Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. PRA Diagnosis and Sample Collection
2.2. Exclusion of Known Retinal Mutations
2.3. Whole Genome Sequencing
2.4. Variant Filtering
2.5. Variant Screening
2.6. Sanger Sequencing of NECAP1 Variant
2.7. Expression of NECAP1 in Canine Retina, Using RNAseq Data
2.8. Haplotype Analyses
2.9. Autozygosity Mapping
3. Results
3.1. Exclusion of Known Retinal Mutations
3.2. NECAP1 Variant Identification
3.3. Variant Screening
3.4. Population Screening
3.5. NECAP1 Is Expressed in Canine Retina
3.6. Haplotype Analyses
3.7. Autozygosity Mapping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arno, G.; Agrawal, S.A.; Eblimit, A.; Bellingham, J.; Xu, M.; Wang, F.; Chakarova, C.; Parfitt, D.A.; Lane, A.; Burgoyne, T.; et al. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa. Am J. Hum. Genet. 2016, 99, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Miyadera, K. Inherited retinal diseases in dogs: advances in gene/mutation discovery. Dobutsu Iden Ikushu Kenkyu 2014, 42, 79–89. [Google Scholar] [PubMed] [Green Version]
- Petersen-Jones, S.M.; Komaromy, A.M. Dog models for blinding inherited retinal dystrophies. Hum. Gene Ther. Clin. Dev. 2015, 26, 15–26. [Google Scholar] [CrossRef]
- Mellersh, C.S. The genetics of eye disorders in the dog. Canine Genet. Epidemiol. 2014, 1, 3. [Google Scholar] [CrossRef]
- Clements, P.J.; Gregory, C.Y.; Peterson-Jones, S.M.; Sargan, D.R.; Bhattacharya, S.S. Confirmation of the rod cGMP phosphodiesterase beta subunit (PDE beta) nonsense mutation in affected rcd-1 Irish setters in the UK and development of a diagnostic test. Curr. Eye Res. 1993, 12, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Petersen-Jones, S.M.; Entz, D.D.; Sargan, D.R. cGMP phosphodiesterase-alpha mutation causes progressive retinal atrophy in the Cardigan Welsh corgi dog. Invest. Ophthalmol. Vis. Sci. 1999, 40, 1637–1644. [Google Scholar]
- Dekomien, G.; Runte, M.; Godde, R.; Epplen, J.T. Generalized progressive retinal atrophy of Sloughi dogs is due to an 8-bp insertion in exon 21 of the PDE6B gene. Cytogenet. Cell Genet. 2000, 90, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Cideciyan, A.V.; Aleman, T.S.; Pianta, M.J.; Pearce-Kelling, S.E.; Miller, B.J.; Jacobson, S.G.; Aquirre, G.D.; Acland, G.M. Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 2002, 99, 6328–6333. [Google Scholar] [CrossRef]
- Zhang, Q.; Acland, G.M.; Wu, W.X.; Johnson, J.L.; Pearce-Kelling, S.; Tulloch, B.; Vervoort, R.; Wright, A.F.; Aguirre, G.D. Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum. Mol. Genet. 2002, 11, 993–1003. [Google Scholar] [CrossRef]
- Mellersh, C.S.; Boursnell, M.E.; Pettitt, L.; Ryder, E.J.; Holmes, N.G.; Grafham, D.; Forman, O.P.; Sampson, J.; Barnett, K.C.; Blanton, S.; et al. Canine RPGRIP1 mutation establishes cone-rod dystrophy in miniature longhaired dachshunds as a homologue of human Leber congenital amaurosis. Genomics 2006, 88, 293–301. [Google Scholar] [CrossRef]
- Zangerl, B.; Goldstein, O.; Philp, A.R.; Lindauer, S.J.; Pearce-Kelling, S.E.; Mullins, R.F.; Graphodatsky, A.S.; Ripoll, D.; Felix, J.S.; Stone, E.M.; et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006, 88, 551–563. [Google Scholar] [CrossRef]
- Wiik, A.C.; Wade, C.; Biagi, T.; Ropstad, E.O.; Bjerkas, E.; Lindblad-Toh, K.; et al. A deletion in nephronophthisis 4 (NPHP4) is associated with recessive cone-rod dystrophy in standard wire-haired dachshund. Genome Res. 2008, 18, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Kukekova, A.V.; Goldstein, O.; Johnson, J.L.; Richardson, M.A.; Pearce-Kelling, S.E.; Swaroop, A.; et al. Canine RD3 mutation establishes rod-cone dysplasia type 2 (rcd2) as ortholog of human and murine rd3. Mamm. Genome 2009, 20, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Dekomien, G.; Vollrath, C.; Petrasch-Parwez, E.; Boeve, M.H.; Akkad, D.A.; Gerding, W.M.; Epplen, J.T. Progressive retinal atrophy in Schapendoes dogs: mutation of the newly identified CCDC66 gene. Neurogenetics 2010, 11, 163–174. [Google Scholar] [CrossRef]
