 87 European-American controls [29] | SNP genotype [13] Association study [29] | Allelic association: DRD2 A1 allele significantly associated with PTSD [13]. Result not replicated [29]. |
DSCAM Ch 21q22.2 | Down Syndrome Cell Adhesion Molecule (DSCAM) | Cell adhesion molecule, neuronal self-avoidance | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: In African-Americans, rs77290333 increased risk for PTSD diagnosis [16]. |
FKBP5 Ch 6p21.31 | Forkhead binding protein 5 (FKBP5, FK506 binding protein 5, Immunophilin) | Immunoregulation, protein folding, protein trafficking | 900 trauma-exposed adults, 42.7% male, 95.2% black [18] 30 trauma-exposed adults, mean age 41.46, 27 African-American; 46 controls, mean age 40.97, 45 African-American [30] | SNP genotype [18] SNP genotype [30] | SNP association: FKBP5 SNPs (rs9296158, rs3800373, rs1360780, rs9470080) showed significant gene × environment (severity of childhood sexual abuse) interaction predicting severity of adulthood PTSD symptoms and enhanced glucocorticoid receptor sensitivity [18]. Allelic variation interacts with ACE-induced demethylation to affect gene transcription [30]. |
KLHL1 Ch 13q21.33 | Kelch-like family member 1 (KLHL1) | Possible actin binding | 20,730 subjects from 11 combined studies | Genome-wide association study | SNP association: In African-Americans, rs139558732 increased risk for PTSD diagnosis [31]. |
LCN8 Ch 9q34.3 | Lipocalin 8 (LCN8, lipocalin 5, LCN5) | Binds and transports hydrophobic ligands | 211 subjects, 96 male Australian combat veterans, 115 male general population subjects | Genome-wide methylation analysis | Differential methylation: DNA hypomethylation of CpGs spanning the gene was associated with greater PTSD symptom severity [17]. |
NGF Ch 1p13.2 | Nerve growth factor (NGF) | Nerve growth stimulation and regulation | 211 subjects, 96 male Australian combat veterans, 115 male general population subjects | Genome-wide methylation analysis | Differential methylation: DNA hypomethylation of CpGs spanning the gene was associated with greater PTSD symptom severity [17]. |
NR3C1 Ch 5q31.3 | Glucocorticoid receptor (GR, GCR, NR3C1) | Transcription factor, transcription regulator | 118 combat veterans diagnosed with PTSD mean age 55.7, 42 combat exposed non-PTSD controls, mean age 61.2 | Glucocorticoid receptor polymorphism analysis | Allelic association: BclI GG genotype associated with low basal cortisol in PTSD subjects [11]. |
OR11L1 Ch 1q44 | Olfactory receptor family 11 subfamily L member 1 (OR11L1) | Receptor for odorants to trigger smell perception | 619 Mexican American adults; unspecified number of American-Indian adults | Genome-wide association study | Allelic association: Six variants in OR11L1 associated with risk of PTSD in Mexican-Americans [26]. |
OR2L13 Ch 1q44 | Olfactory receptor family 2 subfamily L member 13 (OR2L13) | Receptor for odorants to trigger smell perception | 619 Mexican-American adults; unspecified number of American-Indian adults | Genome-wide association study | SNP association: rs151319968 associated with PTSD in Native American sample [32]. |
PRKG1 Ch 10q11.23 | Protein kinase CGMP- dependent type 1 (PRKG1B) | Mediates nitric oxide/cGMP signaling, modulates cell growth, regulates neuron function | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: On meta-analysis, intronic rs10762479 was significantly associated with increased risk for PTSD diagnosis [16]. |
PRTFDC1 Ch 10p12.1 | Phosphoribosyl transferase domain containing 1 (PRTFDC1, HHGP) | Protein homodimerization, magnesium ions | 3494 male US Marines, 85.5% white, mean age 23.1 | Genome-wide association study | SNP association: rs6482463 in PRTFDC1 associated with PTSD across ancestry groups [33]. |