- Goldstein, O.; Kukekova, A.V.; Aguirre, G.D.; Acland, G.M. Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 2010, 96, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kropatsch, R.; Petrasch-Parwez, E.; Seelow, D.; Schlichting, A.; Gerding, W.M.; Akkad, D.A.; Epplen, J.T.; Dekomien, G. Generalized progressive retinal atrophy in the Irish Glen of Imaal Terrier is associated with a deletion in the ADAM9 gene. Mol. Cell Probes 2010, 24, 357–363. [Google Scholar] [CrossRef]
- Downs, L.M.; Wallin-Hakansson, B.; Boursnell, M.; Marklund, S.; Hedhammar, A.; Truve, K.; Hübinette, L.; Lindblad-Toh, K.; Bergström, T.; Mellersh, C.S. A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations. PLoS ONE 2011, 6, e21452. [Google Scholar] [CrossRef]
- Ahonen, S.J.; Arumilli, M.; Lohi, H. A CNGB1 frameshift mutation in Papillon and Phalene dogs with progressive retinal atrophy. PLoS ONE 2013, 8, e72122. [Google Scholar] [CrossRef]
- Downs, L.M.; Bell, J.S.; Freeman, J.; Hartley, C.; Hayward, L.J.; Mellersh, C.S. Late-onset progressive retinal atrophy in the Gordon and Irish Setter breeds is associated with a frameshift mutation in C2orf71. Anim. Genet. 2013, 44, 169–177. [Google Scholar] [CrossRef]
- Downs, L.M.; Mellersh, C.S. An Intronic SINE insertion in FAM161A that causes exon-skipping is associated with progressive retinal atrophy in Tibetan Spaniels and Tibetan Terriers. PLoS ONE 2014, 9, e93990. [Google Scholar] [CrossRef]
- Downs, L.M.; Wallin-Hakansson, B.; Bergstrom, T.; Mellersh, C.S. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet. Epidemiol. 2014, 1, 4. [Google Scholar] [CrossRef]
- Wiik, A.C.; Ropstad, E.O.; Ekesten, B.; Karlstam, L.; Wade, C.M.; Lingaas, F. Progressive retinal atrophy in Shetland sheepdog is associated with a mutation in the CNGA1 gene. Anim. Genet. 2015, 46, 515–521. [Google Scholar] [CrossRef]
- Kropatsch, R.; Akkad, D.A.; Frank, M.; Rosenhagen, C.; Altmuller, J.; Nurnberg, P.; Epplen, J.T.; Dekomien, G. A large deletion in RPGR causes XLPRA in Weimaraner dogs. Canine Genet. Epidemiol. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, O.P.; Hitti, R.J.; Boursnell, M.; Miyadera, K.; Sargan, D.; Mellersh, C. Canine genome assembly correction facilitates identification of a MAP9 deletion as a potential age of onset modifier for RPGRIP1-associated canine retinal degeneration. Mamm. Genome 2016, 27, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Murgiano, L.; Becker, D.; Torjman, D.; Niggel, J.K.; Milano, A.; Cullen, C.; Feng, R.; Wang, F.; Jagannathan, V.; Pearce-Kelling, S.; et al. Complex Structural PPT1 Variant Associated with Non-syndromic Canine Retinal Degeneration. G3 (Bethesda) 2019, 8, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, O.; Jordan, J.A.; Aguirre, G.D.; Acland, G.M. A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs. Mol. Vis. 2013, 19, 1871–1884. [Google Scholar] [PubMed]
- Goldstein, O.; Mezey, J.G.; Schweitzer, P.A.; Boyko, A.R.; Gao, C.; Bustamante, C.D.; Jordan, J.A.; Aguirre, G.D.; Acland, G.M. IQCB1 and PDE6B mutations cause similar early onset retinal degenerations in two closely related terrier dog breeds. Invest. Ophthalmol. Vis. Sci. 2013, 54, 7005–7019. [Google Scholar] [CrossRef]
- Goldstein, O.; Zangerl, B.; Pearce-Kelling, S.; Sidjanin, D.J.; Kijas, J.W.; Felix, J.; Acland, G.M.; Aguirre, G.D. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 2006, 88, 541–550. [Google Scholar] [CrossRef]