RORA Ch 15q22.2 | RAR-related orphan receptor alpha (RORα, NR1F1) | Nuclear hormone receptor | 852 military veterans and their partners; 435 trauma-exposed subset, 59.7% male | Genome-wide association study | SNP association: rs8042149 associated with lifetime diagnosis of PTSD [34]. |
SDC2 Ch 8q22.1 | Syndecan 2 (SYND2, HSPG) | Cell binding, cell signaling, cytoskeletal organization | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: In Caucasians, rs2437772 increased risk for PTSD diagnosis [16]. |
SKA2 Ch17q22 | Spindle And Kinetochore Associated Complex Subunit 2 (FAM33A) | Chromosome segregation during mitosis | 466 White, non-Hispanic, trauma-exposed military veterans and their civilian partners (65% male) [35] 421 subjects from the Grady Trauma Project and 326 subjects from Johns Hopkins Center Prevention Research Study [36] | Genotyping and methylation analysis [35] Genotyping and methylation analysis [36] | Differential methylation: Methylation at CpG locus cg13989295 associated with higher levels of internalizing disorders [35]. Differential methylation: SKA2 methylation predicted lifetime suicide attempt and cortisol suppression and interacted with ACE to predict PTSD [36]. |
SLC6A4 Ch 17q11.2 | Serotonin transporter (5-HTT, SERT, SLC6A4) | Serotonin transport from synapse into presynaptic neurons | 589 adults from Florida Hurricane Study, 36.5% men, 90% white [14] 45 PTSD adults in 8 week cognitive behavior therapy program [12] | Genotyping [14] 5-HTTLPR genotype [12] | Allelic association: S allele linked to higher PTSD risk in context of poor social support [14]. Allelic association: S allele had greater PTSD symptom severity and poorer response to CBT [12]. |
TBC1D2 Ch 9q22.33 | TBC1 domain family member 2 (TBC1D2) | Vesicle transport, cell–cell adhesion | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: In Caucasians, rs7866350 increased risk for PTSD diagnosis [16]. |
TLL1 Ch 4q32.3 | Tolloid-like protein 1 (TLL1) | Metalloprotease that processes procollagen C-propeptides | 9340 subjects; 1040 with PTSD, 5947 controls, various races | Genome-wide association study | SNP association: rs6812849 and rs7691872 in the first intron of TLL1 in European Americans were associated (not to genome-wide significance) with lifetime PTSD diagnosis [37]. |
UNC13C Ch 15q21.3 | Unc-13 Homolog C (UNC13C) | Vesicle maturation, exocytosis | 1929 military veterans, 383 mixed population of civilians and veterans, various races | Genome-wide association study | SNP association: In African-Americans, rs73419609 increased risk for PTSD diagnosis [16]. |
ZNF626 Ch 19p12 | Zinc finger protein 626 (ZNF626) | Possibly transcription regulation | 10,834 various races, military personnel (80.7% male) | Genome-wide association study | SNP association: rs11085374 in European Americans was significantly associated with PTSD diagnosis [15]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blacker, C.J.; Frye, M.A.; Morava, E.; Kozicz, T.; Veldic, M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes 2019, 10, 140. https://doi.org/10.3390/genes10020140
Blacker CJ, Frye MA, Morava E, Kozicz T, Veldic M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes. 2019; 10(2):140. https://doi.org/10.3390/genes10020140
Chicago/Turabian StyleBlacker, Caren J., Mark A. Frye, Eva Morava, Tamas Kozicz, and Marin Veldic. 2019. "A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions" Genes 10, no. 2: 140. https://doi.org/10.3390/genes10020140
APA StyleBlacker, C. J., Frye, M. A., Morava, E., Kozicz, T., & Veldic, M. (2019). A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes, 10(2), 140. https://doi.org/10.3390/genes10020140