- Parker, H.G.; Kim, L.V.; Sutter, N.B.; Carlson, S.; Lorentzen, T.D.; Malek, T.B.; Johnson, G.S.; DeFrance, H.B.; Ostander, E.A.; Kruglyak, L. Genetic structure of the purebred domestic dog. Science 2004, 304, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Petit, L.; Lheriteau, E.; Weber, M.; Le Meur, G.; Deschamps, J.Y.; Provost, N.; Mendes-Madeira, A.; Libeau, L.; Guihal, C.; Colle, M.A.; et al. Restoration of vision in the pde6beta-deficient dog, a large animal model of rod-cone dystrophy. Mol. Ther. 2012, 20, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Lheriteau, E.; Petit, L.; Weber, M.; Le Meur, G.; Deschamps, J.Y.; Libeau, L.; Mendes-Madeira, A.; Guihal, C.; François, A.; Guyon, R.; et al. Successful gene therapy in the RPGRIP1-deficient dog: A large model of cone-rod dystrophy. Mol. Ther. 2014, 22, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Mowat, F.M.; Occelli, L.M.; Bartoe, J.T.; Gervais, K.J.; Bruewer, A.R.; Querubin, J.; Dinculescu, A.; Boye, S.L.; Hauswirth, W.W.; Petersen-Jones, S.M. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa. Front. Neurosci. 2017, 11, 342. [Google Scholar] [CrossRef]
- Club, A.K. The Complete Dog Book, 20th ed.; Random House Publishing Group: New York, NY, USA, 2007. [Google Scholar]
- Aken, B.L.; Ayling, S.; Barrell, D.; Clarke, L.; Curwen, V.; Fairley, S.; Fernandez Banet, J.; Billis, K.; García Girón, C.; Hourlier, T.; et al. The Ensembl gene annotation system. Database (Oxford) 2016, 2016, baw093. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdottir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 1–33. [Google Scholar]
- NCBI Mutation Analyzer. 2017. Available online: https://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi?mode=translate (accessed on 04 January 2017).
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Forman, O.P.; Pettitt, L.; Komaromy, A.M.; Bedford, P.; Mellersh, C. A Novel Genome-Wide Association Study Approach Using Genotyping by Exome Sequencing Leads to the Identification of a Primary Open Angle Glaucoma Associated Inversion Disrupting ADAMTS17. PLoS ONE 2015, 10, e0143546. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- RetNet. 2017. Available online: http://www.sph.uth.tmc.edu/RetNet/ (accessed on 24 April 2017).
- Ritter, B.; Philie, J.; Girard, M.; Tung, E.C.; Blondeau, F.; McPherson, P.S. Identification of a family of endocytic proteins that define a new alpha-adaptin ear-binding motif. EMBO Rep. 2003, 4, 1089–1093. [Google Scholar] [CrossRef]
- Takei, K.; Haucke, V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 2001, 11, 385–391. [Google Scholar] [CrossRef]
- Ritter, B.; Blondeau, F.; Denisov, A.Y.; Gehring, K.; McPherson, P.S. Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics. Biochem. Soc. Trans. 2004, 32, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Alazami, A.M.; Hijazi, H.; Kentab, A.Y.; Alkuraya, F.S. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J. Med. Genet. 2014, 51, 224–228. [Google Scholar] [CrossRef]
- Palmer, E.E.; Jarrett, K.E.; Sachdev, R.K.; Al Zahrani, F.; Hashem, M.O.; Ibrahim, N.; Sampaio, H.; Kandula, T.; Macintosh, R.; Gupta, R.; et al. Neuronal deficiency of ARV1 causes an autosomal recessive epileptic encephalopathy. Hum. Mol. Genet. 2016, 25, 3042–3054. [Google Scholar]
- Turkdogan, D.; Usluer, S.; Akalin, F.; Agyuz, U.; Aslan, E.S. Familial early infantile epileptic encephalopathy and cardiac conduction disorder: A rare cause of SUDEP in infancy. Seizure 2017, 50, 171–172. [Google Scholar] [CrossRef]
- Blake, J.A.; Eppig, J.T.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; The Mouse Genome Database Group. Mouse Genome Database (MGD)-2017: Community knowledge resource for the laboratory mouse. Nucleic Acids Res. 2017, 45, D723–D729. [Google Scholar] [CrossRef]
- Paez, G.L.; Sellers, K.F.; Band, M.; Acland, G.M.; Zangerl, B.; Aguirre, G.D. Characterization of gene expression profiles of normal canine retina and brain using a retinal cDNA microarray. Mol. Vis. 2006, 12, 1048–1256. [Google Scholar] [PubMed]
- Park, S.J.; Lee, D.S.; Lim, E.J.; Choi, S.H.; Kang, W.S.; Kim, I.B.; Chun, M.H. The absence of the clathrin-dependent endocytosis in rod bipolar cells of the FVB/N mouse retina. Neurosci. Lett. 2008, 439, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Veleri, S.; Nellissery, J.; Mishra, B.; Manjunath, S.H.; Brooks, M.J.; Dong, L.; Nagashima, K.; Qian, H.; Gao, C.; Sergeev, Y.V.; et al. REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Hum. Mol. Genet. 2017, 26, 2218–2230. [Google Scholar] [CrossRef]
- Xiong, B.; Bellen, H.J. Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci. 2013, 36, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinchore, Y.; Mitra, A.; Dolph, P.J. Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet. 2009, 5, e1000377. [Google Scholar] [CrossRef]
- Dourlen, P.; Bertin, B.; Chatelain, G.; Robin, M.; Napoletano, F.; Roux, M.J.; Mollereau, B. Drosophila fatty acid transport protein regulates rhodopsin-1 metabolism and is required for photoreceptor neuron survival. PLoS Genet. 2012, 8, e1002833. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.G.; Dreger, D.L.; Rimbault, M.; Davis, B.W.; Mullen, A.B.; Carpintero-Ramirez, G.; Ostander, E.A. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. Cell Rep. 2017, 19, 697–708. [Google Scholar] [CrossRef] [PubMed]
Breed | NECAP1+/+ | NECAP1−/+ | NECAP1−/− | Allele Frequency |
---|---|---|---|---|
Giant Schnauzer (GS) | 301 | 18 | 3 | 0.037 |
GS * | 300 | 9 | 0 | 0.015 |
Giant Spitz | 106 | 7 | 0 | 0.031 |
Medium Spitz | 146 | 5 | 0 | 0.017 |
Miniature Spitz | 106 | 8 | 0 | 0.035 |
Pomeranian Spitz | 56 | 3 | 0 | 0.025 |
Miniature Longhaired Dachshund | 157 | 8 | 0 | 0.024 |
175 other breeds or unknown breeds | 4206 | 0 | 0 |
Gene | CanFam3.1 Chromosomal Coordinates | Total Number of Exonic Reads | Mean Number of Reads Per Exon |
---|---|---|---|
RPGRIP1 | 15: 18316887-18387548 | 1458 | 58 |
RHO | 20: 5632150-5637404 | 461640 | 92328 |
GNAT1 | 20: 39129469-39133156 | 118800 | 13200 |
ANXA1 | 1: 84744444-84763121 | 120 | 9 |
MYH41 | 5: 34748657-34767076 | 3 | 0 |
MYOT | 11: 25591798-25592328 | 40 | 4 |
NECAP1 | 27: 37460607-37506942 | 749 | 94 |
CanFam3.1 Chromosomal Coordinates | Size (Mb) |
---|---|
1:29970719-33682751 | 3.71 |
6:33954067-39111638 | 5.16 |
8:59486837-65640116 | 6.15 |
10:64657382-69250914 | 4.59 |
13:58887427-60841228 | 1.95 |
21:12842407-19235893 | 6.39 |
23:54039-17493091 | 17.44 |
25:23239981-26009032 | 2.77 |
27:36722004-45753342 | 9.03 |
28:13922125-15662789 | 1.74 |
29:38572915-41054487 | 2.48 |
30:1366-26126946 | 26.13 |
36:17518975-21096460 | 3.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hitti, R.J.; Oliver, J.A.C.; Schofield, E.C.; Bauer, A.; Kaukonen, M.; Forman, O.P.; Leeb, T.; Lohi, H.; Burmeister, L.M.; Sargan, D.; et al. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes 2019, 10, 385. https://doi.org/10.3390/genes10050385
Hitti RJ, Oliver JAC, Schofield EC, Bauer A, Kaukonen M, Forman OP, Leeb T, Lohi H, Burmeister LM, Sargan D, et al. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes. 2019; 10(5):385. https://doi.org/10.3390/genes10050385
Chicago/Turabian StyleHitti, Rebekkah J., James A. C. Oliver, Ellen C. Schofield, Anina Bauer, Maria Kaukonen, Oliver P. Forman, Tosso Leeb, Hannes Lohi, Louise M. Burmeister, David Sargan, and et al. 2019. "Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration" Genes 10, no. 5: 385. https://doi.org/10.3390/genes10050385
APA StyleHitti, R. J., Oliver, J. A. C., Schofield, E. C., Bauer, A., Kaukonen, M., Forman, O. P., Leeb, T., Lohi, H., Burmeister, L. M., Sargan, D., & Mellersh, C. S. (2019). Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes, 10(5), 385. https://doi.org/10.3390/genes10050385